
ORNL is managed by UT-Battelle
for the US Department of Energy

HPC Programming Environments

Introduction to HPC Workshop
26 June 2018

Presented by Matt Belhorn

HPC Programming Environments

What is the Programming Environment?

Hardware

Node OS

Linux Runtime Libraries

LLCA, Networks

Compiler and
 Programming

 Model
 Runtimes

Scalable
Debuggers

and
Analysis
Utilities

IO Service
 and

Runtimes

Resource
 and

Workload
Managers

Compiler
Toolchains

Performance
Math and Parallel

Libraries Userland
Tools
and

Utilities

Your Applications and Jobs

Fixed by choice
of machine

The
Programming
Environment

Many users and
applications

running
concurrently

HPC Programming Environments

What is the Programming Environment?

Hardware

Node OS

Linux Runtime Libraries

LLCA, Networks

Compiler and
 Programming

 Model
 Runtimes

Scalable
Debuggers

and
Analysis
Utilities

IO Service
 and

Runtimes

Resource
 and

Workload
Managers

Compiler
Toolchains

Performance
Math and Parallel

Libraries Userland
Tools
and

Utilities

Your Applications and Jobs
Many programming
models and baseline
language features
work well or
implemented only by
specific compilers

● OpenACC
● CUDA
● OpenMP
● Lang. Standards

● C++14
● f03, f08

HPC Programming Environments

What is the Programming Environment?

Hardware

Node OS

Linux Runtime Libraries

LLCA, Networks

Compiler and
 Programming

 Model
 Runtimes

Scalable
Debuggers

and
Analysis
Utilities

IO Service
 and

Runtimes

Resource
 and

Workload
Managers

Compiler
Toolchains

Performance
Math and Parallel

Libraries Userland
Tools
and

Utilities

Your Applications and Jobs
Many codes require
various IO
strategies, specific
versions of
optimized libraries,
or compiler-specific
programming
models:

● MPI
● OpenMP
● OpenACC
● CUDA
● pgas
● pthreads
● coarrays
● CUDAFortran
● ...

HPC Programming Environments

What is the Programming Environment?

Hardware

Node OS

Linux Runtime Libraries

LLCA, Networks

Compiler and
 Programming

 Model
 Runtimes

Scalable
Debuggers

and
Analysis
Utilities

IO Service
 and

Runtimes

Resource
 and

Workload
Managers

Compiler
Toolchains

Performance
Math and Parallel

Libraries Userland
Tools
and

Utilities

Your Applications and Jobs
Users’ workflows
often depend on
specific versions of
tools and utilities

HPC Programming Environments

What is the Programming Environment?

Hardware

Node OS

Linux Runtime Libraries

LLCA, Networks

Compiler and
 Programming

 Model
 Runtimes

Scalable
Debuggers

and
Analysis
Utilities

IO Service
 and

Runtimes

Resource
 and

Workload
Managers

Compiler
Toolchains

Performance
Math and Parallel

Libraries Userland
Tools
and

Utilities

Your Applications and Jobs
Approaches to
debugging and
performance
analysis depends on
what programming
models are being
used.

HPC Programming Environments

The PE needs to be flexible and personalized

• HPC resources are shared by many users with different needs:
 No single environment works for everyone!
● Personal machines and dedicated clusters may have everything you

need in the default environment.

• However, many PE components cannot co-exist in an HPC
environment simultaneously.
● Multiple compiler/programming model/runtime options shadow low-

level libraries for dynamically linked binaries
● Multiple conflicting libraries required,

 often with differing APIs between versions

HPC Programming Environments

How to make conflicting software co-exist among users?

• At the highest level, the PE is your shell’s build- and run-time
environment (see output of env).

• Software installed outside default paths (/usr/bin, /usr/lib, etc.)

• Enabled per-user by managing key environment variables
 Carefully ordered paths in shell search variables:

 PATH - where your shell searches for executables

 LD_LIBRARY_PATH - where the dynamic linker searches for shared libraries

 LIBRARY_PATH - where compilers look for static libraries

 PKG_CONFIG_PATH, etc...

 Application-specific settings and options

HPC Programming Environments

Building your PE

• Your PE is setup in several stages:
 Login defaults: /etc/profile and system shell init scripts
 User-specified defaults in personal shell init scripts
 Interactively or manually setting, overriding, or deleting shell

environment variables at the command line or in shell scripts.
 Using the environment module system (preferred)

• Each approach is valid and useful, but care must be taken to ensure
consistency and accuracy. Particularly special consideration must be
given to avoid dynamic linking errors and other conflicting settings in
the environment.

HPC Programming Environments

The Default Environment

• Site admins setup environment requirements needed for hardware,
resource managers, identity, basic needs at the system level
● /etc/profile, /etc/profile.d, /etc/bash.bashrc, etc…

• Users can override, these default settings
● $HOME/.bashrc, $HOME/.profile, $HOME/.bash_login
● Generally not recommended to make major changes this way:

● $HOME is shared by all OLCF resources - unguarded changes made
for one machine may cause errors on another!

HPC Programming Environments

Manual Changes to Environment

• Always possible to alter environment variables on-the-fly (details later).

• Many users try different compilers, optimized libraries; run several jobs
concurrently using different programming models.
● OK - and often necessary - for your own custom software that you won’t ever remove

from the environment.

● Very difficult to maintain consistant, properly-ordered PATH, LD_LIBRARY_PATH, etc by
hand for software you may wish to change or remove from environment:

$ echo $PATH
/sw/xk6/bin:/sw/xk6/hsi/5.0.2.p1/sles11.5/bin:/autofs/nccs-svm1_sw/titan/.swci/0-login/opt/spack/20170612/linux-suse_linux11-
x86_64/gcc-5.3.0/git-2.13.0-znpqlkovoclvlt5rwm3rkpk7d2m56ez2/bin:/sw/xk6/xalt/0.7.5/bin:/sw/xk6/lustredu/1.4/
sles11.3_gnu4.8.2/bin:/opt/cray/mpt/7.6.3/gni/bin:/opt/cray/rca/1.0.0-2.0502.60530.1.63.gem/bin:/opt/cray/alps/5.2.4-
2.0502.9774.31.12.gem/sbin:/opt/cray/dvs/2.5_0.9.0-1.0502.2188.1.113.gem/bin:/opt/cray/xpmem/0.1-2.0502.64982.5.3.gem/
bin:/opt/cray/ugni/6.0-1.0502.10863.8.28.gem/bin:/opt/cray/udreg/2.3.2-1.0502.10518.2.17.gem/bin:/opt/cray/craype/2.5.13/
bin:/opt/pgi/18.4.0/linux86-64/18.4/bin:/opt/cray/eslogin/eswrap/1.3.3-1.020200.1280.0/bin:/usr/bin:/usr/sbin:/opt/moab/bin:/usr/
local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/bin:/usr/lib/mit/bin:/usr/lib/mit/sbin:/sbin:/usr/sbin:/usr/lib/qt3/
bin:/ccs/home/belhorn/.local/bin:/opt/cray/bin:/opt/bin:/opt/public/bin:/opt/bin:/opt/public/bin

HPC Programming Environments

Environment Modules

• A simple way for adding and removing complex paths and options to
environment variables for packages and dependencies.

• Software organized in modules describing atomic environment
requirements for the software.

• Modulefiles: Scripts in $MODULEPATH with instructions on what
environment changes and prequisites needed to enable use of a
software package.

• Titan uses TCL Environment Modules, other environment module
systems (eg, Lua-based LMOD) used on other machines.

• Semi-automatic conflict management

HPC Programming Environments

Initializing Environment Modules

• Used through the module shell function.
● Environment changes are shell-specific. Must use correct

middleware for your shell (including perl, python, ruby interpereters)

• Initialized with . $MODULESHOME/init/$SHELL
● Initializied for login shells automatically through site defaults.
● Must be invoked manually for non-login shells/scripts

(including batch jobs)

HPC Programming Environments

Using Environment Modules

Basic usage can be done using the following commands. Many
commands have alternate aliases.

$ module -t list # list loaded modules
$ module avail # Show modules that can be loaded
$ module help <package> # Help info for package (if provided)
$ module show <package> # Show contents of module
$ module load <package> <package>… # Add package(s) to environment
$ module swap <package> <package> # Atomiclly swap conflicting packages
$ module unload <package> <package>… # Remove package(s) from environment
$ module whatis # Simple information about the package
$ module use <path> # Search <path> for new modulefiles

WARNING: Not recommended to use these commands, or use them carefully!
$ module purge
$ module init* # initadd, initprepend, initrm...
$ module clear

HPC Programming Environments

The Cray Programming Environment

• CrayPE consists of optimizing cross-compilers for Cray machines.

• Available through meta-modules starting with PrgEnv-*
● PrgEnv-pgi (default), PrgEnv-gnu, PrgEnv-cray, PrgEnv-intel
● Underlying compiler toolchains in separate modules:

● pgi - Portland Group suite
● gcc - GNU Compiler Collection
● cce - Cray Compilation Environment
● intel - Intel Composer XE

HPC Programming Environments

The Cray Compiler Wrappers

• Cross-compiling wrappers for underlying compiler toolchains:

cc - C compiler
CC - C++ compiler
ftn - FORTRAN compiler

• Wrappers accept underlying toolchain arguments

• wrapper target architectures set via modules:
 craype-interlagos, craype-network-gemini

• Links optimized cray-mpich, cray-libsci implementations

• Links requirements for resource manager and interconnect.
 See output of cc -craype-verbose for added compiler options

HPC Programming Environments

Building your own Software

• Install to NFS filesystem preferred (/ccs/proj/<projid>); not purged.

• Recommended to rebuild with new CUDA implementation releases

• Learn (way out of scope here) and use a common build system:
 CMake, GNU Autotools / Makefiles, scons, waf, etc...
 Many packages automatically alter
$CMAKE_PREFIX_PATH, $PKG_CONFIG_PATH

• Usually must have same environment modules loaded at both build
and runtime.

HPC Programming Environments

Build Systems in the CrayPE

• Tell the build system what compiler to use:
● MPICXX=CC ./configure …

 cmake -DCMAKE_Fortran_COMPILER=ftn \
 -DCMAKE_C_COMPILER=cc \
 -DCMAKE_CXX_COMPILER=CC \
 ../.

• Titan is a cross-compile environment:
 Cray wrappers target the compute nodes by default.

 CN target binaries on the FENs often produce “illegal instruction” errors.

 To build for batch nodes, use raw compilers or craype-mc8 target module.

HPC Programming Environments

Build Systems in the CrayPE (cont’d)

• Often need to instruct build tools where to find (non-standard)
CrayPE libraries (see package’s compilation documentation):
 HDF5=$HDF5_ROOT ./configure …
 ./configure --hdf5_dir=$HDF5_ROOT

• To find where paths to provided libraries are, inspect the modulefile:
module show cray-hdf5

HPC Programming Environments

What next?

• There’s no better way to learn a new environment than to dive in.

• Should you have questions or comments regarding the Titan
programming environment, send them to us at `help@olcf.ornl.gov`.

We’re happy to help and incorporate your feedback.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

