Intro to C Programming

Tom Papatheodore
Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

June 26, 2018

ORNL is managed by UT-Battelle #,OAK RIDGE Egﬁ%ﬁslng’

for the US Department of Energy -National Laboratory | FACILITY

C Programming Language

» General-purpose programming language initially developed by Dennis Ritchie at
Bell Laboratories

« Compiled Language
— A compiler is a program used to convert high-level code (like C) into machine code

* Many operating systems, as well as Perl, PHP, Python, and Ruby, are written In
C.

#’OAK R“)Gl \\\\\\\\\
uw

al Labo

A Simple C Program (01 simple c program/simple.c)

#include <stdio.h>

int main () {

int a = 3;

printf (“"The value of this integer is %d\n”, a);

0;

LEADER SHIP
% OAK RIDGE | o
_Na 7 | FACILITY

tional Laboratory

A Simple C Program

C preprocessor directive telling the compiler to
include contents of the header file in angle brackets.

#include <stdio.h>

1nt main () {

int a = 3;

printf (“The value of this integer is %d\n”, a);

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program

Declaration of a function called main, which is where
execution of the program begins. The “int”

tinclude <stdio.h> ~_indicates that the function will return an integer
value.
' ' e
1nt main () { More on functions later...
int a = 3;

printf (“The value of this integer is %d\n”, a);

¥ OAK RIDGE | e

National Laboratory | FACILITY

A Simple C Program

These curly braces indicate the beginning and end of
the main function.

#include <stdio.h>

1nt main () {

int a = 3

printf (#The value of this integer is %d\n”, a);

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program

Defines an integer called “a” and assigns it a value

#include <stdio.h> of 3.
More on data types soon...

1nt main () {

int a = 3;

printf (“The value of this integer is %d\n”, a);

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program

A semicolon is used to indicate the end of each
#include <stdio.h> statement.

int main () {

int a = 3;

printf (“The value of this integer is %d\n”, a);

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program

A function, called printf, that sends formatted

output to stdout (typically the terminal from which the

#include <stdio.h> program was run).

, : This is one of the functions defined in the stdio.h
1nt main () { header file.

More on printf soon...
int a =

oo

printf (“"The value of this integer is %d\n”, a);

14

return 0;

#0AK RIDGE | giaiiie

National Laboratory | FACILITY

A Simple C Program

And, of course, a semicolon to indicate the end of
#include <stdio.h> the statement.

int main () {

int a = 33

printf (“The value of this integer is %d\n”, a);

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program

#include <stdio.h>

1nt main () {

int a = 3;

printf (“The value of this integer is %d\n”, a);

0;

\ Return value “returned” to the run-time environment.

Typically, a value of 0 indicates a normal/successful
exit.

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program — Ok, let’s compile and run

Compile and link file into executable

Using the cray compiler wrapper cc
instead of, say, pgcc directly

S cc simple.c

S 1s
a.out simple.c

Executable is named a.out by default

S aprun -nl /a.out Run program — launched with aprun

The value of this integer is 3

¥ OAK RIDGE | e

~National Laboratory | FACILITY

A Simple C Program — Ok, let’s compile and run

S cc —o simple.exe simple.c Compile and link file into executable
? . = , -0 is a compiler flag that allows you to
simple.exe simple.c name the executable

S aprun -nl ./simple.exe Run program

The value of this integer is 3

% OAK RIDGE | e

~National Laboratory | FACILITY

Variables and Basic C Data Types

Variables are named storage areas

111 Y

 Forexample, int a = 5 creates a variable (storage area in memory) named “a” and saves the
value of 5 in that memory location.

— Variables of different data types occupy different amounts of memory and can store different ranges of values

 Must be declared before use.

Basic C Data Types

Name Type Range of Values Size (B)
char Character ASCII characters 1
int Integer -2,147,483,648 to 2,147,483,647 |4
float Decimal (precision to 6 places) 1.2e-38 to 3.4e38 4
double | Decimal (precision to 15 places) 2.3e-308 to 1.7e308 8

¥ OAK RIDGE | (5o5e

-National Laboratory | FACILITY

Formatted Output with printf Function

Example 1:
printf (“"Hello World”) ;

The Result of Example 1 would be: Hello World
Example 2:
printf ("Hello World\n”) ;

The Result of Example 2 would be: Hello World (with a new line)

% QAK RIDGE | itiie

al Labor:

Formatted Output with printf Function

Variable whose value is used in

Example 3: format tag format tag
int 1 = 2; ——

printf(“;I'he value of the integer is %d\n}”, i);

|
String to print, with format tags

The Result of Example 3 would be: The value of the integer is 2

Example 4: format tag
float x = 3.14159; ——

printf(“Fhe value of the float is %°2f\ﬁ”’ X) ;

Y . \ .
String to print, with format tags Variable whose value is used in
format tag

The result of Example 4 would be: The value of the float is 3.14
3 OAK RIDGE | eiarsiie

-National Laboratory | FACILITY

Formatted Output with printf Function

Name Type Range of Values Format Specifier
char Character ASCII characters %cC
int Integer -32,768 to 32,767 <or> %d
-2,147,483,648 to 2,147,483,647
float Decimal (precision to 6 1.2e-38 to 3.4e38 %f
places)
double Decimal (precision to 15 2.3e-308 to 1.7e308 %f
places)

There are many options to format output using the printf function. Feel free to Google :)

%QAK RIDGE

-National Laboratory

LEADERSHIP
COMPUTING
FACILITY

C Arrays Data structure that holds a
fixed number of data
elements of a specific type

Al0] A[1] A[2] A[B] A[4] A[5] A6l A7l Al Al

int A[10]; // declares an array of 10 integers

;g,QAK RIDGE | &ppersie

-National Laboratory | FACILITY

C Arrays Data structure that holds a
fixed number of data
elements of a specific type

7 32 266 17 -20 22 1 0 99 -2

Al0] A[1] A[2] A[B] A[4] A[5] A6l A7l Al Al

int A[10]; // declares an array of 10 integers
A[0] = 7; // assigns values to the array elements
All] = 32;

Al[2] = 256;

A[3] = 17;

Ald4] = =-20; .

A[5] = 22; printf (“The value of A[3] = 7, A[3]);
Alo] = 1;

A[7] = 0; The result would be:

A[8] = 59; The value of A[3] = 17

A[9] = =-2;

%QAK RIDGE | persiie

-National Laboratory | FACILITY

Loops

 While Loop
* Do-While Loop
* For Loop

$OAK RIDGE | (iiiie

National Laboratory | FACILITY

While Loops

(expression) {

// Execute loop statements until expression evaluates to 0

expression:

Evaluated before each iteration

¥ OAK RIDGE | &ie

-National Laboratory | FACILITY

03 loops/while loop/while loop.c

<stdio.h>

int main () {

float x = 1000.0;
(x > 1.0)¢{
printf ("x = ", x);
x=x/ 2.0;
}
0;

MooX X X X X X X X X Wy

cc —o while loop.exe while loop.c

aprun -nl ./while loop.exe

1000.000000

= 500.000000
= 250.000000
= 125.000000
= 62.500000
= 31.250000
= 15.625000

7.812500
3.906250
1.953125

¥ OAK RIDGE | (5o5e

-National Laboratory | FACILITY

Do-While Loops

// Execute loop statements until expression evaluates to 0

} (expression)

expression:

Evaluated after each iteration

&QAK RIDGE

-National Laboratory

LEADERSHIP
COMPUTING
FACILITY

For Loops

(initialization; conditional expression; iteration) {

// loop statements

conditional expression: Evaluated before body of loop

iteration: Evaluated after body of loop

%QAK RIDGE | persiie

-National Laboratory | FACILITY

03 loops/for loop/for loop.c

<stdio.h> |iiiissameasi = i +

int main () {

int N
int sum

10;
0;

(int i=0; i<N; i++) {

sum = sum + i;
printf (“Iteration: , sum =

", i, sum);

S cc —o for loop.exe for loop.c

S aprun -nl ./for loop.exe
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:
Iteration:

~ ~ ~ ~

~

~ ~ ~

O O J o U1 b LW DN O
~

~

Sum

sum =

sum =

sum =

sum =

sum =

sum =

sum =

sum =

Sum

0
1
3
6
10
14K
2l
28
36
45

¥ OAK RIDGE | (5o5e

-National Laboratory | FACILITY

Continue Statement

When a continue statement is encountered within a loop, the remaining statements in the
loop body (after the continue) are skipped and the next iteration of the loop begins.

03 loops/continue/continue.c

<stdio.h>
int main () {
(int i=0; i<10; i++){
(i == T7){

4

}

printf ("Loop iteration:

}

0;

"

, 1)

S cc -0 continue.exe continue.c

S aprun -nl

Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:
iteration:

./continue.exe

0

O 0O o U i W N -

% OAK RIDGE | (giaiie

-National Laboratory | FACILITY

Break Statement

When a break statement is encountered within a loop, the loop is terminated.

03 loops/break/break.c

<stdio.h>
int main () {
(int i=0; i<10; i++){
(i == T7){

}

printf ("Loop iteration:

}

0;

, 1)

S cc —0 break.exe break.c

S aprun -nl ./break.exe
Loop iteration: O

Loop i1teration:
Loop i1teration:
Loop i1teration:
Loop i1teration:
Loop i1teration:
Loop i1teration:

o U i W N

% OAK RIDGE | e

-National Laboratory | FACILITY

Operators

Although we've been using them
already, let’s take a closer look at
operators...

$OAK RIDGE | (iie

National Laboratory | FACILITY

Arithmetic Operators

int A = 10;

int B = 2;
AopB
+ Add A + B; // would give 12
~ Subtract A - B; // would give 8
* Multiply A * B; // would give 20
/ Divide A / B; // would give 5
% Modulus A % B; // would give 0 Remainder after division of B into A

A++ Increment (sameas2 = A + 1) // would give 11

B-- Decrement(sameasB = B - 1) // would give 1

¥ OAK RIDGE | (5o5e

-National Laboratory | FACILITY

Relational Operators

int A = 10;

int B = 2;
AopB
—— Equal to A == B;
= Not equal to A 1= B;
> Greater than A > B;
< Less than A < B;
>= (Greater than or equal to A >= B;
<= Less than or equal to A <= B;

//
//
//

//
//
//

Tests relationship between two operands
» If true, returns 1
« If false, returns O

would
would
would

would
would

would

glve
glve
glve
glve
glve

glve

o B o =B = O

(false)
(true)

(true)

(false)
(true)
(false)

ational Laboratory

< | LEADERSHIP
AK Rll)Gh COMPUTING

%0

FACILITY

Assignment Operators

S

//
//
//

//
//
//

int A =

int B

would
would
would

would
would

would

10;
2;

assign
assign
assign

assign
assign

assign

value
value
value

value
value

value

of
of
of

of
of
of

2 to A
12 to A
8 to A

20 to A
5 to A
10 to A

(SameasA = A + B)
(SameasA = A - B)
(SameasaA = A * B)
(SameasaA = A / B)
(SameasA = A $ B)

% Q4K RIDCE | e

Logical Operators Used in conjunction with relational
operations for decision making

int A = 10;

int B = 2;

int C = 5y
&& And (true if both true) ((A > B) && (B == 2C)); // would give 0 (false)
|| Or(trueifatleast1istrue) ((a > B) || (B == C)); // would give 1 (true)
! Not (returns the opposite) 1 (g == () ; // would give 1 (true)

%QAK RIDGE | persiie

-National Laboratory | FACILITY

If statements

Let's take a look at if statements ...

% OAK RIDGE | siosiate

ional Laboratory | FACILITY

If Statements

(condition 1) {
// Execute these statements if condition 1 is met
}
(condition 2) {
// Execute these statements if condition 2 is met
}
{

// Execute these statements if other conditions are not met

Once a condition is met, the statements associated with that section are executed
and all other sections are ignored.

LEADERSHIP
COMPUTING
FACILITY

%QAK RIDGE

-National Laboratory

04 if statements/if statement/if statements.c

#include <stdio.h> $ cc —o 1f statement.exe 1if statement.c

int main () { $ aprun —-nl ./if statement.exe

i is equal to 1

int i = 1;

(i < 1){

printf(”7i = %4 (i < 1)\n", 1i);
}

(1 == 1){
printf (”i is equal to 1\n");
}
{
printf(”7i = 24 (i > 1)\n", 1i);
}

$OAK RIDGE | g1t

-National Laboratory | FACILITY

Functions

A reusable block of code that performs a specific task

« Standard Library Functions
« User-Defined Functions

#OAK RIDGE | ciiie

National Laboratory | FACILITY

Standard Library Functions

C built-in functions that can be accessed with appropriate #include statements

We have already encountered the printf function, which is can be used by including
the stdio.h header file

There are many other C standard library functions defined in other header files
* math.h, stdlib.h, string.h, etc.

These functions should be used whenever possible in order to save time (why re-invent
the wheel) and because they are well-tested and portable.

/ > | LEADERSHIP
%QAK RIDGE | (605t

-National Laboratory | FACILITY

User Defined Functions

return type function name (typel argl, type2 arg2, ...){

// Function Body

Let's see some examples ...

% OAK RIDGE | (e

-National Laboratory | FACILITY

05 functions/add two numbers/add two numbers.c

<stdio.h>

// Function Definition

S cc -0 add two numbers.exe add two numbers.c
int add numbers (int i, int j){ - - - —

int result; S aprun -nl ./add two numbers.exe
result = i + j; The sum of numl and num?2 is 10
result;

}

// Main Function
int main () {

3;
7;

int numl
int num2

int sum = add numbers (numl, num2) ;
printf ("The sum of numl and num2 is ", sum);

0,

¥ OAK RIDGE | &ie

-National Laboratory | FACILITY

05 functions/add two numbers/add two numbers.c

#include <stdio.h>

// Function Definition
int add numbers (int i, int j){

int result;
result = i1 + j;

result;

}

// Main Function
int main () {

3;
7;

int numl
int num2

S cc —o add two numbers.exe add two numbers.c

S aprun -nl ./add two numbers.exe
The sum of numl and num2 is 10

Formal parameters/arguments

Actual parameters/arguments

int sum = add numbers (numl, num2) ;
printf ("The sum of numl and num2 is %d\n", sum);

0,

% OAK RIDGE | (e

-National Laboratory | FACILITY

05 functions/change value/change value.c

#include <stdio.h>

// Function Definition
void change number (int i) {
i=2;

$ cc —o change value.exe change value.c

$ aprun -nl ./change value.exe

Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 1

printf ("Inside the function, the number's value is %d\n", 1i);

}

// Main Function
int main () {

int number = 1;
printf ("\nBefore calling the function, number =

change_ number (number) ;

printf ("After calling the function, number = %d\n\n", number);

0;

%d\n", number) ;

Wait.
What’s going on here?

The values of the actual
arguments are copied to the formal
arguments.

« So changes to the formal arguments do
not affect the actual arguments.

* This is called “call by value”

% OAK RIDGE | iiitice

-National Laboratory | FACILITY

ASIDE: Variable Addresses and Pointers

¥ 0AK RIDGE C | AR

al Labor:

Variable Addresses _
The memory address of a variable can be

referenced using the reference operator, &

<stdio.h>

int main () {

int 1 =1;

printf ("The value of i: ", 1)

printf ("The address of 1i: ", &i);
0;

%p — format tag to
print address & (reference operator) — gives the address of the variable

$ cc —o varilable addresses.exe variable addresses.c

$ aprun -nl ./variable addresses.exe

The value of 1: 1
The address of i: 0x7fff3e720c2c (this address will vary)

¥ OAK RIDGE | (5o5e

-National Laboratory | FACILITY

POinter Variables 06 addresses and pointers/pointers 1l/pointers 1l.c

<stdio.h>

int main () {

There are special variables in C to store memory
addresses: pointers

float x = 2.713;

float *p x; «

* used to declare pointer
The pointer is assigned the value of the memory

P x = &x; <

address of x

printf ("The value of x: ", X);

printf ("The address of x: ", &x);

printf ("The value of p x: ", P_X);

printf ("The value stored in the memory address stored in p x: ", ’*p_x);
0;

* (dereference operator) — gives the
value stored at a memory address

$ cc —o pointers l.exe pointers 1l.c

$ aprun -nl ./pointers l.exe

The value of x: 2.713000

The address of x: 0x7fff5ce8aa68
The value of p x: Ox7fffbceB8aac8

The value stored in the memory address stored in p x: 2.713000 ¥ OAK RIDGE | (5o5e

-National Laboratory | FACILITY

Pointer Variables

06 addresses and pointers/pointers 2/pointers 2.c

$ cc —o pointers 2.exe pointers 2.c

$ aprun —-nl ./pointers 2.exe
The value of x: 2.713000
The address of x: Ox7fff5ce8aa68

#include <stdio.h> The value of p x: 0x7fff5ce8aa68

int main () {

float x = 2.

float *p x;
pP_X = &x;

printf ("The
printf ("The
printf ("The
printf ("The

713; The value of x: 3.141000

The value stored in the memory address stored in p x: 2.713000

* (dereference operator) — gives the

value of x: FE\n", x);

address of x: %p\n", &x);
value of p x: %p\n", p_x);
value stored in the memory address stored in p x: %f\n", *p_x);

*p x = 3.141; €=

printf (”\nThe value of x: FE\n", x);

0;

* (dereference operator) — also
allows you to change the value
stored at that memory address

value stored at a memory address

OAK RIDGE |

-National Laboratory | FACILITY

Ok, back to functions ...

¥ OAK RIDGE | e
~Na FACILITY

tional Laboratory

05 functions/change value/change value.c

<stdio.h>

// Function Definition
void change number (int i) {
i=2;
printf ("Inside the function, the number's value is

}

// Main Function
int main () {

int number = 1;
printf ("\nBefore calling the function, number =

change number (number) ;

printf ("After calling the function, number =

0;

$ cc —o change value.exe change value.c

$ aprun —-nl ./change value.exe

Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 1

"’ i);
, number) ;

number) ;

¥ OAK RIDGE | &ie

-National Laboratory | FACILITY

In order to change the value of an actual argument,
we must pass its memory address, not just its
value.

(call by reference)

. OAK RIDGE | iaiiie
ACILITY

al Labor:

05 functions/change value correct/change value correct.c

$ cc —o change value correct.exe change value correct.c

$ aprun -nl ./change value correct.exe

finclude Sqggio . h> Before calling the function, number = 1
/] Function Definition Inside the function, the number's wvalue is 2
After calling the function, number = 2

void change number (int *i) {

*i = 2;
printf ("Inside the function, the number's value is %d\n", *i);

}

// Main Function
int main () {

int number = 1;
printf ("\nBefore calling the function, number = %d\n", number);
change number (&number) ;

printf ("After calling the function, number = %d\n\n", number);

0;

) “Call by reference”

Remember, the * used declare the pointer
variable, i, in the function argument is
different than the * used within the body of
the function. To be clear,

int *i
« The * here is simply because this is how
you declare a pointer to an integer.

*j = 2
printf (™ .. $d\n”, *i)
e The * in these statements is the

dereference operator, which allows you to
access the value of the variable
associated with the memory address.

% OAK RIDGE | iiitice

-National Laboratory | FACILITY

Memory Allocation

e Stack

— Region of computer memory that stores temporary variables
* When a new function is called the variables are created on stack

* When the function returns, the memory is returned to the stack (LIFO)
— Memory managed for you
— Variables can only be accessed locally
— Variable size must be known at compile time

* Heap

— Region of compute memory for dynamic allocation

* No pattern to allocation/deallocation (user can do this any time)
— Memory managed by user
+ E.g. using malloc(), free(), etc.
— Variables can be accessed globally
— Variable size can be determined at run time
¥ OAK RIDGE | £305sie

National Laboratory | FACILITY

07 memory allocation/static.c

S cc —o static.exe static.c
Sgtdde.»> S aprun -nl ./static.exe
f array[0] = 0.000000
int main() { f arrayl[1l] 0.250000
// Statically-allocated array of floats f_array[Z] 0.500000
int N = 5; f array[3] 0.750000
float f_array[N]; f array[4] = 1.000000
(int i=0; i<N; i++) {

f array[i] = 0.25%i;
}

(int i=0; i<N; i++) {
printf ("f array[3d] = ", i, £ array[i]):

}

% OAK RIDGE | e

-National Laboratory | FACILITY

finclude <stdio.h>
#include <stdlib.h>

int main() {
// Dynamically-allocated array of floats

int N =5;
float *f array dyn = malloc(N*sizeof (float));

(int i=0; i<N; i++) {
f array dyn[i] = 0.25%i;
}

(int i=0; i<N; i++) {

printf ("f array dyn[%d] = %£f\n", i, f array dyn[i]);

}

free (f_array dyn);

0;

Releases block of memory associated with f_array dyn

07 memory allocation/dynamic.c

f array dyn[O]
f array dyn[1]
f array dyn[Z2]
f array dyn([3]
f array dynf[4]

_ O O O

$ cc —o dynamic.exe dynamic.c

S aprun -nl ./dynamic.exe
0.
.250000
.500000
. 750000
.000000

000000

block of memory

Allocates N*sizeof (float) bytes
of memory and returns pointer to the

% OAK RIDGE | (e

-National Laboratory | FACILITY

Additional Resources

« Exercises that go with these slides (as well as some examples to work through)
— https://github.com/olcf/intro to C

e Other sites

— https://en.cppreference.com/w/c/language

— https://en.wikibooks.org/wiki/C Programming

— https://stackoverflow.com/questions/tagged/c

— Many other tutorials can be found by googling “c programming language”’

* Website with many practice problems
— https://projecteuler.net/

¥ OAK RIDGE | &ie

-National Laboratory | FACILITY

https://github.com/olcf/intro_to_C
https://en.cppreference.com/w/c/language
https://en.wikibooks.org/wiki/C_Programming
https://stackoverflow.com/questions/tagged/c
https://projecteuler.net/

Examples Used in These Slides

The examples used in these slides can be obtained from OLCF’s GitHub:
S cd SMEMBERWORK/trn00l Since jobs must be launched from Lustre

S git clone https://github.com/olcf/intro to C.git

Grab a node in an interactive job:

S gsub -I -A TRNOO1l -1 nodes=1,walltime=2:00:00
gsub: waiting for job 4109771 to start
gsub: job 4109771 ready

S cd SMEMBERWORK/trn0O01l This is where we cloned the intro_to_C repository.

Launch executables with aprun command:

S aprun -nl ./a.out
¥ OAK RIDGE | (605

-National Laboratory | FACILITY

Bonus Slides

¥ OAK RIDGE | e

National Laboratory | FACILITY

Compiled vs Interpreted Language

In both cases, a high-level language must be converted into lower-level instructions
that the processor can understand

* Interpreted Language (e.g. Python)

— Parse commands in high-level language, translate each command into machine code, then execute each command
— Typically slower due to

Translation occurring while code is being run
Redundant translations (e.g. loops)
No global optimization (e.g. pipelining work)

— Easier interactive code development (simply edit code and run)

» Compiled Language (e.g. C, Fortran)
— Compiler parses “source code” files in high-level language and translate into an executable (machine code).
— Typically faster due to
* Executable can be run without need for “in-line” translation
Reduce redundant translations
« Allows global optimizations (e.g. compiler can determine which instructions come next, so can "pre-fetch” data for that command)

% OAK RIDGE | soessir

-National Laboratory | FACILITY

02 data types/data types/data types.c

$ cc —o data types.exe data types.c

$ aprun —-nl ./data types.exe

The value of character a: X (size 1 byte)
finclude <stdio.h> The value of integer i: 22 (size 4 bytes)

. ! The value of float x: 3.1415927410125732 (size 4 bytes)
int main(){ The value of double y: 3.1415926535897931 (size 8 bytes)
char a = 'X'; The value of pi to 29 decimal places: 3.14159265358979323846264338327/

int i = 22;

float x = 3.14159265358979323846264338327;
double y = 3.14159265358979323846264338327;

// Strings in C are arrays of char
char pi[31] = "3.14159265358979323846264338327";

printf("\n");

printf ("The value of character a: %c (size %d byte)\n", a, (char)) ;
printf ("The value of integer 1i: %d (size %d bytes)\n", i, (int)) ;
printf ("The value of float x: %.16f (size %d bytes)\n", x, (float));
printf ("The value of double y: %.16f (size %d bytes)\n", vy, (double)) ;

printf ("The value
printf("\n");

0;

of pi to 29 decimal places:

oo

s\n", pi);

% OAK RIDGE | £iaisie

-National Laboratory | FACILITY

03 loops/do while loop/do while loop.c

#include <stdio.h>

int main() {

int § = 10; // Declare j and set value to 10 S cc —o do while loop.exe do while loop.c
N e e T e S S e S S e e g — e m e m .
while loop $ aprun -nl ./while loop.exe
-> Executes statements ONLY if . . T
condition is met do-while: J = 10
e */ do-while: § = 11
(3 > 10 && j < 20){ . .
printf (“while: j = %d\n", 3j); do-while: 7 12
=3j + 1; : :
}j] do-while: 7 13
_ _ do-while: 7 14
j = 10; // Reset value of j to 10 . .
do-while: 7 15
) . oL
do while loop do-while: J 16
-> Execui.:es statl:erTlent.T; at least 1 time, do—while: j 17
even if condition is not met) i
——————————————————————————————————————— */ do-while: 7 18
(L L
printf (“do-while: j = %d\n", j); do-while: jJ = 19
j=3+1;
} (3 > 10 && § < 20);
0;
} 3 OAK RIDGE | 516

-National Laboratory | FACILITY

