
ORNL is managed by UT-Battelle, LLC for the US Department of
Energy

Changes to the Python Infrastructure

25 July 2018

OLCF User Conference Call

Presented by Matt Belhorn

2

Python environments can get messy...

Credit: https://xkcd.com/1987/

 ...more so in HPC

supercomputer

3

New Approach to Providing Python and Python Extensions

 Anaconda Distributions
 Includes commonly used packages out-of-the box

 Extended, customized with conda environments

 Minimal native python environment modules
 Can use wheels, but doesn’t rely on pre-compiled binaries at system level

 OLCF will no longer provide modules for every extension

 Extend the base with your own virtualenvs

 Complete DIY is always an option
 All of this is in userspace anyway, tune your environment from the ground up

 Choose from native python, anaconda/miniconda at the python version you need

4

Anaconda Basics

 Provided as modulefile on Titan, Eos, Rhea
 python_anaconda{M}/{M}.{m}.{u}-anaconda{M}-{REL}

 Not yet provided on Summit, Summitdev
 Coming soon, in meantime, see DIY in appendix

 PYTHONUSERBASE set to unique location
 ${HOME}/.local/${HOST}/python/${MODULENAME}

 Relies heavily on pre-compiled binaries
 Extended through conda environments

 conda similar to pipenv: package manager, virtual environment all-in-one

{M}: Python Major Version
{m}: Python minor Version
{u}: Python micro Version
{REL}: Anaconda Release

5

Conda Initial Setup

 Setup your conda config to put conda envs on NFS filesystem.

 If need on CN, choose /ccs/proj/<projid>; not $HOME or Lustre.

 Recommended to use env names that separate project and host.

cat $HOME/.condarc
envs_dirs:
 - /ccs/proj/<projid>/<user>/virtualenvs/<host>...
 - /ccs/home/<user>/.local/share/virtualenvs/<host>...

6

Creating Conda Environments

 Pre-compiled packages (with external dependencies) pulled from channels
 Binaries typically highly optimized for generic architectures
 Pre-compiled binaries don’t always work on HPC resources
 Building packages from source possible, discussed later

conda create <pkgs>... -c <channel> -p <path>
source activate <conda_env>
conda install numpy pyyaml [<pkg>…]
source deactivate

7

SLES11 Crays vs Anaconda

 Pre-compiled binaries
 Assumes/ships with OMPI, must re-build packages if conflicts with machine

 glibc on SLES11 (Titan, Eos) older than packagers expect
 Little can be done about this. Rebuild package from source

 Packages that require newer glibc (e.g. Tensorflow) must be
provisioned other ways

 Anaconda libraries generally collide with OS libs.
 Relative-RPATH’s: works fine on Cray FENs, fail on CNs due to ALPS.

 Add anaconda libs to LD_LIBRARY_PATH only on CNs:

 aprun -e LD_LIBRARY_PATH="${CONDALIBS}:${LD_LIBRARY_PATH}" ...

8

Native Python (from environment modules)

 module load python/{M}.{m}.{u}

 Basic packages included in root site-packages
 virtualenv, pip, setuptools, etc.
 Will consider generic, unoptimized numpy/scipy/matplotlib, other pure-python extensions

 OLCF no-longer providing lots of extensions via environment modules
 Some packages still be provided by environment modules. Eg, mpi4py
 Bindings for specific external frameworks no longer provided this way (h5py, pynetcdf, etc)
 Packages with specific external dependencies (scipy, numpy) also not provided (for now)
 Build these for your own needs; in virtualenvs or arbitrary prefixes

9

Providing your own extensions

 Python packages can exist anywhere: add to PYTHONPATH
 But avoid PYTHONPATH pollution

 packages for varying python versions, machine architectures, and
external dependencies

 Major problem providing packages via environment modules
 Don’t modify the PYTHONPATH in your shell init files

 Consider using virtualenvs

10

Venv/Virtualenvs

 Best practice: provides isolated python environment
 python3: python3 -m venv <path>
 python2: virtualenv <path>
 Activate several ways

 from command line: . <path>/bin/activate; deactivate
 from shebang line: #!/path/to/venv/bin/python3

 Load all environment modules first, deactivate to before changing
environment modules

11

Building Packages from Source

 Can be trickier in HPC environment
 Still better for your application to have isolated, reliable dependencies
 Much easier to manage at a personal level than for site-provided

environment modules that work for everyone
 Let pip do it for you: CC=cc MPICC=cc pip install --no-binary <pkg> <pkg>
 Or use distutils/setuptools: python setup.py install

 Check package docs. May need to get creative passing HPC environment
parameters.

 See appendix for expanded examples

12

General Guidelines

 Follow PEP394 (https://www.python.org/dev/peps/pep-0394/)
 Call python2 or python3 instead of ambiguous python
 Same in scripts: #!/usr/bin/env python2 or #!/usr/bin/python3

 Don’t mix anaconda/conda envs and native python/virtualenvs
 Avoid mixing virtualenvs and environment modules

 Environment module changes generally conflict with virtualenvs
 Use venv python in script shebang lines

 eg: #!/path/to/your/venv/bin/python3
 Use care with pip install --user ... -

 ensure $PYTHONUSERBASE is unique to python version and machine architecture.
 $HOME is shared on a variety of architectures.

13

Current status

 Anaconda
 Changes are already live on Titan, Eos, Rhea
 Coming soon to Power systems

 Native python
 Extension environment modules will be deprecated in coming weeks.
 Future versions of Python will have minimal extensions, in root site-packages.
 External environment module python extensions for older python versions will remain as-is

until further notice, but won’t work with newer python interpereters.
 Additions to python interpereter root site-packages are rolling work-in-progress, check site-

packages before loading additional extensions from modulefiles.

14

Feedback Welcome

Don’t hesitate to contact us: help@olcf.ornl.gov
– Report problems you discover with the software we provide.
– Get help building your application in a virtualenv/conda env
– Suggest certain packages be included in root site-packages

15

Appendix

16

Resources

 Venv/Virtualenv
 venv (py3): https://docs.python.org/3.6/library/venv.html
 virtualenv (py2): https://virtualenv.pypa.io/en/stable/

 Anaconda Documentation
 conda: https://conda.io/docs/user-guide/getting-started.html
 Installing your own: https://conda.io/docs/user-guide/install/linux.html

 Check the package documentation
 Installation procedure in package docs is often not as simple as described when

applied to an HPC environment.

17

Source Installs with Pip

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-hdf5-parallel/1.10.2.0 # sets HDF5_DIR envvar
source /path/to/venv/bin/activate
CC=cc HDF5_MPI=”ON” HDF5_VERSION=1.10.2 pip install -vv --no-binary=h5py h5py

● Most python packages assume the use of GCC. Use the GCC PE or GCC raw compilers when possible for easiest builds.
● Use the --no-binary flag to build packages from source.

– Comma separated list of package/dependency names
– Can use :all: to build all dependencies from source.
– Use verbose output `-vv` to identify build errors.

● Most packages accept environment variables to configure source builds. Check package documentation.
● If package will run on login/batch nodes and using Cray wrappers, target the login node architecture.
● Must have all external dependencies loaded at runtime (PrgEnv-gnu, cray-hdf5, etc. excluding compiler target)

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-hdf5/1.10.2.0 # sets HDF5_DIR envvar
module swap craype-istanbul craype-mc8
source /path/to/venv/bin/activate
CC=cc HDF5_VERSION=1.10.2 pip install -vv --no-binary=h5py h5py

18

Setuptools/Distutils Source Builds

● Pip source builds actually do this under the hood.
● Allows complex builds by

– editing `setup.cfg` (or other, see package docs)
– passing arguments to `setup.py configure`
– Global distutils options can be set in your user-config (~/.pydistutils.cfg) or a temporary (preferred) site-

config using `setup.py setopt`/`setup.py saveopt`. (https://setuptools.readthedocs.io/en/latest/setuptools.html#configuration-file-options)

– See `setup.py --help-commands` for build steps

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-hdf5-parallel/1.10.2.0
. /path/to/venv/bin/activate
python setup.py configure --hdf5=$HDF5_DIR
python setup.py configure --hdf5-version=1.10.2
python setup.py configure --mpi
python setup.py install

19

Conda source builds

● Try to use conda first w/ alternate channels
– https://conda.io/docs/user-guide/tasks/manage-pkgs.html

● Can use pip or setuptools to install PyPI packages as normal with venv
– This doesnt’ take advantage of isolated libraries provided by pre-built conda packages

● Use conda-build to make your own “portable” conda packages from recipes.
– More complex, you’re bundling dependencies into a pre-built binary nominally for distribution from

anaconda repositories (channels).
– https://conda.io/docs/user-guide/tasks/build-packages/install-conda-build.html#install-conda-build
– https://conda.io/docs/user-guide/tutorials/build-pkgs-skeleton.html
– https://conda.io/docs/user-guide/tutorials/build-pkgs.html

20

DIY: Install your own Anaconda/Miniconda/Native CPython

● Be sure to add to your PATH at runtime.

● Consider also setting:

– unset PYTHONSTARTUP

– export PYTHONUSERBASE=/path/to/choice

● Example script to install Anaconda on a Cray
(change PREFIX_BASE before use):
https://code.ornl.gov/m9b/nccs_python_reference/
blob/master/install_anaconda_on_cray.sh

● Example script to install both py2 and py3
natively:
https://code.ornl.gov/m9b/nccs_python_reference/
blob/master/build_raw_python.sh

module unload python xalt
module unload PrgEnv-pgi PrgEnv-gnu PrgEnv-intel PrgEnv-cray
module load PrgEnv-gnu dynamic-link

HOST="${HOSTNAME%%-*}"
PROJID="stf007"
PREFIX_BASE="/ccs/proj/$PROJID/$USER/${HOST}"
PREFIX="${PREFIX_BASE}/opt/anaconda3/5.2.0"

Get installer from https://repo.continuum.io/archive/ for your target
architecture: Linux-x86_64 or Linux-ppc64le
wget https://repo.continuum.io/archive/Anaconda2-5.2.0-Linux-x86_64.sh
md5sum Anaconda2-5.2.0-Linux-x86_64.sh # Verify the hash
chmod a+x Anaconda2-5.2.0-Linux-x86_64.sh
./Anaconda2-5.2.0-Linux-x86_64.sh -b -p $PREFIX

Add anaconda deploy to the PATH
if [-z "$OPATH"]; then
 OPATH="$PATH" # Save current PATH for easy restore
 export PATH="$PREFIX/bin:$PATH"
fi

which pip
which python

Update pip to latest version
pip install -v --upgrade pip

If on a Cray,
if [-n "${CRAYPE_VERSION}"]; then
 # Install mpi4py in anaconda root, built against cray-mpich
 CC=cc MPICC=cc pip install -v --no-binary :all: mpi4py
else
 pip install -v --no-binary :all: mpi4py
fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

