Parallel Hardware
Three Flavors of Hardware

A Cluster with Multicore Processors

Shared Memory Processor

Multicore

Shared Memory Co-Processor

Manycore

GPU

Distributed Memory Cluster
Three Flavors of Hardware

A Cluster with Multicore Processors and GPU co-Processor

Shared Memory Processor

Multicore

Distributed Memory Cluster

Shared Memory Co-Processor

Manycore

GPU
A Bit of Cluster History...
Commodity Cluster Before 2003

- Single core nodes
- Clock scaling nearing its end
- Birthplace of MPI (around 1990)
- Birthplace of Hadoop/HDFS/MapReduce (early 2000s)
- Scalable HPC math libraries are built
 - ScaLAPACK, PETSc, Trilinos, …
HPC Introduces Diskless Compute Nodes ~2003

- Multicore nodes appear
- HPC I/O gets more complicated
- HPC develops Lustre, GPFS, ADIOS
- But Hadoop/HDFS continues diskfull
Disk Comes Back as SSD ~2010

- Spark: in-memory MapReduce
- Lustre-backed solutions for Spark/Hadoop appear
- HPC pays more attention to data
Working with Today's HPC Systems

- BIG data stays on big system
- Bring into memory in parallel
- Once in memory, keep it there until analysis finished
What is it?

- An acronym
 - *Programming with Big Data in R*
 - *Parallel Big Data R*
 - *Pretty Bad for Dyslexics*
- A set of R packages
- Core Team: Wei-Chen Chen, George Ostrouchov, Drew Schmidt
Strive for *Productivity, Portability, Performance*

- Bridge high-performance computing with high-productivity of R language
- Keep syntax *identical* to R, when possible.
- Software reuse philosophy:
 - Don't reinvent the wheel when possible
 - Introduce HPC standards with R flavor
 - Use scalable HPC libraries with R convenience
- Simplify and use R intelligence where possible
• MPI packages
 ○ pbdMPI
 ○ pbdSLAP, pbdBASE, pbdDMAT, pbdML, pmclust
 ○ kazaam
 ○ tasktools
• Communication tools
 ○ pbdZMQ
 ○ remoter
 ○ pbdCS
• Profilers
 ○ pbdPROF
 ○ pbdPAPI
 ○ hpcvis
• I/O packages
 ○ pbdIO
 ○ pbdNCDF4
 ○ pbdADIOS
 ○ hdfio (soon)
library(pbdDMAT)
init.grid()
x = ddmatrix("rnorm", nrow=m, ncol=n)
y = ddmatrix("rnorm", nrow=m, ncol=1)
mdl = lm.fit(x=x, y=y)
finalize()}
library(pbdDMAT)
init.grid()

dx = ddmatrix("rnorm", 5000, 5000)
expm(dx)
finalize()
Other (distributed) HPC Packages for R

- Rmpi
- A handful of hadoop/spark packages
- That's about it...
Rmpi vs pbdMPI

- Rmpi can be used interactively. pbdMPI is batch (when used without the client/server)
- pbdMPI often easier to install
- pbdMPI has simpler syntax

Rmpi

```r
# int
mpi.allreduce(x, type=1)
# double
mpi.allreduce(x, type=2)
```

pbdMPI

```r
allreduce(x)
```
Types in R

```r
typeof(1)
## [1] "double"

typeof(2)
## [1] "double"

typeof(1:2)
## [1] "integer"
```
MPI with pbdMPI
Parallelism
Parallelism

Problem

Sub Problem 1

Sub Problem 2

CPU 1

CPU 2
Parallelism

Cores/Nodes

1+2=3 3+4=7 5+6=11 7+8=15

Combine

3+7+11+15=36
Parallelism

Cores/Nodes

- Fit Model 1
- Fit Model 2
- Fit Model 3
- Fit Model 4

Choose Best

Best
MPI Operations: Reduce
library(pbdMPI)
nranks = comm.size()
ret = allreduce(1)
comm.print(nranks)
comm.print(ret)
finalize()
library(pbdMPI)

if (comm.rank() == 0){
 important_value = 1+1
} else {
 important_value = NULL
}

ret = bcast(important_value)
comm.print(ret, all.rank=TRUE)
finalize()
MPI Operations: Gather
library(pbdMPI)

val.local = comm.rank()
vals = gather(val.local)
comm.print(vals)

finalize()
MPI Operations: Barrier
library(pbdMPI)

comm.print("starting huge computation...")

if (comm.rank() == 0){
 Sys.sleep(5)
}

barrier()

comm.print("ok!")

finalize()
Task Parallelism
• Tools for task-based parallelism.
• Has an `lapply()`-like interface.
• Automatically handles input-checkpointing:
 ○ Have thousands of "jobs"
 ○ Run as many as you can in 2 hour run window
 ○ Keep running job until all tasks eventually complete.
• Can be used as a workflow tool for external programs.
costly = function(x, waittime) {
 Sys.sleep(waittime)
 cat(paste("iter", i, "executed on rank", comm.
 sqrt(x))
}
ret = mpi_napply(10, costly, checkpoint_path="/tmp")
comm.print(unlist(ret))

$ mpirun -np 3 r mpi_napply.r
iter 4 executed on rank 1
iter 7 executed on rank 2
iter 1 executed on rank 0
^Citer 2 executed on rank 0
iter 8 executed on rank 2
iter 5 executed on rank 1

$ mpirun -np 3 r mpi_napply.r
iter 9 executed on rank 2
iter 3 executed on rank 0
iter 6 executed on rank 1
iter 10 executed on rank 2

[1] 1.000000 1.414214 1.732051 2.000000 2.236068
Each dot is a 250-atom DFT calculation!!
> 600,000 accepted, > 60% rejected moves

MC time evolution of walkers in a Monte Carlo-ab initio
calculation of a binary alloy (CuZn)
- Cray XK7
- 18,688 nodes
- 299,008 cores
- 693.5 TiB of RAM
Parameters

eta_set = c(0.01, 0.05, 0.1, 0.5, 1)
gamma_set = 0:3
max_depth_set = c(6, 10, 15)
min_child_weight_set = c(1, 3, 5)

combos = expand.grid(eta=eta_set, gamma=gamma_set, NROW(combos)

[1] 180

Launch

aprun -n 30 -d 16 xgb.r

Script

run_one_cv = function(i)
{
 eta = combos[i, 1]
gamma = combos[i, 2]
max_depth = combos[i, 3]
min_child_weight = combos[i, 4]

params = list(...)

 cv = xgb.cv(params=params, ...)
 it = which.max(cv$evaluation_log$test_auc_mean)
 best = cv$evaluation_log[it]

 list(params=combos[i, , drop=FALSE], rating=best)
}

results = mpi_napply(n, run_one_cv, checkpoint_pa
Distributed Matrices
- High-level framework for distributed linear algebra and statistics
- Uses block-cyclic data decomposition (ScaLAPACK)
- Makes computing easy, but reading data still hard
- Syntax often identical to base R
 - Helpers: [], rbind(), apply(), ...
 - Linear algebra: %*%, svd(), qr(), ...
 - Basic statistics: median(), mean(), rowSums(), ...
 - Multivariate statistics: lm.fit(), prcomp(), cov(), ...
Block-cyclic

1-d Block

1-d cyclic
Block-cyclic

1-d block-cyclic
Block-cyclic

2-d block-cyclic
• High-level framework for distributed linear algebra and statistics
• Optimized for very tall matrices with comparatively few columns ("shaq")
• Many linear algebra and machine learning methods
• Data distributed by row blocks (however you want)
• Some capability for very wide matrices distributed by column blocks ("tshaq")
pbdDMAT vs kazaam

- pbdDMAT much more thorough (sort of has to be...)
- Both have similar analytics capabilities (clustering, classifiers, dimension reduction, ...)
- kazaam presently works better on GPU's
 - ECP slate may change this
 - both DIY right now
- Can redistribute from one layout to the other fairly easily
Benchmarks

Percival
- Cray XC40
- 168 nodes
- 10,752 cores
- 21 TiB of RAM

pbdDMAT

```r
x = ddmatrix("rnorm", m, n, ICTXT=2)
time = comm.timer({
  cp = crossprod(x)
  eigen(cp, symmetric=TRUE, only.values=TRUE)
})
```

kazaam

```r
x = ranshaq(rnorm, m.local, n, local=TRUE)
time = comm.timer(svd(x, nu=0, nv=0))
```
Benchmarks

pbdDMAT
Benchmarks

kazaam
Benchmarks

pbdDMAT vs kazaam

[Graph showing performance comparison between pbdDMAT and kazaam]
An Application
Outline

- Why you need performance for data analysis
- HOSVD workflow example
 - The math
 - The Algorithm
 - Removing covariance structure
- Workflow and scaling results
- Code notes
• Data analysis is a discovery process
• Iterate many times with different parameters, transformations, or models
• Context is lost if an iteration takes more than few minutes to compute
• Recovering context can take hours of researcher time
Primary source (including figures)

The SVD (2d tensor HOSVD)

\[
\begin{align*}
F &= U S V^T \\
F &= S \times_1 U \times_2 V \\
U \text{ and } V \text{ are orthogonal, that is } U^T U = I \text{ and } V^T V = I \\
S \text{ positive, diagonal, ordered} \\
U \text{ and } V \text{ are unique up to sign} \\
\text{Consequently } F^T F = US^2 U^T
\end{align*}
\]
HOSVD: The Math

\[\mathcal{A} = S \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)} \]

- \(U^{(i)} \) are orthogonal \(U^{(i)^T} U^{(i)} = I \), for \(i = 1, 2, 3 \)
- The \(S \) tensor is all-orthogonal (all its slice matrices are orthogonal)

Fig. 4. Visualization of the HOSVD for a third-order tensor.
HOSVD: The Algorithm

Unfolding a 3d tensor: Data wrangling!! Skinny matrices for kazaam package!

Fig. 1. Unfolding of the $(I_1 \times I_2 \times I_3)$-tensor A to the $(I_1 \times I_2 I_3)$-matrix $A_{(1)}$, the $(I_2 \times I_3 I_1)$-matrix $A_{(2)}$ and the $(I_3 \times I_1 I_2)$-matrix $A_{(3)}$ ($I_1 = I_2 = I_3 = 4$).
HOSVD: The Algorithm

3d HOSVD computes 3 SVDs, one for each unfolding

- \(\mathbf{A}_{(1)} = \mathbf{U}^{(1)} \mathbf{\Sigma}^{(1)} \mathbf{V}^{(1)T} \)
- \(\mathbf{A}_{(2)} = \mathbf{U}^{(2)} \mathbf{\Sigma}^{(2)} \mathbf{V}^{(2)T} \)
- \(\mathbf{A}_{(3)} = \mathbf{U}^{(3)} \mathbf{\Sigma}^{(3)} \mathbf{V}^{(3)T} \)

Keep \(\mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \mathbf{U}^{(3)} \) and compute the \(\mathbf{S} \)

- \(\mathbf{S} = \mathbf{A} \times_1 \mathbf{U}^{(1)T} \times_2 \mathbf{U}^{(2)T} \times_3 \mathbf{U}^{(3)T} \)
- Note that \(\langle \mathbf{A} \times_i \mathbf{U}^{(i)} \rangle_{(i)} = \mathbf{U}^{(i)T} \mathbf{A}_{(i)} \)
- So \(\mathbf{S}_{(3)} = \mathbf{U}^{(3)T} (\mathbf{U}^{(2)T} (\mathbf{U}^{(1)T} \mathbf{A}_{(1)})_{(2)})_{(3)} \)
Removing Covariance Structure: Whitening

Displaying an unstructured mesh dimension adjusted for the other two dimensions

- Suppose \mathcal{A} is dim1 * dim2 * mesh
- $\mathbf{A}_{(3)} = \mathbf{U}^{(3)} \mathbf{\Sigma}^{(3)} \mathbf{V}^{(3)T}$
 - Each row of $\mathbf{V}^{(3)}$ maps to mesh
 - Want to visualize this adjusted for dim1 and dim2 covariance structure
- $(\mathbf{U}^{(2)T} (\mathbf{U}^{(1)T} \mathbf{A}_{(1,2)})_{(3)} = \mathbf{U}^{(3)} \mathbf{\Sigma}^{(3)} \mathbf{V}^{(3)T}$
Tensor dimensions:
- 41 (time)
- 32 (toroidal angle)
- 232,011 (unstructured poloidal mesh)
- Total size ~ 2.3 GB

Workflow computations:
- Read data in 41 HDF5 files
- 5 SVD computations in series
- 6 unfoldings
- 80 pdf plots (~3 MB each)

Full workflow code in scripts directory
- tensor.r the R code
- function_def.r additional functions used
- tensor.pbs the PBS submission shell script

Strong scaling for complete workflow
- Not bad, considering no optimization was done
- The goal is to reach interactive speed
```r
library(rhdf5)
library(pbdIO)

# . . .

iopair_n = comm.chunk(mesh$n_n, form = "iopair")

## rhdf5 needs to add 1 to C/Python written data!
buffer = h5read(file, "coordinates/values",
               start=c(0 + 1, iopair_n[1] + 1),
               count=c(2, iopair_n[2]))

rz = do.call(c, allgathers(unlist(buffer)))
```
library(pbdIO)

#...
nplots = min(maxplots, length(d))
myPCs = comm.chunk(nplots, form="vector", type="balance")
my.d = d[myPCs]

#...
for (i in seq_along(myPCs)){
 spacePlot(mesh, Vc[, i]*my.d[i], sprintf(ftag, myPCs[i]))
}
Crate output directories

```r
screedir = paste0(ref_dir, "scree/")
ref = sprintf("%0.5d", w_center)
plotdir = paste0(ref_dir, "plots", ref, "/")
if (myrank == 0) {
  # only one rank should be creating a directory
  dir.create(ref_dir, showWarnings=FALSE)
  dir.create(screedir, showWarnings=FALSE)
  dir.create(plotdir, showWarnings=FALSE)
}
```

`barrier()` # must be reachable by all ranks
tens = read_xgc_window(file_var, var, w_center, window)$Data
tdim = dim(tens) # tensor dimensions (1, 2, 3d) = (toro, time, mesh)

u1 toro: want dimensions (1, 3d*2) - need tshaq
ultens = as.vector(tens) # (1, 2, 3d)
dim(ultens) = c(tdim[1], tdim[2]*tdim[3]) # (1, 2*3d)
ultens.s = tshaq(ultens) # (1, 2*3d) tshaq
u1svd = svd(ultens.s)

u3 mesh: want dimensions (3d, 1*2) - need shaq of transpose
u3tens = as.vector(tens) # (1, 2, 3d)
dim(u3tens) = c(tdim[1]*tdim[2], tdim[3]) # dim (1*2, 3d)
u3tens.s = shaq(t(u3tens)) # transposed so dim (3d, 1*2) shaq
u3svd = svd(u3tens.s)
Core tensor computation

```r
u1core1 = crossprod(u1svd$u, u1tens)  # dim (1, 2*3d), all local op

u3core1 = as.vector(u1core1)  # (1, 2, 3d)
dim(u3core1) = c(tdim[1]*tdim[2], tdim[3])  # dim (1*2, 3d)
u2core1 = u3core1[rindex, ]  # reordered to (2, 1, 3d) dim (2*1, 3d)
dim(u2core1) = c(tdim[2], tdim[1]*tdim[3])  # dim (2, 1*3d)
u2core21 = crossprod(u2svd$u, u2core1)  # dim (2, 1*3d), all local

u3core21 = as.vector(u2core21)  # (2, 1, 3d)
dim(u3core21) = c(tdim[2]*tdim[1], tdim[3])  # dim (2*1, 3d)
u3core321 = crossprod(u3svd$u, shaq(t(u3core21)))  # dim (3td, 2*1)
```

Note that 3td = 2*1 as 3 > 2*1 leads to 3 - 2*1 zero eigenvalues
so that leading dimension of u3core321 is 2*1 instead of 3.
u3core ends up a local matrix that is replicated. The shaq
crossprod collapses the long dimension.
Thanks!