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Parallel Computing Concepts

But ….
Why are we interested in Parallel Computing?

Because we do Supercomputing?
But …
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First – a supercomputer is:
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● A computer whose peak performance is capable of solving 
the largest complex science/engineering problems

● Peak performance is measured by
● Number of total processors in the system multiplied by the peak of 

each processor
● Peak of each processor is measured in Floating Point Operations per 

second. 
● A scalar processor can usually generate 2-4 64 Bit results (Multiply/Add) 

operations each clock cycle
● The Intel Skylake and Intel Knight’s Landing has vector units that can 

generate 16-32 64 bit results each clock cycle. 
● Skylake’s clock cycle varies and the fastest is 3-4 GHZ for 64-128 GFLOPS

● Big Benefit from vectorizing applications
● Summit has 4,356 nodes, each one equipped with two 22-

core Power9 CPUs, and six NVIDIA Tesla V100 GPUs for a 
whopping 187.6 Petaflops and it is the fastest computer in 
the world
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However; The Supercomputer is just one piece 
of Supercomputing
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● We need three things to be successful at Supercomputing
● The Supercomputer – Summit is great example

● Large Scientific problem to solve – we have many of those

● Programming expertise to port/optimize existing applications and/or 
develop new applications to effectively utilize the target 
Supercomputing architecture

● This is an area where we are lacking – too many application developers are 
not interested in how to write optimized applications for the target system

● When you achieve less than one percent of the peak performance on a 200 
Petaflop computer – you are only achieving less than 2 Petaflops

● There are a few sites who are exceptions to this. 
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Ways to make a computer faster

ASCR Exascale Computing Systems Productivity 
Workshop 

6

● Lower the clock cycle – increase clock rate

● As the clock cycle becomes shorter the computer can perform more 
computations each second. Remember we are determining the peak 
performance by counting the number of floating point 
operations/second.
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For the last ten years the clock cycle is staying 
staying the same or increasing
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during this 
period
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Ways to make a computer faster
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● Lower the clock cycle – increase clock rate
● Generate more than one result each clock

● Single Instruction, Multiple Data  - SIMD
● Vector instruction utilizing multiple segmented functional units
● Parallel instruction 

● Mulitple Instructions, Multiple Data - MIMD
● Data Flow

● Utilize more than one processor
● Shared memory parallelism

● All processors share memory
● Distributed memory parallelism

● All nodes have separate memories, but:
● A node can have several processors sharing memory within the node
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Vector Unit is an Assembly Line
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Cray 1 Vector Unit
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Time to compute= Startup + Number of Operands

A(1)
*

B(1)

Clock Cycle = 1
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Cray 1 Vector Unit
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Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

Clock Cycle = 2
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Cray 1 Vector Unit
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Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

Clock Cycle = 3
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Cray 1 Vector Unit
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Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

Clock Cycle = 4
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Cray 1 Vector Unit
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Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

A(5)
*

B(5)

Clock Cycle = 5
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Cray 1 Vector Unit
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Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

A(5)
*

B(5)

A(6)
*

B(6)

Clock Cycle = 6
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Cray 1 Vector Unit

ASCR Exascale Computing Systems Productivity 
Workshop 

16

Time to compute= Startup + Number of Operands

A(1)
*

B(1)

A(2)
*

B(2)

A(3)
*

B(3)

A(4)
*

B(4)

A(5)
*

B(5)

A(6)
*

B(6)

A(7)
+

B(7)

Clock Cycle = 7
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SIMD Parallel Unit

ASCR Exascale Computing Systems Productivity 
Workshop 

17

Result Rate = [Number of Operands/Number of Processing Elements]
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What are today’s Vector processors?
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● They are not like the traditional Cray vector processors
● The are actually like the Illiac.
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Outline
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● What was a Supercomputer in the 1960s,70s,80s,90s and 
the 2000s
● Single Instruction, Multiple Data (SIMD)

● Vector
● Parallel

● Multiple Instructions, Multiple Data (MIMD)
● Distributed Memory Systems

● Beowulf, Paragon, nCUBE, Cray T3D/T3E, IBM SP
● Shared Memory Systems

● SGI Origin
● What is a Supercomputer Today

● déjà vu
● MIMD collection of distributed nodes with a MIMD collection of shared 

memory processors with SIMD instructions
● So it is important to understand the history of 

Supercomputing
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Who is the historian - John Levesque?
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● 1964 – 1965
● Delivered Meads Fine Bread, (Student at University of New Mexico 62-72)

● 3/1966 – 1969
● Sandia Laboratories – Underground Physics Department (CDC3600)

● 1969 – 1972
● Air Force Weapons Laboratory (CDC 6600)

● 1972 – 1978
● R & D Associates - (CDC 7600,  Illiac IV, Cray 1, Cyber 203-205)

● 1978 -1979
● Massachusetts Computer Associates (Illiac IV, Cray 1) Parallizer

● 1979 – 1991
● Pacific Sierra Research – (Intel Paragon, Ncube, Univac APS) - VAST

● 1991 – 1998
● Applied Parallel Research – (MPPs of all sorts, CM5, NEX SX) – FORGE

● 1998 – 2001
● IBM Research – Director Advanced Computing Technology Center

● 1/2001 – 9/2001
● Times N Systems – Director of Software Development

● 9/2001 – Present ( 11/2018?) ç (9/2021)
● Cray Inc – Director – Cray’s Supercomputing Center of Excellence
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1960s
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First System I drove
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Then got job at Sandia Laboratories in 
Albuquerque
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1970s
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CDC 6600 – Multiple Functional Units
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Could generate an ADD 
and MULTIPLY at the 
same time



Computer input devices 
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Why was the Fortran line length 72?
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File organization
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Computer Listing
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Computational Steering in the 70s
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Set a sense switch, dump the velocity 
Vector field to tape, take tape to Calcomp
Plotter.



Then in the early 70’s I worked on the Illiac IV
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Anyone know why 
the door is open?

Programming the 64 
SIMD units is exactly 
the same as 
programming the 32 
SIMT threads in a 
Nvidia Warp



Actually accessed the Illiac IV remotely
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Contrarily to popular belief, Al Core did not invent the Internet –
Larry Roberts of ARPA did. 



Then started working with Seymour Cray’s first 
Masterpiece – the CDC 7600
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This System had a 
large slow memory 
(256K words) and a 
small fast memory (65K 
words)

Similar memory 
architecture is being 
used today Intel’s 
Knights Landing and
Summit’s nodes



Seymour’s Innovations in the CDC 7600
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● Segmented Functional Units
● The first hint of vector hardware

● Multiple functional Units capable of parallel execution

● Small main memory with larger extended core memory



Any Idea what this is?

18.Feb.13 Cray OpenACC training at CSCS
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My first laptop
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Cyber 203/205
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From paper by Neil Lincoln -CDC
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Memory to Memory Vector Processor
Star 100

SIMD Parallel Processor – Illiac I
Scalar Processor 
of the time



First Real Vector Machines
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● Memory to Memory Vector Processors

● Texas Instruments ASC
● Star 100
● Cyber 203/205

● Register to Register Vector Processors

● Cray 1



Seymour Cray’s Innovative Register 
Architecture
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Really do not have vector instructions today
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● While Nvidia and Intel say they have vector instructions

● They are really like the Illiac IV
● Intel’s parallel width is 2,4,8 elements of  128,256,512 bit instructions
● Nvidia’s parallel width is 32 -64 bit elements, or 64 -32 bit elements

● Having made this point, henceforth we will refer to them 
as vector instructions

Result Rate = [Number of Operands/Number of Processing Elements]



Cray 1A – First to Los Alamos in July 1976
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1980s
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Golden Age of Cray

Start of Shared Memory Systems



Very active industry
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● Cray X-MP, Cray Y-MP, Cray 2
● Parallel shared memory vector systems

● Japanese NEC, Fujitsu, Hitachi
● Parallel shared memory vector systems

● Crayettes
● Convex, Supratek, Alliant 

● Parallel shared memory vector systems
● ETA 10

● Last of the memory to memory vector processors



NEC SX series
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1990s
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Attack of the Killer Micros
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● During this 
decade,

● More money was 
spent on Disposal 
Diapers than on 
Supercomputer 



Ncube
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Cray T3D/T3E
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Famous Jurassic Park Prop
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SIMD Parallel with
Scalar Host – Must 
transfer data to and
from CM from host



All of these systems only had one core/node
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● Performance was obtained by a constantly decreasing 
clock cycle (1995 – 2010)

● Application developers did not have to do anything to 
their programs to get additional performance

● Of course they did have to put in message passing to 
communicate between the distributed memory nodes



2000s
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Cray’s last custom systems X1, X2
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Cray X1 – A preview of the future in 2003
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Extremely Similar to Nvidia
GPU



● Global architecture
● a lot of compute cores

● 2688 SP plus 896 DP; ratio 3:1

● divided into 14 Streaming Multiprocessors

● these operate independently

● SMX architecture
● many cores

● 64 SP

● 32 DP

● shared instruction stream; same ops

● lockstep, SIMT execution of same ops

● SMX acts like vector processor

● Memory hierarchy
● each core has private registers

● fixed register file size

● cores in an SM share a fast memory

● 64KB, split between:

● L1 cache and user-managed

● all cores share large global memory

● 6GB; also some specialist memory

Nvidia K20X Kepler architecture

18.Feb.13 Cray OpenACC training at CSCS
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The System that shot down a satellite 
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2010s

18.Feb.13 Cray OpenACC training at CSCS
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For the last ten years the clock cycle is staying 
staying the same or increasing
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Attack of the 
Killer Micros

Lets add 
more 
cores/node

Now we 
have 50-
60/node



Why can’t the clock cycle keep decreasing
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● The shorter the clock cycle, the denser the circuity.
● Grace Hopper infamous nanosecond wire – 11.8 inches. The length 

an electronic signal can travel in one nanosecond.
● Extremely difficult to cool the system so it will not melt.

● Moore’s Law
● postulates a reduction in the size of transistors leading to more and 

more transistors per chip at the cost-effective optimum

● Dennard Scaling
● claims that the performance per watt of computing is growing 

exponentially at roughly the same rate

https://en.wikipedia.org/wiki/Performance_per_watt


Why can’t the clock cycle keep decreasing
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● Dennard Scaling – performance increase with decrease in 
area
● Since around 2005–2007 Dennard scaling appears to have broken 

down. As of 2016, transistor counts in integrated circuits are still 
growing, but the resulting improvements in performance are more 
gradual than the speed-ups resulting from significant frequency 
increases. The primary reason cited for the breakdown is that at small 
sizes, current leakage poses greater challenges, and also causes the 
chip to heat up, which creates a threat of thermal runaway and 
therefore further increases energy costs.

● The breakdown of Dennard scaling and resulting inability to increase 
clock frequencies significantly has caused most CPU manufacturers 
to focus on multicore processors as an alternative way to improve 
performance. An increased core count benefits many (though by no 
means all) workloads, but the increase in active switching elements 
from having multiple cores still results in increased overall power 
consumption and thus worsens CPU power dissipation issues. The 
end result is that only some fraction of an integrated circuit can 
actually be active at any given point in time without violating power 
constraints. The remaining (inactive) area is referred to as dark 
silicon.

https://en.wikipedia.org/wiki/Thermal_runaway
https://en.wikipedia.org/wiki/CPU_power_dissipation
https://en.wikipedia.org/wiki/Dark_silicon


Clock Cycle not giving us any improvement

18.Feb.13 Cray OpenACC training at CSCS
61

● So lets use chip real estate to add more cores and employ 
vector (SIMD parallel) instructions
● Cray Titan system and Summit using Nvidia processors 
● Intel KNC, KNL Trinity
● Intel many-core chips – 8 – 28 cores/socket – Cray supplies two 

sockets on a node or one socket and multiple accelerators

● Software
● “Ask not what your compiler can do for you, Ask what you can do for 

your compiler”
● No Silver Bullet

● To get performance on todays and next generation systems the 
programmer must
● Make sure applications vectorize
● Make sure applications can utilize all the cores on the node

● All MPI across all cores still working reasonably well
● To use accelerator, must use either OpenACC or OpenMP 4.5
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Today
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Cray XC40 Compute Node
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Note:  We used 
Haswell in the CSCS 
system because we 
re-used processors 

from their XC40 
system
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Core

256kB
L2 Cache

32kB L1 
Data Cache

32kB L1 
Inst. Cache

…

L3 Cache

Core

L2 Cache

L1 Caches

Core

L2 Cache

L1 Caches

Core

L2 Cache

L1 Caches

Intel® Smart Cache Technology

65

● New 3-level Cache Hierarchy
● 1st level caches

● 32kB Instruction cache
● 32kB, 8-way Data Cache

● 2nd level cache
● New cache introduced in Intel® Core™ 

microarchitecture (Nehalem)
● Unified (holds code and data)
● 256KB per core (8-way)
● Performance: Very low latency, 10 cycle load-to-use

● 3rd Level cache
● Shared across all cores
● 2.5MB/Core (16-ways)
● Latency depends on frequency ratio between core 

and UnCore
● Inclusive cache policy for best performance
● Address residing in L1/L2 must be present in 3rd 

level cache
* Other names and brands may be claimed as the property of others. Slide provided by Intel ®

6/28/18 Copyright 2015 Cray Inc.
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Vectors

Cores

Power Hungry Clock speed
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Now lets talk about Programming
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● When the clock cycle gets faster the program runs faster 
without doing anything to your application

● When there is a vector unit the compiler has to vectorize 
the principal loops in the program to take advantage of the 
vector unit

● When there are more than one processor
● If they are on the same node you have to use either OpenMP threads 

to orchestrate them to work on a single application of use MPI when 
they are on separate nodes 

● When they are on separate nodes, you have to use use MPI when 
they are on separate nodes 

● So you have to do something to take advantage of the 
architectural improvement
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Shared Memory Parallelization
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● The most difficult task to parallelize a loop for shared 
memory parallelization is to scope the variables accessed 
within the loop

● What variable are shared – that is one address space to accessed by 
all processors (or hardware threads) on the node

● What variables are private – that is an address space that is 
accessible by a single processor (or hardware thread)
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Vectorization
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● ABSOLUTELY necessary for porting applications to 
accelerators

● Here the users work with the compiler to re-work 
important loops so the compiler generates vector 
instructions for the hardware
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Examine sampling 
exp with line #

Table 3

||||========================================
||  10.8% |   376.9 |    -- |    -- |riemann_
3|        |         |       |       | riemann.f90
||||--------------------------------------------------------------------------
4|||   1.4% |     47.4 |  32.6 | 41.0% |line.77
4|||   3.9% |   135.8 |  28.2 | 17.3% |line.78

63.  + 1----< do l = lmin, lmax
64.  + 1 2--<   do n = 1, 12
65.    1 2        pmold(l) = pmid(l)
66.    1 2        wlft (l) = 1.0 + gamfac1*(pmid(l) - plft(l)) * plfti(l)
67.    1 2        wrgh (l) = 1.0 + gamfac1*(pmid(l) - prgh(l)) * prghi(l)
68.    1 2        wlft (l) = clft(l) * sqrt(wlft(l))
69.    1 2        wrgh (l) = crgh(l) * sqrt(wrgh(l))
70.    1 2        zlft (l) = 4.0 * vlft(l) * wlft(l) * wlft(l)
71.    1 2        zrgh (l) = 4.0 * vrgh(l) * wrgh(l) * wrgh(l)
72.    1 2        zlft (l) = -zlft(l) * wlft(l)/(zlft(l) - gamfac2*(pmid(l) - plft(l)))  
73.    1 2        zrgh (l) =  zrgh(l) * wrgh(l)/(zrgh(l) - gamfac2*(pmid(l) - prgh(l)))  
74.    1 2        umidl(l) = ulft(l) - (pmid(l) - plft(l)) / wlft(l)
75.    1 2        umidr(l) = urgh(l) + (pmid(l) - prgh(l)) / wrgh(l)
76.    1 2        pmid (l) = pmid(l) + (umidr(l) - umidl(l))*(zlft(l) * zrgh(l)) / (zrgh(l) - zlft(l))
77.    1 2        pmid (l) = max(smallp,pmid(l))
78.    1 2        if (abs(pmid(l)-pmold(l))/pmid(l) < tol ) exit
79.    1 2-->   enddo
80.    1----> enddo

ftn-6254 ftn: VECTOR RIEMANN, File = riemann.f90, Line = 64
A loop starting at line 64 was not vectorized because a recurrence was found 
on "pmid" at line 77.

A

If it doesn’t Vectorize – fix it

6/26/17 ERDC Workshop 
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62.    A-----<>  converged =.F.

63.  + 1------<  do n = 1, 12

64.    1 Vr2--<    do l = lmin, lmax

65.    1 Vr2        if(.not.converged(l))then

66.    1 Vr2         pmold(l) = pmid(l)

67.    1 Vr2         wlft (l) = 1.0 + gamfac1*(pmid(l) - plft(l)) * plfti(l)

68.    1 Vr2         wrgh (l) = 1.0 + gamfac1*(pmid(l) - prgh(l)) * prghi(l)

69.    1 Vr2         wlft (l) = clft(l) * sqrt(wlft(l))

70.    1 Vr2         wrgh (l) = crgh(l) * sqrt(wrgh(l))

71.    1 Vr2         zlft (l) = 4.0 * vlft(l) * wlft(l) * wlft(l)

72.    1 Vr2         zrgh (l) = 4.0 * vrgh(l) * wrgh(l) * wrgh(l)

73.    1 Vr2         zlft (l) = -zlft(l) * wlft(l)/(zlft(l) - gamfac2*(pmid(l) - plft(l)))

74.    1 Vr2         zrgh (l) =  zrgh(l) * wrgh(l)/(zrgh(l) - gamfac2*(pmid(l) - prgh(l)))

75.    1 Vr2         umidl(l) = ulft(l) - (pmid(l) - plft(l)) / wlft(l)

76.    1 Vr2         umidr(l) = urgh(l) + (pmid(l) - prgh(l)) / wrgh(l)

77.    1 Vr2         pmid (l) = pmid(l) + (umidr(l) - umidl(l))*(zlft(l) * zrgh(l)) / &

78.    1 Vr2                    (zrgh(l)-zlft(l))

79.    1 Vr2         pmid (l) = max(smallp,pmid(l))

80.    1 Vr2         if (abs(pmid(l)-pmold(l))/pmid(l) < tol ) then

81.    1 Vr2         converged(l) = .T.

82.    1 Vr2         endif

83.    1 Vr2        endif

84.    1 Vr2-->    enddo

85.  + 1           if(all(converged(lmin:lmax)))exit

86.    1------>  enddo

If it doesn’t Vectorize – fix it
63.  + 1----< do l = lmin, lmax

64.  + 1 2--<   do n = 1, 12

65.    1 2        pmold(l) = pmid(l)

66.    1 2        wlft (l) = 1.0 + gamfac1*(pmid(l) - plft(l)) * plfti(l)

67.    1 2        wrgh (l) = 1.0 + gamfac1*(pmid(l) - prgh(l)) * prghi(l)

68.    1 2        wlft (l) = clft(l) * sqrt(wlft(l))

69.    1 2        wrgh (l) = crgh(l) * sqrt(wrgh(l))

70.    1 2        zlft (l) = 4.0 * vlft(l) * wlft(l) * wlft(l)

71.    1 2        zrgh (l) = 4.0 * vrgh(l) * wrgh(l) * wrgh(l)

72.    1 2        zlft (l) = -zlft(l) * wlft(l)/(zlft(l) - gamfac2*(pmid(l) - plft(l)))  

73.    1 2        zrgh (l) =  zrgh(l) * wrgh(l)/(zrgh(l) - gamfac2*(pmid(l) –

prgh(l)))  

74.    1 2        umidl(l) = ulft(l) - (pmid(l) - plft(l)) / wlft(l)

75.    1 2        umidr(l) = urgh(l) + (pmid(l) - prgh(l)) / wrgh(l)

76.    1 2        pmid (l) = pmid(l) + (umidr(l) - umidl(l))*(zlft(l) * zrgh(l)) / 

(zrgh(l) - zlft(l))

77.    1 2        pmid (l) = max(smallp,pmid(l))

78.    1 2        if (abs(pmid(l)-pmold(l))/pmid(l) < tol ) exit

79.    1 2-->   enddo

80.    1----> enddo

6/26/17 ERDC Workshop 
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● Latency to memory is significantly longer than required to 
keep functional units busy; therefore, caches must be 
effectively utilized.

● Accelerators have small caches and register sets. Spilling 
to memory significantly degrades performance
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● Even though the system can automagically manage 
memory movement between host and accelerator, 
excessive data movement can kill performance
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mailto:levesque@cray.com

