
ORNL is managed by UT-Battelle
for the US Department of Energy

Introduction to
*nix

Bill Renaud, OLCF

2

• UNIX operating system was developed in 1969 by Ken
Thompson and Dennis Ritchie

• Many “UNIX-like” OSes developed over the years

• UNIX® is now a trademark of The Open Group, which
maintains the Single UNIX Specification

• Linux developed by Linus Torvalds in 1991

• GNU Project started by Richard Stallman in 1983 w/aim to
provide free, UNIX-compatible OS

• Many of the world’s most powerful computers use Linux
kernel + software from the GNU Project
References:
1www.opengroup.org/unix
2https://en.wikipedia.org/wiki/Linux
3https://www.gnu.org/gnu/about-gnu.html

Background

3

• This presentation will focus on using *nix operating
systems as a non-privileged user in an HPC
environment
– Assumes you’re using a ‘remote’ system
– No info on printing, mounting disks, etc.

• We’ll focus on systems using the Linux kernel +
system software from the GNU project since that’s
so prevalent

• Two-Part
– Basics: general information, commands
– Advanced: advanced commands, putting it all together,

scripts, etc.

This Presentation

4

• May seem a bit disjoint at first
– Several basic concepts that don’t flow naturally but later

topics build upon
– Hopefully everything will come together, but if not…

• I’ll cover (what I hope is) some useful info but can’t
cover it all
– People write thousand-page books on this, after all

• Please ask questions!

This Presentation

Basics

6

• User – An entity that interacts with the computer.
Typically a person but could also be for an
automated task.

• Group – A collection of 1 or more users. Used for
sharing files, permissions to do certain tasks, etc.

• Shell – A program that interfaces between the user
and the kernel

• Kernel – The “main” OS program that’s responsible
for running the system

Terminology

7

• File – A collection of data
– Input/output, a program, etc.

• Directory – A logical structure to help organize files
(think “folder”)

• Filesystem – A collection of files and directories
– Context dependent-could mean full storage hierarchy,

could mean a subset of that
– Kernel maps physical hardware into the filesystem
– End users typically deal w/the filesystem, not with

physical storage media

More Terminology

8

• Process – A program running on the system
– Every process is associated with a user and a group
– Processes include programs built & run by users as well

as commands provided by the OS or shell

• Shell Script – A file containing a list of commands
to run
– Similar syntax is used to launch a shell script & a program
– Difference is “what” they do: run a series of commands

vs. perform some novel calculation

• Executable – A common term for a compiled
program that can be run (i.e. executed) by a user

Even More Terminology

9

• The OS operates on the principle of Least User
Privilege
– Gives the user the ability to do what he/she needs to do

but limits the ability to affect other users, configure the
system, etc.

– By limiting administrative access, rogue processes are
limited in what they can affect

• The root user is unrestricted/has full access to
everything
– NEVER use root for day-to-day work; only for tasks where

absolutely necessary
– sudo command can help here

Least User Privilege

10

• The system assumes you meant to type that
– If you issue a command to delete all of your files, it will

happily do so without asking for confirmation
– Proofread before you press enter

There’s nothing quite like the feeling “Wow, that’s taking a long time”
– Be sure to back up important files

• Normally, the system only tells you when things fail

Working Without a Net

11

• The shell is a computer program that acts as a layer
between the user and the kernel

• Shells provide a rudimentary programming
language with some control structures, variables,
etc.

• There are many shells available and the choice is
up to you
– Not all may be available on all systems
– Very likely that bash and tcsh are available

The Shell

12

• Think of the filesystem as a tree
• It starts at /, which is called the “root” directory
• The slash (/) is the directory separator; thus when

we go into subdirectories it’s used to separate
things (i.e. /home/user1/src)

The Filesystem

13

/

bin/ etc/ home/

user1/

user2/

lib/ usr/

local/

include/

bin/

Filesystem Hierarchy (Partial)

14

• There are some fairly standard directories:

The Filesystem

Directory Description
/bin Programs for end-users. Many commands live here.
/etc Configuration files
/home User home directories (although not @ OLCF)
/lib, /lib64 Libraries
/opt Often, “third party” software gets installed here
/sbin Administrative programs/commands
/usr Another location for user software/commands

/usr/bin sometimes mirrors /bin; often has /usr/include and
/usr/lib that contain files for software development

15

• Files are the basic entity for storing data
• Might contain a program, data, configuration info,

etc.
• Files have several attributes

– Permissions: who can do what to/with a file
– Owner: whose file is this
– Group: to which group does this file belong

Files

16

• Every directory contains two special directory
entries: . and ..

• . is a reference to the current directory
• .. is a reference to the parent directory (so we can

do things like cd ..)
• ~ can be a reference to home directories

– ~/ is yours
– ~user1/ is user1’s

• You’ll see how these are useful later

Special Directories

17

• When dealing with multiple files, it’s nice to type
only one command vs. one command for each file

• Wildcards help with this: They are generic
characters that “fill in” for other characters
– * means match zero or more character
– ? Matches 1 character
– Example follows (the ls command lists files in a directory,

we’ll worry about specific later)

Wildcards

18

$ ls
file1 file1a file1b file2 file2a file2b file3
file3a file3b

$ ls file1?
file1a file1b

$ ls file2*
file2 file2a file2b

$ ls file?a
file1a file2a file3a

Wildcards (example)

19

• Quotes are often used in variable assignment

• Typically used to make the system recognize a

string w/spaces as a single entity

• Different quotes do different things

– Single quotes (apostrophe) make the string

literal…characters like $ have no special meaning

– Double quotes (quotation marks) apply special meaning

to characters like $

– Backquotes (`) run a command and assign the output to

the variable

– Backslash (\) removes special meaning from the next

character

Quoting

20

Given Y is set to
Y=‘Test $X’ Test $X
Y=“Test $X” Test 1234
Y=`date` The current datetime string
Y=$(date) The current datetime string

This is the same as backquotes & is preferred by many
Y=“\$X is $X” $X is 1234

Quoting

Assume X is set to 1234

21

• We’ll start talking about commands now
• Some help is available via an online manual

– The man command
– Example: Want info about ls?
man ls

• Plenty is available via the web
– You’ll see this one again: stackoverflow.com

Where to Get Help

22

• Commands are usually abbreviations of words (or a
series of words)
– cp for “Copy”
– rm for “Remove”

• Commands tend to be single-purpose but can be
combined for more specialized tasks
– More in part 2

• Almost all commands take various options to control
what they do

Basic Commands

23

Command Description
ls List files
mkdir Create a directory (MaKe DIRectory)
rmdir Delete a directory (ReMove DIRectory)
cp Copy a file
mv Move a file (also used to rename a file)
rm Remove (delete) a file
cd Change (into a) directory
pwd Print working (i.e. current) directory
cat Display the contents (concatenate) a (hopefully text) file
more Show a file a screenful at a time
less less is more, but with a guaranteed ability to scroll backwards

Basic File/Directory Commands

24

Command Description
chown Change the Owner of a file (only root can do this)
chgrp Change the Group of a file
chmod Change a file’s mode (permissions)
echo Print a string to the terminal

(Can be used to show setting of a variable)
exit Quit the current shell (also used to close a window)
groups List the groups to which the current user belongs
whoami Display the current user’s username

(Don’t laugh…this is useful)
quota Show storage limits
du Show disk usage
df Show disk free space

Basic File/Directory Commands

25

• Lists directory contents
• Helpful option: -l (shows many file attributes)

Basic Commands – ‘ls’

$ ls
filea fileb

$ ls –l
total 0
-rw-r--r-- 1 user1 group1 50 Jun 20 14:15 filea
-rw-r--r-- 1 user1 group1 0 Jun 20 14:15 fileb

permissions owner group size name

26

Basic Commands – ‘ls’
(Other Useful Options)

•

• You can combine options: ls -altr is the same as
ls -a -l -t -r (but more concise & w/less typing)

Option Meaning
-1 Show one file per line (helpful in scripting)
-F Show file types (directories, links, etc)
-a Show all files (including hidden files)
-r Reverse the order of the listing
-t Sort files by timestamp
-d List the (attributes of) the directory itself rather than listing its

contents
…And many, many (many) more

27

Basic Commands – Fun with directories

$ mkdir dir1

$ ls
dir1 filea fileb

$ ls -ldF dir1
drwxr-xr-x 2 user1 group1 68 Jun 20 14:29 dir1/

$ cd dir1

$ pwd
/home/user1/dir1

$ cd ..

$ rmdir dir1

$ ls
filea fileb

28

Basic Commands – Fun with files

$ ls
dir1 filea fileb

$ cat filea
This is a file that
contains three lines
of text.

$ cp filea filea1

$ ls
dir1 filea filea1 fileb

$ mv filea1 filec

$ ls
dir1 filea fileb filec

29

Basic Commands – Fun with files

$ cat filec
This is a file that
contains three lines
of text.

$ rm filec

$ ls
dir1 filea fileb

30

• Utilities such as more, less, and cat are intended
for text files

• The system will not stop you from running them on
a non-text file
– If you do, you’ll get a screenful of unintelligible characters
– You might get a recognizable prompt (you might not)
– There’s no shame in closing that session’s window & re-

connecting

Basic Commands

31

• The system gives you the ability to specify who can
access your files/directories (within limits)

• Every file has one owner and is associated with one
group (we saw this in the discussion of ls)

• We can set permissions for the owner, the group,
and everyone else

• There are three basic permissions: read, write, and
execute

• Permissions have different meanings for files &
directories

File Permissions

32

Permission Meaning for files Meaning for directories
read Contents of the file can be

displayed
Contents of directory can be
listed

write File can be modified or deleted Files can be created in or
deleted from directory

execute File can be run like a program Directory can be entered (i.e.
cd into directory works)

File Permissions

33

• Recall that for each file, ls -l showed a 10-
character string similar to
-rwxr-xr-x

• This shows the files permissions
• The leftmost character tells us what type of file it is:
- for a regular file, d for a directory, l for a symlink
(more about those later)

• The next 9 characters are three groups of three
showing permissions for the file’s user, group, and
everyone else

File Permissions

34

• In the permissions string, the characters r, w, and x
mean read, write, and execute permission is
granted

• A - means the permission is not granted
• The permission groups always show read, write,

execute in that order

File Permissions

35

File Permissions

- r w x r - x - - x

User has read,
write and execute

permission

Group members
have read and

execute
permission

Everyone else has
execute permission

only

36

• File permissions are set/changed with the chmod
command

• Two ways of using the command
– Octal: Setting exact permissions
– Symbolic: Using letters

• There are benefits/drawbacks to each method
(although I prefer octal in most cases)

File Permissions

37

• Setting w/the octal method
chmod ### file

(where each # is a digit 0-7)

• First digit is user permission, second is group, third

is other

• Digits are the sum of desired permissions; read is 4,

write is 2, execute is 1

• Sum desired permissions

– If ‘user’ should have read, write, and execute, the first

digit should be 7

File Permissions

38

File Permissions

- r w x r - x r - x

4 2 1 4 1 1

7 5 1

chmod 751 my_file

+ + + + + +

39

• Setting with the symbolic method
• Specify which settings you’re changing

(u)ser, (g)roup,(o)ther, or (a)ll
• Specify if you’re adding (+) or deleting (-)

permissions
• Specify the permissions to add/remove

(r)ead, (w)rite, e(x)ecute

chmod [ugoa] [+-] [rwx] filename

File Permissions

40

• The symbolic way is so easy…why would anyone
use octal?

• Consider a file with zero permissions that we want
to change to match our example
chmod u+rwx my_file
chmod g+rx my_file
chmod o+x my_file

or
chmod 751 my_file

• Additionally, with the symbolic method you need to
know current permissions to know what to
add/subtract; octal explicitly sets things

File Permissions

41

• When considering permissions, you may need to
double-check your group memberships or those of
others

• You may also need to double-check your username
(maybe you have multiple accounts w/different
usernames)

Verifying User & Group Information

$ whoami
user1

$ groups
user1 : group1 staff

$ groups user2
user2 : group2 users faculty

42

• The filesystem abstracts details about the actual
storage media to an extent
– You only deal with a directory name like /home, not

details of the hardware (like C:\)
– Sometimes different storage areas will have limits
– All storage areas have finite size

• Wouldn’t it be nice to know details about these
things?

Storage

43

• The quota command shows limits for your account
on each filesystem

• Two types of limits: total size and number of inodes
(more later, but essentially # of files)
– Limiting number of kB/MB/GB stored makes sense
– Why limit inodes? Just as space is limited, # of inodes is

limited

• Usage
quota [options]

Checking Limits - quota

44

• The du command (disk usage) shows storage
usage

• By default, it’ll show info for every subdirectory (the
-s option summarizes usage for the whole directory
structure)

• Can take other options like -k (show in kB) or -h
(show “human friendly” form)

• Usage
du [options] [directory]

Checking Usage - du

45

Example of quota and du

$ quota –s
Disk quotas for user user1 (uid 19283):

Filesystem blocks quota limit grace files quota limit grace
/nccs/home1 8 51200M 51200M 2 4295m 4295m
/nccs/home2 44794M 51200M 51200M 188k 4295m 4295m

$ du -sk .
45947600 .

$ du –sh .
44G .

46

• The df command (Disk Free) shows how much
space is available

• Common options are -k (show in kB), -h or –H
(show “human-friendly” format)

• Can either show you all filesystems or a specific
one

• Usage
df [options] [path]

Checking Free Space - df

47

Checking Free Space - df

$ df .
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda5 669329936 264447700 370882264 42% /opt

$ df -H .
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 686G 271G 380G 42% /opt

$ df -h .
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 639G 253G 354G 42% /opt

Advanced

49

• There are other special permissions

– Set User ID (setuid)

– Set Group ID (setgid)

– Sticky Bit

• These “replace” user, group, and other execute bit

• Meaning depends on whether it’s a file or directory

Advanced Permissions

50

Permission Meaning for files Meaning for directories
setuid When executed, it will run

with file’s owner rather than

as the invoking user

Files created might inherit

directory’s owner rather than

be created as the creating

user*

setgid When executed, it will run

with the file’s group rather

than the invoking user’s

Files created will inherit

directory’s group, not user’s

Sticky bit Essentially meaningless on

modern systems

Users cannot delete other

users’ files, even if they have

write permission

Advanced Permissions

* https://www.gnu.org/software/coreutils/manual/html_node/Directory-Setuid-and-Setgid.html

51

• Set with the chmod command

• Add a fourth (leftmost) digit
– Calculate value just like you do for others
– Setuid=4, setgid=2, sticky bit=1

• So, chmod 2770 my_dir means anyone in the group
can create a file in the directory, and it’ll inherit the
directory’s group

• In ls -l, setuid is shown as an s in the user
execute spot, setgid with an s in the group execute
slot, and sticky bit with a t in the other execute spot

Advanced Permissions

52

Advanced Permissions

$ mkdir dir2

$ chmod 770 dir2

$ ls -ld dir2
drwxrwx--- 2 user1 group1 68 Jun 20 22:46 dir2

$ chmod 2770 dir2

$ ls -ld dir2
drwxrws--- 2 user1 group1 68 Jun 20 22:46 dir2

53

Command Description/Use
touch Creates an empty file or modify file timestamp(s)
ln Create links to files
date Display or set the date (very flexible command)
umask Somewhat control default permissions

(More accurately, block certain default permissions)
grep Search for regular expressions in files
tar Combine multiple files into one
bzip2
gzip

Compress files

ps Show processes that are currently running
kill Send a signal to a process
bg Bring backgrounded process to foreground

More Commands

54

• The date command seems fairly bland
• Modern versions actually very powerful

– Various formats
– Show various dates/offsets
– Useful in scripts
– Be careful w/DST changeover

Working With Dates

$ date ‘+%Y%m%d’
20180627

$ date –d’yesterday’ ‘+%Y%m%d’
20180626

55

• File names are really just for ease-of-use by
humans

• The system uses numbers called inodes to refer to
files
– It also uses numbers to refer to users, groups, other

computers, etc.
– That’s not really important but it sets up the next few

slides J

• Thus, the filename is really just a reference to an
inode

Referencing Files

56

• What if we want our current directory to contain a
reference to a file in some far-off directory?

• We can create a link (similar to a shortcut in various
other OSes)

• Two types of links: hard and symbolic (a.k.a. soft)
– Hard link is a reference to an inode
– Symbolic link (or symlink) is a reference to a file name

• Files (inodes) aren’t deleted until all hard links
referencing them are deleted
– But deleting any given hard link might break a symlink

• …What?

Referencing Files

57

• Deleting file1 -or- file2 will leave data intact
(although deleting file2 will break the symlink even
if file1 remains)

• Once file1 and file2 are removed, the disk can
reuse the space (but won’t actually delete anything)

Referencing Files

file1 192837465

010010110111
110000000011
110101101011

…

file2

file3

hard link

symbolic link

hard link

58

• So why both?
• Hard links are essentially copies of files and don’t

depend on some other filename existing
• Inodes are per-filesystem, so hard links cannot

span filesystems (even a modest laptop can/will
have multiple filesystems)

• Symbolic links can span filesystems (but rely on
some intermediate filename existing)

• The ls -li command can tell us lots about links
(-i shows inode info)

Referencing Files

59

• The ln (link) command creates both hard and
symbolic links

• Usage
ln [-s] target link
my mnemonic: create a link to target named link

Referencing Files

$ ln filea fileb

$ ln -s fileb filec

60

• Hard links
– Note the inode (left) is the same for filea & fileb
– The ‘2’ before user1 tells us there are 2 hard links to this

inode

• Symbolic links
– Indicated by ‘l’ at beginning of permissions string
– filec->fileb tells us it’s named filec & links to fileb

Referencing Files

$ ls –li
total 24

1597960 -rw-r--r-- 2 user1 group1 50 Jun 20 17:25 filea
1597960 -rw-r--r-- 2 user1 group1 50 Jun 20 17:25 fileb
1597969 lrwxr-xr-x 1 user1 group1 5 Jun 20 17:25 filec -> fileb

61

• Different files have different default permissions
• There’s no list of defaults…it depends on the

invoking program
• Sometimes we don’t want certain permissions to

happen
• Enter umask…

Controlling Default Permissions

62

• People often incorrectly think of umask as a default
permission

• It’s not
• It’s a set of permissions that are blocked
• It takes numbers like the octal version of chmod, but

these are the permissions you want blocked
• To block all other/world permissions on files
umask 007

• To block group write and all other/world permissions
on files
umask 027

Controlling Default Permissions

63

• Sometimes you want to search for patterns/strings
in a file

• Use the grep command for this
• The grep command searches for “regular

expressions”…strings that contain characters with
special meaning

Searching Within Files - grep

64

• Simple case: find lines with the string ‘user’ in file1
grep “user” file1

• More complex: show lines ending with ‘user’ in file1
grep “user$” file1

• …or perhaps lines beginning with ‘user’
grep “^user” file1

• As with other commands, grep takes many options

Searching Within Files - grep

65

• Normally, grep will treat anything beginning with a
hyphen as an option…even if it’s in quotes

• The workaround is the -- option, which tells grep
that you’re done giving it options (and therefore any
other hyphen is meant as an actual hyphen)
grep -- “-2” file1

Searching Within Files - grep

66

• The find command lets you search for files on a
huge variety of criteria

• It can also run commands on those files; this makes
it one of the most powerful commands available

Searching for files

$ find . -name “*data*” -print

$ find . -newer some_file

$ find /home/user1 ! -user user1

$ find . -group users -exec chgrp staff {} \;

67

• The tar (Tape ARchive) command is used to
combine multiple files into a single file or extract
files from such an archive

• Create file.tar containing (recursively) the mydir
directory
tar cvf file.tar mydir

• Extract that file
tar xvf file.tar

Other Commands - tar

68

• Several utilities
– gzip (GNU zip)
– bzip2

• Those utilities both compress and decompress
(bunzip2 is also available)

• They use different compression algorithms and are
not interchangeable

• Usage
bzip2 file.tar
bzip2 -d file.tar.bz2
gzip file.tar
gzip -d file.tar.gz

Compressing Files

69

• All processes are identified by a process id or pid
• You can view process information with the ps

command
• Foreground vs. background processes
• Type Ctrl-Z to send process to background
• Type fg to bring backgrounded process to the

foreground

Process Management

70

• The kill command is used to send a signal to a
process
kill [options] pid

– There are many signals that can be sent (only one of
which is SIGKILL)

– By default, kill sends SIGTERM, not SIGKILL

• Common signals shown on next slide
• Some signals can be “trapped”, others can’t

– This permits custom reaction to certain signals
– (Ignoring the signal is one such action)

Process Management

71

Name Number Meaning
SIGHUP 1 Hangup (terminal went away)

SIGINT 2 Interrupt from keyboard (think Ctrl-C)

SIGILL 4 Illegal instruction

SIGABRT 6 Abort signal

SIGFPE 8 Floating-point exception

SIGKILL 9 Kill process (go away, period)

SIGSEGV 11 Segmentation fault (illegal memory access)

SIGTERM 15 Terminate process (please go away)

SIGUSR2 Varies User-defined signal 2

Common Signals

http://man7.org/linux/man-pages/man7/signal.7.html

72

• Shells also support variables
• Some are “standard” things expected/used by the

system
• We can also have user-defined variables
• Two major types

– Environment
– Shell

Variables

73

• An environment variable will be passed to a
subshell (such as a shell script)

• Shell variables are not passed to subshells.
• Method of setting depends on the shell
• To use, use $ followed by name, such as $PATH
• Placing the name in braces is a good practice (i.e.
${PATH}) to avoid ambiguity

• You can display a variable’s value with echo:
echo $PATH

Variables

74

• sh/bash/similar shells
– Environment
export VARNAME=value

– Shell
VARNAME=value

• csh/tcsh
– Environment
setenv VARNAME value

– Shell
set NAME=value

Setting Variables

75

• You can define a variable in terms of itself
• To append to a string, you might use
export MYVAR=“${MYVAR} and more”

• This is often needed to prepend/append to variables
like $PATH

Setting Variables

76

Variable Meaning/Use
$PATH A list of directories the system searches for

executables
$USER Current user’s username
$LD_LIBRARY_PATH A list of directories to search for dynamic libraries

Common Environment Variables

77

• How does the system find the program you want to
run?

• Two options
– You provide the exact location

• Absolute path: /usr/bin/perl, /bin/ls
• Relative path: ./a.out, ../bin/a.out

– You rely on the $PATH variable
• If you don’t provide the exact location, the system searches for the

program in each directory in $PATH and uses the first it finds

How Executables Are Located

78

• You should use ./a.out to reference a.out in the
current directory
– “.” in $PATH is discouraged for security reasons
– The system has no particular affinity for the current

directory

• If you don’t provide the exact location, which can
show you what the system will choose

How Executables Are Located

$ which chmod
/usr/bin/chmod

79

• Sometimes we want to take input from a file or write
output to a given file

• Redirection lets us do this

Redirection

Syntax Meaning
ls > file1 Place ls output in a file named file1; overwrite if it already

exists
ls >> file1 Append ls output to the end of file1
./run.x <file1 Run the program run.x, feeding file1 one line at a time the

program
./run.x <<EOF
Line1
Line2
EOF

“Here” document. Same as the line above, but instead of
specifying an existing file, we provide the file “here”. The
EOF string is a starting/ending token and not part of the
file

80

• Some redirection is shell-specific

Redirection

bash & similar shells csh/tcsh Meaning
./exe >>out 2>&1 ./exe >>& out Run exe, append stdout and

stderr to the file named out
./exe >>out 2>>err (./exe >> out) >>& err Run exe, append stdout to the

file named out and stderr to
the file named err

Reference:
https://linux.die.net/man/1/csh
https://linux.die.net/man/1/bash

81

• In general, system commands are simple and
single-purpose

• User can “build” more complex commands
• This is similar to CISC vs. RISC computer

architecture
• Combination can be simple or complex

– A series of commands with output of one feeding input of
another (pipes)

– Several commands executed independently but in one
shell script

Putting it all Together

82

• Send ‘ls’ output through ‘more’ to show a page at a
time
ls -l |more

• Uncompress a .bz2 file then untar the resulting file
bzip2 -d file.tar.bz2 |tar xf -

• Count the number of unique lines in a file (display
the file, sort it, remove duplicates, and count lines)
cat bigfile|sort|uniq|wc -l

Using Pipes

83

• What if you always run a series of commands
– It’d be nice to save them in some fashion
– You don’t want to keep re-typing these commands, so a

pipe isn’t appropriate
– Enter the shell script

• A shell script is an executable file that contains a list
of commands for the shell to run

• The first line begins with #!, a space, and the shell
to use, for example:
#! /bin/bash

Shell Scripts

84

• Lines beginning with # are comments
– You should document why you’re doing what you’re doing

(for yourself and others)
– The system will just ignore these lines
– The #! on line 1 is a comment but the system processes it

in a special way (if it’s not on line1, it’s just a normal
comment)

Shell Scripts

85

#! /bin/bash

Get today’s date in YYYYMMDD form
today =$(date “+%Y%m%d”)

Go to /tmp, run getdata, postprocess the output, and
put the results in ~/data in a file w/today’s date
cd /tmp
~/getdata.x > mydata.${today}
~/postprocess.x /tmp/mydata.${today} > ~/data/${today}

Clean up /tmp
rm /tmp/mydata.${today}

Shell Scripts

86

• Suppose the file on the previous page is named
“daily_run.sh” and has execute permission

• To run that series of commands, we simple run:
./daily_run.sh

• Shell scripts are also used by utilities such as cron
that let us schedule tasks on the system
– Much easier to schedule a single item than (potentially)

hundreds of individual commands

Shell Scripts

87

• Remember I mentioned shells provided some
rudimentary programming structures?

• Your shell script can contain if and for statements
among others

• These use either the test command or bracket
syntax for the logic test

• Some control structures include if, for, and case
• Some (bash) examples follow

Shell Scripts

88

if [[$i -lt 4]]; then
echo “i is less than 4”

elif [[$i –gt 4]]; then
echo “i is greater than 4”

else
echo “i equals 4”

fi

for i in 1 2 3
do
echo $i
done

Shell Scripts

https://linux.die.net/man/1/bash

89

case $i in
1) echo ”i is one”;;
2) echo ”i is two”;;
3) echo ”i is three”;;
4) echo ”i is four”;;
esac

Shell Scripts

https://linux.die.net/man/1/bash

90

• (Almost) every command will return some status
value

• Typically 0 if everything worked, nonzero otherwise
• Can be used in if statements to verify the previous

command worked
• Variable $? contains exit value of last command
• Shell scripts typically return exit value of last

command executed

Exit Values

91

• We’ve covered a small subset of handy commands
• Many, many more to research on your own
• Some advanced (but helpful) ones:

For Further Investigation

Command What it does
od Display files in various formats (hexadecimal, octal, ascii)
dd Do bit-by-bit copy/conversion of files

(sometimes called data/disk destroyer, so be careful…you have
been warned)

top Show what processes are consuming CPU/memory
cron Set tasks to run at scheduled intervals
sudo Run commands as someone else (typically root)
alias Create a shortcut for certain commands

https://linux.die.net/man/1/dd

92

• There are also some special-purpose files

• These are remarkably useful for various tasks

For Further Investigation

File What it provides
/dev/null The ‘bit bucket’. Anything written/redirected here goes away
/dev/random
/dev/urandom

Provides random bytes of data

/dev/zero Provides an endless stream of zeroes

93

• Create a 4MB file containing random data

• Run a command, but get rid of error messages

For Further Investigation

$ dd if=/dev/urandom of=4MBfile bs=4k count=1024
1024+0 records in
1024+0 records out
4194304 bytes (4.2 MB) copied, 0.041256 s, 102 MB/s

$ ls -l 4MBfile
-rw-r--r--. 1 user1 group1 4194304 Jun 27 13:45 4MBfile

$./run_command 2>/dev/null

94

• Other things we didn’t cover
– Logging in
– File transfer utilities
– Batch queues
– Programming (including parallel & GPU programming)

• Other sessions will cover/have covered that
• Plenty of resources for that on the web as well

– stackoverflow.com is your friend

For Further Investigation

95

• There are many more options for variable
manipulation

• Check the manual page for your preferred shell or
do a web search for shell syntax

For Further Investigation

96

• Experienced users
• stackoverflow.com
• gnu.org (lots of info on GNU utilities)
• Websites for various linux distros (often will have a

forum available)
• Too many other resources to list

Where to Get Help

97

• This has been a small overview into Unix-like
operating systems

• These OSes run all kinds of computers, from small
embedded systems to supercomputers

• These OSes provide basic commands & give you
the ability to build more complex commands

• Things can get complicated, but there’s plenty of
help available

Summary

