
ORNL is managed by UT-Battelle, LLC for the US Department of
Energy

Changes to the Python Infrastructure

25 July 2018

OLCF User Conference Call

Presented by Matt Belhorn

2

Python environments can get messy...

Credit: https://xkcd.com/1987/

 ...more so in HPC

supercomputer

3

New Approach to Providing Python and Python Extensions

 Anaconda Distributions
 Includes commonly used packages out-of-the box

 Extended, customized with conda environments

 Minimal native python environment modules
 Can use wheels, but doesn’t rely on pre-compiled binaries at system level

 OLCF will no longer provide modules for every extension

 Extend the base with your own virtualenvs

 Complete DIY is always an option
 All of this is in userspace anyway, tune your environment from the ground up

 Choose from native python, anaconda/miniconda at the python version you need

4

Anaconda Basics

 Provided as modulefile on Titan, Eos, Rhea
 python_anaconda{M}/{M}.{m}.{u}-anaconda{M}-{REL}

 Not yet provided on Summit, Summitdev
 Coming soon, in meantime, see DIY in appendix

 PYTHONUSERBASE set to unique location
 ${HOME}/.local/${HOST}/python/${MODULENAME}

 Relies heavily on pre-compiled binaries
 Extended through conda environments

 conda similar to pipenv: package manager, virtual environment all-in-one

{M}: Python Major Version
{m}: Python minor Version
{u}: Python micro Version
{REL}: Anaconda Release

5

Conda Initial Setup

 Setup your conda config to put conda envs on NFS filesystem.

 If need on CN, choose /ccs/proj/<projid>; not $HOME or Lustre.

 Recommended to use env names that separate project and host.

cat $HOME/.condarc
envs_dirs:
 - /ccs/proj/<projid>/<user>/virtualenvs/<host>...
 - /ccs/home/<user>/.local/share/virtualenvs/<host>...

6

Creating Conda Environments

 Pre-compiled packages (with external dependencies) pulled from channels
 Binaries typically highly optimized for generic architectures
 Pre-compiled binaries don’t always work on HPC resources
 Building packages from source possible, discussed later

conda create <pkgs>... -c <channel> -p <path>
source activate <conda_env>
conda install numpy pyyaml [<pkg>…]
source deactivate

7

SLES11 Crays vs Anaconda

 Pre-compiled binaries
 Assumes/ships with OMPI, must re-build packages if conflicts with machine

 glibc on SLES11 (Titan, Eos) older than packagers expect
 Little can be done about this. Rebuild package from source

 Packages that require newer glibc (e.g. Tensorflow) must be
provisioned other ways

 Anaconda libraries generally collide with OS libs.
 Relative-RPATH’s: works fine on Cray FENs, fail on CNs due to ALPS.

 Add anaconda libs to LD_LIBRARY_PATH only on CNs:

 aprun -e LD_LIBRARY_PATH="${CONDALIBS}:${LD_LIBRARY_PATH}" ...

8

Native Python (from environment modules)

 module load python/{M}.{m}.{u}

 Basic packages included in root site-packages
 virtualenv, pip, setuptools, etc.
 Will consider generic, unoptimized numpy/scipy/matplotlib, other pure-python extensions

 OLCF no-longer providing lots of extensions via environment modules
 Some packages still be provided by environment modules. Eg, mpi4py
 Bindings for specific external frameworks no longer provided this way (h5py, pynetcdf, etc)
 Packages with specific external dependencies (scipy, numpy) also not provided (for now)
 Build these for your own needs; in virtualenvs or arbitrary prefixes

9

Providing your own extensions

 Python packages can exist anywhere: add to PYTHONPATH
 But avoid PYTHONPATH pollution

 packages for varying python versions, machine architectures, and
external dependencies

 Major problem providing packages via environment modules
 Don’t modify the PYTHONPATH in your shell init files

 Consider using virtualenvs

10

Venv/Virtualenvs

 Best practice: provides isolated python environment
 python3: python3 -m venv <path>
 python2: virtualenv <path>
 Activate several ways

 from command line: . <path>/bin/activate; deactivate
 from shebang line: #!/path/to/venv/bin/python3

 Load all environment modules first, deactivate to before changing
environment modules

11

Building Packages from Source

 Can be trickier in HPC environment
 Still better for your application to have isolated, reliable dependencies
 Much easier to manage at a personal level than for site-provided

environment modules that work for everyone
 Let pip do it for you: CC=cc MPICC=cc pip install --no-binary <pkg> <pkg>
 Or use distutils/setuptools: python setup.py install

 Check package docs. May need to get creative passing HPC environment
parameters.

 See appendix for expanded examples

12

General Guidelines

 Follow PEP394 (https://www.python.org/dev/peps/pep-0394/)
 Call python2 or python3 instead of ambiguous python
 Same in scripts: #!/usr/bin/env python2 or #!/usr/bin/python3

 Don’t mix anaconda/conda envs and native python/virtualenvs
 Avoid mixing virtualenvs and environment modules

 Environment module changes generally conflict with virtualenvs
 Use venv python in script shebang lines

 eg: #!/path/to/your/venv/bin/python3
 Use care with pip install --user ... -

 ensure $PYTHONUSERBASE is unique to python version and machine architecture.
 $HOME is shared on a variety of architectures.

13

Current status

 Anaconda
 Changes are already live on Titan, Eos, Rhea
 Coming soon to Power systems

 Native python
 Extension environment modules will be deprecated in coming weeks.
 Future versions of Python will have minimal extensions, in root site-packages.
 External environment module python extensions for older python versions will remain as-is

until further notice, but won’t work with newer python interpereters.
 Additions to python interpereter root site-packages are rolling work-in-progress, check site-

packages before loading additional extensions from modulefiles.

14

Feedback Welcome

Don’t hesitate to contact us: help@olcf.ornl.gov
– Report problems you discover with the software we provide.
– Get help building your application in a virtualenv/conda env
– Suggest certain packages be included in root site-packages

15

Appendix

16

Resources

 Venv/Virtualenv
 venv (py3): https://docs.python.org/3.6/library/venv.html
 virtualenv (py2): https://virtualenv.pypa.io/en/stable/

 Anaconda Documentation
 conda: https://conda.io/docs/user-guide/getting-started.html
 Installing your own: https://conda.io/docs/user-guide/install/linux.html

 Check the package documentation
 Installation procedure in package docs is often not as simple as described when

applied to an HPC environment.

17

Source Installs with Pip

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-hdf5-parallel/1.10.2.0 # sets HDF5_DIR envvar
source /path/to/venv/bin/activate
CC=cc HDF5_MPI=”ON” HDF5_VERSION=1.10.2 pip install -vv --no-binary=h5py h5py

● Most python packages assume the use of GCC. Use the GCC PE or GCC raw compilers when possible for easiest builds.
● Use the --no-binary flag to build packages from source.

– Comma separated list of package/dependency names
– Can use :all: to build all dependencies from source.
– Use verbose output `-vv` to identify build errors.

● Most packages accept environment variables to configure source builds. Check package documentation.
● If package will run on login/batch nodes and using Cray wrappers, target the login node architecture.
● Must have all external dependencies loaded at runtime (PrgEnv-gnu, cray-hdf5, etc. excluding compiler target)

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-hdf5/1.10.2.0 # sets HDF5_DIR envvar
module swap craype-istanbul craype-mc8
source /path/to/venv/bin/activate
CC=cc HDF5_VERSION=1.10.2 pip install -vv --no-binary=h5py h5py

18

Setuptools/Distutils Source Builds

● Pip source builds actually do this under the hood.
● Allows complex builds by

– editing `setup.cfg` (or other, see package docs)
– passing arguments to `setup.py configure`
– Global distutils options can be set in your user-config (~/.pydistutils.cfg) or a temporary (preferred) site-

config using `setup.py setopt`/`setup.py saveopt`. (https://setuptools.readthedocs.io/en/latest/setuptools.html#configuration-file-options)

– See `setup.py --help-commands` for build steps

module swap PrgEnv-pgi PrgEnv-gnu
module load cray-hdf5-parallel/1.10.2.0
. /path/to/venv/bin/activate
python setup.py configure --hdf5=$HDF5_DIR
python setup.py configure --hdf5-version=1.10.2
python setup.py configure --mpi
python setup.py install

19

Conda source builds

● Try to use conda first w/ alternate channels
– https://conda.io/docs/user-guide/tasks/manage-pkgs.html

● Can use pip or setuptools to install PyPI packages as normal with venv
– This doesnt’ take advantage of isolated libraries provided by pre-built conda packages

● Use conda-build to make your own “portable” conda packages from recipes.
– More complex, you’re bundling dependencies into a pre-built binary nominally for distribution from

anaconda repositories (channels).
– https://conda.io/docs/user-guide/tasks/build-packages/install-conda-build.html#install-conda-build
– https://conda.io/docs/user-guide/tutorials/build-pkgs-skeleton.html
– https://conda.io/docs/user-guide/tutorials/build-pkgs.html

20

DIY: Install your own Anaconda/Miniconda/Native CPython

● Be sure to add to your PATH at runtime.

● Consider also setting:

– unset PYTHONSTARTUP

– export PYTHONUSERBASE=/path/to/choice

● Example script to install Anaconda on a Cray
(change PREFIX_BASE before use):
https://code.ornl.gov/m9b/nccs_python_reference/
blob/master/install_anaconda_on_cray.sh

● Example script to install both py2 and py3
natively:
https://code.ornl.gov/m9b/nccs_python_reference/
blob/master/build_raw_python.sh

module unload python xalt
module unload PrgEnv-pgi PrgEnv-gnu PrgEnv-intel PrgEnv-cray
module load PrgEnv-gnu dynamic-link

HOST="${HOSTNAME%%-*}"
PROJID="stf007"
PREFIX_BASE="/ccs/proj/$PROJID/$USER/${HOST}"
PREFIX="${PREFIX_BASE}/opt/anaconda3/5.2.0"

Get installer from https://repo.continuum.io/archive/ for your target
architecture: Linux-x86_64 or Linux-ppc64le
wget https://repo.continuum.io/archive/Anaconda2-5.2.0-Linux-x86_64.sh
md5sum Anaconda2-5.2.0-Linux-x86_64.sh # Verify the hash
chmod a+x Anaconda2-5.2.0-Linux-x86_64.sh
./Anaconda2-5.2.0-Linux-x86_64.sh -b -p $PREFIX

Add anaconda deploy to the PATH
if [-z "$OPATH"]; then
 OPATH="$PATH" # Save current PATH for easy restore
 export PATH="$PREFIX/bin:$PATH"
fi

which pip
which python

Update pip to latest version
pip install -v --upgrade pip

If on a Cray,
if [-n "${CRAYPE_VERSION}"]; then
 # Install mpi4py in anaconda root, built against cray-mpich
 CC=cc MPICC=cc pip install -v --no-binary :all: mpi4py
else
 pip install -v --no-binary :all: mpi4py
fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

