
C O M P U T E | S T O R E | A N A L Y Z E

Parallel Computing Concepts

But ….
Why are we interested in Parallel Computing?

Because we do Supercomputing?
But …

C O M P U T E | S T O R E | A N A L Y Z E

What is a Supercomputing?

John M Levesque
CTO Office – Applications

Director
Cray’s Supercomputing Center of Excellence

September 28, 1925
To

October 5, 1996

Seymour Cray

C O M P U T E | S T O R E | A N A L Y Z E

First – a supercomputer is:

ASCR Exascale Computing Systems Productivity
Workshop

4

● A computer whose peak performance is capable of solving
the largest complex science/engineering problems

● Peak performance is measured by
● Number of total processors in the system multiplied by the peak of

each processor
● Peak of each processor is measured in Floating Point Operations per

second.
● A scalar processor can usually generate 2-4 64 Bit results (Multiply/Add)

operations each clock cycle
● The Intel Skylake and Intel Knight’s Landing has vector units that can

generate 16-32 64 bit results each clock cycle.
● Skylake’s clock cycle varies and the fastest is 3-4 GHZ for 64-128 GFLOPS

● Big Benefit from vectorizing applications
● Summit has 4,356 nodes, each one equipped with two 22-

core Power9 CPUs, and six NVIDIA Tesla V100 GPUs for a
whopping 187.6 Petaflops and it is the fastest computer in
the world

C O M P U T E | S T O R E | A N A L Y Z E

However; The Supercomputer is just one piece
of Supercomputing

ASCR Exascale Computing Systems Productivity
Workshop

5

● We need three things to be successful at Supercomputing
● The Supercomputer – Summit is great example

● Large Scientific problem to solve – we have many of those

● Programming expertise to port/optimize existing applications and/or
develop new applications to effectively utilize the target
Supercomputing architecture

● This is an area where we are lacking – too many application developers are
not interested in how to write optimized applications for the target system

● When you achieve less than one percent of the peak performance on a 200
Petaflop computer – you are only achieving less than 2 Petaflops

● There are a few sites who are exceptions to this.

C O M P U T E | S T O R E | A N A L Y Z E

Ways to make a computer faster

ASCR Exascale Computing Systems Productivity
Workshop

6

● Lower the clock cycle – increase clock rate

● As the clock cycle becomes shorter the computer can perform more
computations each second. Remember we are determining the peak
performance by counting the number of floating point
operations/second.

C O M P U T E | S T O R E | A N A L Y Z E

For the last ten years the clock cycle is staying
staying the same or increasing

ASCR Exascale Computing Systems Productivity
Workshop

7

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1960 1970 1980 1990 2000 2010 2020

C
lo

ck
 C

yc
le

 T
im

e
(s

ec
on

ds
)

Year

Supercomputer CPU Clock Cycle Times

Developers
became lazy
during this
period

Developers
became
worried
during this
period

C O M P U T E | S T O R E | A N A L Y Z E

Ways to make a computer faster

ASCR Exascale Computing Systems Productivity
Workshop

8

● Lower the clock cycle – increase clock rate
● Generate more than one result each clock

● Single Instruction, Multiple Data - SIMD
● Vector instruction utilizing multiple segmented functional units
● Parallel instruction

● Mulitple Instructions, Multiple Data - MIMD
● Data Flow

● Utilize more than one processor
● Shared memory parallelism

● All processors share memory
● Distributed memory parallelism

● All nodes have separate memories, but:
● A node can have several processors sharing memory within the node

C O M P U T E | S T O R E | A N A L Y Z E

Vector Unit is an Assembly Line

ASCR Exascale Computing Systems Productivity
Workshop

9

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

10

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

Clock Cycle = 1

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

11

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

Clock Cycle = 2

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

12

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

Clock Cycle = 3

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

13

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

Clock Cycle = 4

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

14

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

A(5)
*

B(5)

Clock Cycle = 5

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

15

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

A(5)
*

B(5)

A(6)
*

B(6)

Clock Cycle = 6

C O M P U T E | S T O R E | A N A L Y Z E

Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity
Workshop

16

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

A(5)
*

B(5)

A(6)
*

B(6)

A(7)
+

B(7)

Clock Cycle = 7

C O M P U T E | S T O R E | A N A L Y Z E

SIMD Parallel Unit

ASCR Exascale Computing Systems Productivity
Workshop

17

Result Rate = [Number of Operands/Number of Processing Elements]

C O M P U T E | S T O R E | A N A L Y Z E

What are today’s Vector processors?

ASCR Exascale Computing Systems Productivity
Workshop

18

● They are not like the traditional Cray vector processors
● The are actually like the Illiac.

C O M P U T E | S T O R E | A N A L Y Z E

Outline

ASCR Exascale Computing Systems Productivity
Workshop

19

● What was a Supercomputer in the 1960s,70s,80s,90s and
the 2000s
● Single Instruction, Multiple Data (SIMD)

● Vector
● Parallel

● Multiple Instructions, Multiple Data (MIMD)
● Distributed Memory Systems

● Beowulf, Paragon, nCUBE, Cray T3D/T3E, IBM SP
● Shared Memory Systems

● SGI Origin
● What is a Supercomputer Today

● déjà vu
● MIMD collection of distributed nodes with a MIMD collection of shared

memory processors with SIMD instructions
● So it is important to understand the history of

Supercomputing

C O M P U T E | S T O R E | A N A L Y Z E

Who is the historian - John Levesque?

ASCR Exascale Computing Systems Productivity
Workshop

20

● 1964 – 1965
● Delivered Meads Fine Bread, (Student at University of New Mexico 62-72)

● 3/1966 – 1969
● Sandia Laboratories – Underground Physics Department (CDC3600)

● 1969 – 1972
● Air Force Weapons Laboratory (CDC 6600)

● 1972 – 1978
● R & D Associates - (CDC 7600, Illiac IV, Cray 1, Cyber 203-205)

● 1978 -1979
● Massachusetts Computer Associates (Illiac IV, Cray 1) Parallizer

● 1979 – 1991
● Pacific Sierra Research – (Intel Paragon, Ncube, Univac APS) - VAST

● 1991 – 1998
● Applied Parallel Research – (MPPs of all sorts, CM5, NEX SX) – FORGE

● 1998 – 2001
● IBM Research – Director Advanced Computing Technology Center

● 1/2001 – 9/2001
● Times N Systems – Director of Software Development

● 9/2001 – Present (11/2018?) ç (9/2021)
● Cray Inc – Director – Cray’s Supercomputing Center of Excellence

C O M P U T E | S T O R E | A N A L Y Z E

1960s

ASCR Exascale Computing Systems Productivity
Workshop

21

C O M P U T E | S T O R E | A N A L Y Z E

First System I drove

ASCR Exascale Computing Systems Productivity
Workshop

22

C O M P U T E | S T O R E | A N A L Y Z E

Then got job at Sandia Laboratories in
Albuquerque

ASCR Exascale Computing Systems Productivity
Workshop

23

C O M P U T E | S T O R E | A N A L Y Z E

1970s

ASCR Exascale Computing Systems Productivity
Workshop

24

CDC 6600 – Multiple Functional Units

ASCR Exascale Computing Systems Productivity
Workshop

25

Could generate an ADD
and MULTIPLY at the
same time

Computer input devices

ASCR Exascale Computing Systems Productivity
Workshop

26

Why was the Fortran line length 72?

ASCR Exascale Computing Systems Productivity
Workshop

27

File organization

ASCR Exascale Computing Systems Productivity
Workshop

28

Computer Listing

ASCR Exascale Computing Systems Productivity
Workshop

29

Computational Steering in the 70s

ASCR Exascale Computing Systems Productivity
Workshop

30

Set a sense switch, dump the velocity
Vector field to tape, take tape to Calcomp
Plotter.

Then in the early 70’s I worked on the Illiac IV

ASCR Exascale Computing Systems Productivity
Workshop

31

Anyone know why
the door is open?

Programming the 64
SIMD units is exactly
the same as
programming the 32
SIMT threads in a
Nvidia Warp

Actually accessed the Illiac IV remotely

ASCR Exascale Computing Systems Productivity
Workshop

32

Contrarily to popular belief, Al Core did not invent the Internet –
Larry Roberts of ARPA did.

Then started working with Seymour Cray’s first
Masterpiece – the CDC 7600

ASCR Exascale Computing Systems Productivity
Workshop

33

This System had a
large slow memory
(256K words) and a
small fast memory (65K
words)

Similar memory
architecture is being
used today Intel’s
Knights Landing and
Summit’s nodes

Seymour’s Innovations in the CDC 7600

ASCR Exascale Computing Systems Productivity
Workshop

34

● Segmented Functional Units
● The first hint of vector hardware

● Multiple functional Units capable of parallel execution

● Small main memory with larger extended core memory

Any Idea what this is?

18.Feb.13 Cray OpenACC training at CSCS
35

My first laptop

ASCR Exascale Computing Systems Productivity
Workshop

36

Cyber 203/205

ASCR Exascale Computing Systems Productivity
Workshop

37

From paper by Neil Lincoln -CDC

ASCR Exascale Computing Systems Productivity
Workshop

38

Memory to Memory Vector Processor
Star 100

SIMD Parallel Processor – Illiac I
Scalar Processor
of the time

First Real Vector Machines

ASCR Exascale Computing Systems Productivity
Workshop

39

● Memory to Memory Vector Processors

● Texas Instruments ASC
● Star 100
● Cyber 203/205

● Register to Register Vector Processors

● Cray 1

Seymour Cray’s Innovative Register
Architecture

ASCR Exascale Computing Systems Productivity
Workshop

40

Really do not have vector instructions today

18.Feb.13 Cray OpenACC training at CSCS
41

● While Nvidia and Intel say they have vector instructions

● They are really like the Illiac IV
● Intel’s parallel width is 2,4,8 elements of 128,256,512 bit instructions
● Nvidia’s parallel width is 32 -64 bit elements, or 64 -32 bit elements

● Having made this point, henceforth we will refer to them
as vector instructions

Result Rate = [Number of Operands/Number of Processing Elements]

Cray 1A – First to Los Alamos in July 1976

ASCR Exascale Computing Systems Productivity
Workshop

42

1980s

ASCR Exascale Computing Systems Productivity
Workshop

43

Golden Age of Cray

Start of Shared Memory Systems

Very active industry

ASCR Exascale Computing Systems Productivity
Workshop

44

● Cray X-MP, Cray Y-MP, Cray 2
● Parallel shared memory vector systems

● Japanese NEC, Fujitsu, Hitachi
● Parallel shared memory vector systems

● Crayettes
● Convex, Supratek, Alliant

● Parallel shared memory vector systems
● ETA 10

● Last of the memory to memory vector processors

NEC SX series

ASCR Exascale Computing Systems Productivity
Workshop

45

1990s

ASCR Exascale Computing Systems Productivity
Workshop

46

Attack of the Killer Micros

ASCR Exascale Computing Systems Productivity
Workshop

47

● During this
decade,

● More money was
spent on Disposal
Diapers than on
Supercomputer

Ncube

ASCR Exascale Computing Systems Productivity
Workshop

48

Cray T3D/T3E

ASCR Exascale Computing Systems Productivity
Workshop

49

Famous Jurassic Park Prop

ASCR Exascale Computing Systems Productivity
Workshop

50

SIMD Parallel with
Scalar Host – Must
transfer data to and
from CM from host

All of these systems only had one core/node

ASCR Exascale Computing Systems Productivity
Workshop

51

● Performance was obtained by a constantly decreasing
clock cycle (1995 – 2010)

● Application developers did not have to do anything to
their programs to get additional performance

● Of course they did have to put in message passing to
communicate between the distributed memory nodes

2000s

ASCR Exascale Computing Systems Productivity
Workshop

52

Cray’s last custom systems X1, X2

ASCR Exascale Computing Systems Productivity
Workshop

53

Cray X1 – A preview of the future in 2003

ASCR Exascale Computing Systems Productivity
Workshop

54

Extremely Similar to Nvidia
GPU

● Global architecture
● a lot of compute cores

● 2688 SP plus 896 DP; ratio 3:1

● divided into 14 Streaming Multiprocessors

● these operate independently

● SMX architecture
● many cores

● 64 SP

● 32 DP

● shared instruction stream; same ops

● lockstep, SIMT execution of same ops

● SMX acts like vector processor

● Memory hierarchy
● each core has private registers

● fixed register file size

● cores in an SM share a fast memory

● 64KB, split between:

● L1 cache and user-managed

● all cores share large global memory

● 6GB; also some specialist memory

Nvidia K20X Kepler architecture

18.Feb.13 Cray OpenACC training at CSCS
55

The System that shot down a satellite

ASCR Exascale Computing Systems Productivity
Workshop

56

2010s

18.Feb.13 Cray OpenACC training at CSCS
57

For the last ten years the clock cycle is staying
staying the same or increasing

ASCR Exascale Computing Systems Productivity
Workshop

58

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1960 1970 1980 1990 2000 2010 2020

C
lo

ck
 C

yc
le

 T
im

e
(s

ec
on

ds
)

Year

Supercomputer CPU Clock Cycle Times

Attack of the
Killer Micros

Lets add
more
cores/node

Now we
have 50-
60/node

Why can’t the clock cycle keep decreasing

18.Feb.13 Cray OpenACC training at CSCS
59

● The shorter the clock cycle, the denser the circuity.
● Grace Hopper infamous nanosecond wire – 11.8 inches. The length

an electronic signal can travel in one nanosecond.
● Extremely difficult to cool the system so it will not melt.

● Moore’s Law
● postulates a reduction in the size of transistors leading to more and

more transistors per chip at the cost-effective optimum

● Dennard Scaling
● claims that the performance per watt of computing is growing

exponentially at roughly the same rate

https://en.wikipedia.org/wiki/Performance_per_watt

Why can’t the clock cycle keep decreasing

18.Feb.13 Cray OpenACC training at CSCS
60

● Dennard Scaling – performance increase with decrease in
area
● Since around 2005–2007 Dennard scaling appears to have broken

down. As of 2016, transistor counts in integrated circuits are still
growing, but the resulting improvements in performance are more
gradual than the speed-ups resulting from significant frequency
increases. The primary reason cited for the breakdown is that at small
sizes, current leakage poses greater challenges, and also causes the
chip to heat up, which creates a threat of thermal runaway and
therefore further increases energy costs.

● The breakdown of Dennard scaling and resulting inability to increase
clock frequencies significantly has caused most CPU manufacturers
to focus on multicore processors as an alternative way to improve
performance. An increased core count benefits many (though by no
means all) workloads, but the increase in active switching elements
from having multiple cores still results in increased overall power
consumption and thus worsens CPU power dissipation issues. The
end result is that only some fraction of an integrated circuit can
actually be active at any given point in time without violating power
constraints. The remaining (inactive) area is referred to as dark
silicon.

https://en.wikipedia.org/wiki/Thermal_runaway
https://en.wikipedia.org/wiki/CPU_power_dissipation
https://en.wikipedia.org/wiki/Dark_silicon

Clock Cycle not giving us any improvement

18.Feb.13 Cray OpenACC training at CSCS
61

● So lets use chip real estate to add more cores and employ
vector (SIMD parallel) instructions
● Cray Titan system and Summit using Nvidia processors
● Intel KNC, KNL Trinity
● Intel many-core chips – 8 – 28 cores/socket – Cray supplies two

sockets on a node or one socket and multiple accelerators

● Software
● “Ask not what your compiler can do for you, Ask what you can do for

your compiler”
● No Silver Bullet

● To get performance on todays and next generation systems the
programmer must
● Make sure applications vectorize
● Make sure applications can utilize all the cores on the node

● All MPI across all cores still working reasonably well
● To use accelerator, must use either OpenACC or OpenMP 4.5

C O M P U T E | S T O R E | A N A L Y Z E

Today

ASCR Exascale Computing Systems Productivity
Workshop

62

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC40 Compute Node

Copyright 2015 Cray Inc.

Haswell
10-16 Core

~500GF
PC

Ie
-3

 x
16

Intel
Xeon
Node

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DMI2

QPI

Southbridge
Chip

QPI

Haswell
10-16 Core

~500GF

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

DDR4
DIMM
16GBs

64, 128 or 256 GB, 2133

63
6/28/18

Cray XC+ Pascal Node

Ivybridge

~200GF
P

C
Ie

-3
 x

16

GPU
Node

64,
128
GByt
es

PCI Express Card

DMI2

NVIDIA
Pascal

HBM2
Memory

PCIe-3 x16

Cray Supercomputing Product Update

Southbri
dge Chip

D
D

R
4

 2
40

0

D
D

R
4

 2
40

0

D
D

R
4

 2
40

0

D
D

R
4

 2
40

0

64

Note: We used
Haswell in the CSCS
system because we
re-used processors

from their XC40
system

C O M P U T E | S T O R E | A N A L Y Z E

Core

256kB
L2 Cache

32kB L1
Data Cache

32kB L1
Inst. Cache

…

L3 Cache

Core

L2 Cache

L1 Caches

Core

L2 Cache

L1 Caches

Core

L2 Cache

L1 Caches

Intel® Smart Cache Technology

65

● New 3-level Cache Hierarchy
● 1st level caches

● 32kB Instruction cache
● 32kB, 8-way Data Cache

● 2nd level cache
● New cache introduced in Intel® Core™

microarchitecture (Nehalem)
● Unified (holds code and data)
● 256KB per core (8-way)
● Performance: Very low latency, 10 cycle load-to-use

● 3rd Level cache
● Shared across all cores
● 2.5MB/Core (16-ways)
● Latency depends on frequency ratio between core

and UnCore
● Inclusive cache policy for best performance
● Address residing in L1/L2 must be present in 3rd

level cache
* Other names and brands may be claimed as the property of others. Slide provided by Intel ®

6/28/18 Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
666/28/18 2/2014 European Trip

Vectors

Cores

Power Hungry Clock speed

C O M P U T E | S T O R E | A N A L Y Z E
676/28/18 2/2014 European Trip

C O M P U T E | S T O R E | A N A L Y Z E

Now lets talk about Programming

ASCR Exascale Computing Systems Productivity
Workshop

68

● When the clock cycle gets faster the program runs faster
without doing anything to your application

● When there is a vector unit the compiler has to vectorize
the principal loops in the program to take advantage of the
vector unit

● When there are more than one processor
● If they are on the same node you have to use either OpenMP threads

to orchestrate them to work on a single application of use MPI when
they are on separate nodes

● When they are on separate nodes, you have to use use MPI when
they are on separate nodes

● So you have to do something to take advantage of the
architectural improvement

C O M P U T E | S T O R E | A N A L Y Z E

Shared Memory Parallelization

ASCR Exascale Computing Systems Productivity
Workshop

69

● The most difficult task to parallelize a loop for shared
memory parallelization is to scope the variables accessed
within the loop

● What variable are shared – that is one address space to accessed by
all processors (or hardware threads) on the node

● What variables are private – that is an address space that is
accessible by a single processor (or hardware thread)

C O M P U T E | S T O R E | A N A L Y Z E

Vectorization

ASCR Exascale Computing Systems Productivity
Workshop

70

● ABSOLUTELY necessary for porting applications to
accelerators

● Here the users work with the compiler to re-work
important loops so the compiler generates vector
instructions for the hardware

C O M P U T E | S T O R E | A N A L Y Z E

Examine sampling
exp with line #

Table 3

||||==
|| 10.8% | 376.9 | -- | -- |riemann_
3| | | | | riemann.f90
||||--
4||| 1.4% | 47.4 | 32.6 | 41.0% |line.77
4||| 3.9% | 135.8 | 28.2 | 17.3% |line.78

63. + 1----< do l = lmin, lmax
64. + 1 2--< do n = 1, 12
65. 1 2 pmold(l) = pmid(l)
66. 1 2 wlft (l) = 1.0 + gamfac1*(pmid(l) - plft(l)) * plfti(l)
67. 1 2 wrgh (l) = 1.0 + gamfac1*(pmid(l) - prgh(l)) * prghi(l)
68. 1 2 wlft (l) = clft(l) * sqrt(wlft(l))
69. 1 2 wrgh (l) = crgh(l) * sqrt(wrgh(l))
70. 1 2 zlft (l) = 4.0 * vlft(l) * wlft(l) * wlft(l)
71. 1 2 zrgh (l) = 4.0 * vrgh(l) * wrgh(l) * wrgh(l)
72. 1 2 zlft (l) = -zlft(l) * wlft(l)/(zlft(l) - gamfac2*(pmid(l) - plft(l)))
73. 1 2 zrgh (l) = zrgh(l) * wrgh(l)/(zrgh(l) - gamfac2*(pmid(l) - prgh(l)))
74. 1 2 umidl(l) = ulft(l) - (pmid(l) - plft(l)) / wlft(l)
75. 1 2 umidr(l) = urgh(l) + (pmid(l) - prgh(l)) / wrgh(l)
76. 1 2 pmid (l) = pmid(l) + (umidr(l) - umidl(l))*(zlft(l) * zrgh(l)) / (zrgh(l) - zlft(l))
77. 1 2 pmid (l) = max(smallp,pmid(l))
78. 1 2 if (abs(pmid(l)-pmold(l))/pmid(l) < tol) exit
79. 1 2--> enddo
80. 1----> enddo

ftn-6254 ftn: VECTOR RIEMANN, File = riemann.f90, Line = 64
A loop starting at line 64 was not vectorized because a recurrence was found
on "pmid" at line 77.

A

If it doesn’t Vectorize – fix it

6/26/17 ERDC Workshop

C O M P U T E | S T O R E | A N A L Y Z E

62. A-----<> converged =.F.

63. + 1------< do n = 1, 12

64. 1 Vr2--< do l = lmin, lmax

65. 1 Vr2 if(.not.converged(l))then

66. 1 Vr2 pmold(l) = pmid(l)

67. 1 Vr2 wlft (l) = 1.0 + gamfac1*(pmid(l) - plft(l)) * plfti(l)

68. 1 Vr2 wrgh (l) = 1.0 + gamfac1*(pmid(l) - prgh(l)) * prghi(l)

69. 1 Vr2 wlft (l) = clft(l) * sqrt(wlft(l))

70. 1 Vr2 wrgh (l) = crgh(l) * sqrt(wrgh(l))

71. 1 Vr2 zlft (l) = 4.0 * vlft(l) * wlft(l) * wlft(l)

72. 1 Vr2 zrgh (l) = 4.0 * vrgh(l) * wrgh(l) * wrgh(l)

73. 1 Vr2 zlft (l) = -zlft(l) * wlft(l)/(zlft(l) - gamfac2*(pmid(l) - plft(l)))

74. 1 Vr2 zrgh (l) = zrgh(l) * wrgh(l)/(zrgh(l) - gamfac2*(pmid(l) - prgh(l)))

75. 1 Vr2 umidl(l) = ulft(l) - (pmid(l) - plft(l)) / wlft(l)

76. 1 Vr2 umidr(l) = urgh(l) + (pmid(l) - prgh(l)) / wrgh(l)

77. 1 Vr2 pmid (l) = pmid(l) + (umidr(l) - umidl(l))*(zlft(l) * zrgh(l)) / &

78. 1 Vr2 (zrgh(l)-zlft(l))

79. 1 Vr2 pmid (l) = max(smallp,pmid(l))

80. 1 Vr2 if (abs(pmid(l)-pmold(l))/pmid(l) < tol) then

81. 1 Vr2 converged(l) = .T.

82. 1 Vr2 endif

83. 1 Vr2 endif

84. 1 Vr2--> enddo

85. + 1 if(all(converged(lmin:lmax)))exit

86. 1------> enddo

If it doesn’t Vectorize – fix it
63. + 1----< do l = lmin, lmax

64. + 1 2--< do n = 1, 12

65. 1 2 pmold(l) = pmid(l)

66. 1 2 wlft (l) = 1.0 + gamfac1*(pmid(l) - plft(l)) * plfti(l)

67. 1 2 wrgh (l) = 1.0 + gamfac1*(pmid(l) - prgh(l)) * prghi(l)

68. 1 2 wlft (l) = clft(l) * sqrt(wlft(l))

69. 1 2 wrgh (l) = crgh(l) * sqrt(wrgh(l))

70. 1 2 zlft (l) = 4.0 * vlft(l) * wlft(l) * wlft(l)

71. 1 2 zrgh (l) = 4.0 * vrgh(l) * wrgh(l) * wrgh(l)

72. 1 2 zlft (l) = -zlft(l) * wlft(l)/(zlft(l) - gamfac2*(pmid(l) - plft(l)))

73. 1 2 zrgh (l) = zrgh(l) * wrgh(l)/(zrgh(l) - gamfac2*(pmid(l) –

prgh(l)))

74. 1 2 umidl(l) = ulft(l) - (pmid(l) - plft(l)) / wlft(l)

75. 1 2 umidr(l) = urgh(l) + (pmid(l) - prgh(l)) / wrgh(l)

76. 1 2 pmid (l) = pmid(l) + (umidr(l) - umidl(l))*(zlft(l) * zrgh(l)) /

(zrgh(l) - zlft(l))

77. 1 2 pmid (l) = max(smallp,pmid(l))

78. 1 2 if (abs(pmid(l)-pmold(l))/pmid(l) < tol) exit

79. 1 2--> enddo

80. 1----> enddo

6/26/17 ERDC Workshop

C O M P U T E | S T O R E | A N A L Y Z E

Cache Utilization

ASCR Exascale Computing Systems Productivity
Workshop

73

● Latency to memory is significantly longer than required to
keep functional units busy; therefore, caches must be
effectively utilized.

● Accelerators have small caches and register sets. Spilling
to memory significantly degrades performance

C O M P U T E | S T O R E | A N A L Y Z E

Utilization of Multiple Memories

ASCR Exascale Computing Systems Productivity
Workshop

74

● Even though the system can automagically manage
memory movement between host and accelerator,
excessive data movement can kill performance

C O M P U T E | S T O R E | A N A L Y Z E
ASCR Exascale Computing Systems Productivity

Workshop
75

Q&A

John Levesque
levesque@cray.com

mailto:levesque@cray.com

