
ORNL is managed by UT-Battelle
for the US Department of Energy

Introduction to FORTRAN

Bronson Messer
(after a presentation by Suzanne Parete-Koon)
OLCF

“Fortran changed the terms of communication between humans and
computers.” ~ New York Times

• FORmula TRANslation – developed by IBM in the 1950s.
• Still widely used today. ~50% of OLCF production simulation

codes (and these are, in many cases, the largest consumers
of cycles as well).
• Fortran compilers can produce highly optimized executables.
• Fortran has true multidimensional arrays!
• This is important for science – vectors, matrices, tensors…

2

Fortran basics

• Program structure
• Variables
• Loops
• Selection
• Arrays

U. S. Department Of Energy 3

Program Structure

U. S. Department Of Energy 4

Program program name

Variable declarations

Executable statements

[Subprograms]

End program name

Basics

• First statement in code is program statement
• Followed by program name

program myprog (first line in source code)
• Suggestion: give the source file the same name as the program

myprog.f90 (name of source file)

• Last statement is a corresponding end program myprog
(myprog optional)

• Language is not case sensitive (PROGRAM myProg works)
• Single blank space serves as delimiter
• But white space (multiple consecutive blanks) is ignored (program

myprog is the same as program myprog)

Hello World Fortran

U. S. Department Of Energy 6

hello.f90

write(*,*) – means write in the
default format, to STDOUT (the screen).
To compile:
[gfortran] hello.f90
To run:
./a.out

program hello
write(*,*)“Hello World”

end program hello

Variables FORTRAN

FORTRAN supports six different data types:
• Integer !32 bits
•Real !32
•Double precision (REAL*8) !64 bits
•Character
•Complex
•Logical

U. S. Department Of Energy 7

Variable Declaration Syntax

Type :: variable name
• Integer :: x
•Real :: fraction
•Character (len= 3) :: three_letter_word

8

Hello+ (World) in Fortran

U. S. Department Of Energy 9

cp hello.f90 hello+.f90
vi hello+.f90

Compile gfortran hello+.f90

To run./a.out

program hello
implicit none
integer:: x
character (len=12):: phrase

x=10
phrase="hello world!"
write(*,*) phrase, x

end program hello

implicit none: Your best friend

• In the 1950s computers only had a few KB of memory
• Programs needed to be as short as possible to fit
• Fortran variable types were implicit- you did not have to declare

them.
– All variables starting with i, j, k, l, m and n, if not declared, are of the

INTEGER type by default.

• One side-effect: Typos are not caught by the compiler
numberyears=nubmeryear+1

ALWAYS use “implicit none”

10

Comments

• Everything following a ! is a comment and will

be ignored by the compiler

U. S. Department Of Energy 11

!This program demonstrates the basics
program hello

implicit none ! No implicit variables
integer:: x ! Number of iterations
character (len=12):: phrase

x=10
phrase="hello world!"
write(*,*) phrase, x ! Write to screen

end program hello !End program

Arithmetic Operations
• + Addition z=y+x
• - Subtraction y=z-x
• * multiplication z=y*x
• / Division y=z/x
• ** Exponentiation three_squared= 3**2

• Operator priority
• ** is the highest; * and / are the next, followed by + and –

•Use () to ensure the desired priority
age=20+7*(h-2)

U. S. Department Of Energy 12

Fortran loops

• do loop syntax
integer :: index

. . .
do index=min,max

operation(index)
enddo

U. S. Department Of Energy 13

Integer:: I

Real :: a

a=1.01

do i=1,10

a=a+i

enddo

write(*,*) a

Hello++ World Fortran

U. S. Department Of Energy 14

cp hello+.f90 hello++.f90

vi hello++.f90

To compile gfortran hello+.f90

To run:./a.out

program hello
implicit none
integer:: x, i
character (len=12):: phrase
x=10
phrase="hello world!”
do i=1,x

write(*,*) phrase, i
enddo
end program hello

Vi Cheat sheet

To start vi hello++.f90
To write i
Delete

if in write mode delete
if not in write mode x

To stop writing esc
Save :w
Exit :q

Hello World++ Fortran

15

Selection FORTRAN

Syntax for if statements

IF (logical-expression) THEN

statements-1

ELSE

statements-2

END IF

U. S. Department Of Energy 16

Fortran Selection

if (x < 10)then

write(*,*) “low”

else

write(*,*) “high”

Endif

As close to C syntax as can be imagined…

U. S. Department Of Energy 17

Fortran Subroutines

Subroutine(arguments)
body

end subroutine

Program mainpr
call subroutine(par1)
do something with par1
End mainpr

U. S. Department Of Energy 18

subroutine square (i,isquare)
integer, intent(in) :: i
integer, intent(out) :: isquare
isquare = i**2

end subroutine square

program sq
implicit none
integer :: i,isq,icub
i = 4
call square(i,isq)
print*,"i,i^2=",i,isq,icub

end program sq

Array Fundamentals

•An array is a collection of data of the same type.
•Syntax:

type, DIMENSION(shape, shape) :: name1,name2,name3
or
type, DIMENSION:: name1(shapeA,shapeB), name2(shapeC, shapeD),…

• The rank shown above is 2.
• A three-dimensional array would have, e.g., (shape,shape,shape).
• Fortran90 can handle up to rank 7.
• The shape is the number of elements in that dimension.

U. S. Department Of Energy 19

Array Fundamentals

• There is one more attribute, extent, that allows you to control where the indices start. The
default is to start at 1 (C indexing starts at 0).

• Modern FORTRAN does also have dynamic memory allocation

INTEGER ERR
INTEGER, ALLOCATABLE :: A(:), B(:)
...
ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR) ! A is invalid as an
argument to function SIZE

Array Fundamentals

•One-dimensional
–Real, dimension(3) :: A ! A 1D floating point array with thee

elements
– integer, dimension (5) :: B ! A 1D integer array with 5 elements

•Two-dimensional
–Real, dimension(2,2):: A ! A 2D array, (2 by 2)
– Integer, dimension(2,3):: B ! A 2D array (2 by 3)

–Not covered here, but arrays in Fortran can be allocated, after they
are declared.

– Integer, dimension(x,y):: B ! A 2D array x and y can be set later in
the program.

How arrays are stored in memory

22

A[0][0]
a11

A[0][1]
a12

A[0][2]
a13

A[0][3]
a21

A[1][0]
a22

A[1][1]
a23

. . .

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) . . .

Fortran

C

array.f90
PROGRAM ARRAYTEST

INTEGER, PARAMETER :: COLSIZE = 10000
INTEGER, PARAMETER :: ROWSIZE = 20000
INTEGER :: array(ROWSIZE, COLSIZE)
INTEGER :: i
INTEGER :: j

DO j = 1, COLSIZE

DO i = 1, ROWSIZE

array(i, j) = j*1.7*i

END DO

END DO

END PROGRAM

> time ./a.out github.com/bronson79/fortranTut.git

PROGRAM ARRAYTEST

INTEGER, PARAMETER :: COLSIZE = 10000
INTEGER, PARAMETER :: ROWSIZE = 20000
INTEGER :: array(ROWSIZE, COLSIZE)
INTEGER :: i
INTEGER :: j

DO i = 1, ROWSIZE

DO j = 1, COLSIZE

array(i, j) = j*1.7*i

END DO

END DO

END PROGRAM

array_fortran.f90

> time ./a.out
github.com/bronson79/fortranTut.git

Questions?

