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“Fortran changed the terms of communication between humans and 
computers.” ~ New York Times

• FORmula TRANslation – developed by IBM in the 1950s.
• Still widely used today. ~50% of OLCF production simulation 

codes (and these are, in many cases, the largest consumers 
of cycles as well). 
• Fortran compilers can produce highly optimized executables.
• Fortran has true multidimensional arrays! 
• This is important for science – vectors, matrices, tensors…
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Fortran basics

• Program structure
• Variables
• Loops
• Selection
• Arrays
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Program Structure
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Program program name

Variable declarations 

Executable statements

[Subprograms]

End program name



Basics

• First statement in code is program statement
• Followed by program name

program myprog (first line in source code)
• Suggestion: give the source file the same name as the program

myprog.f90              (name of source file)

• Last statement is a corresponding end program myprog
(myprog optional)

• Language is not case sensitive ( PROGRAM myProg works)
• Single blank space serves as delimiter
• But white space (multiple consecutive blanks) is ignored (program      

myprog is the same as program myprog)



Hello World Fortran
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hello.f90

write(*,*) – means write in the
default format, to STDOUT (the screen). 
To compile:
[gfortran] hello.f90
To run:
./a.out

program hello  
write(*,*)“Hello World” 

end program hello



Variables FORTRAN

FORTRAN supports six different data types:
• Integer  !32 bits 
•Real  !32
•Double precision (REAL*8) !64 bits
•Character
•Complex
•Logical
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Variable Declaration Syntax 

Type :: variable name
• Integer :: x
•Real :: fraction
•Character (len= 3) :: three_letter_word
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Hello+ (World) in Fortran
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cp hello.f90 hello+.f90
vi hello+.f90

Compile gfortran hello+.f90

To run./a.out

program hello
implicit none
integer:: x
character (len=12):: phrase

x=10
phrase="hello world!"
write(*,*) phrase, x

end program hello



implicit none: Your best friend

• In the 1950s computers only had a few KB of memory
• Programs needed to be as short as possible to fit
• Fortran variable types were implicit- you did not have to declare 

them.
– All variables starting with i, j, k, l, m and n, if not declared, are of the 

INTEGER type by default.

• One side-effect: Typos are not caught by the compiler
numberyears=nubmeryear+1

ALWAYS use “implicit none”
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Comments 

• Everything following a ! is a comment and will 

be ignored by the compiler
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!This program demonstrates the basics
program hello

implicit none          ! No implicit variables
integer:: x               ! Number of iterations         
character (len=12):: phrase 

x=10
phrase="hello world!"
write(*,*) phrase, x   ! Write to screen

end program hello         !End program



Arithmetic Operations 
• +      Addition   z=y+x
• - Subtraction  y=z-x
• *       multiplication  z=y*x
• /        Division           y=z/x
• **       Exponentiation  three_squared= 3**2

• Operator priority
• ** is the highest; * and / are the next, followed by + and –

•Use () to ensure the desired priority 
age=20+7*(h-2)

U. S. Department Of Energy 12



Fortran loops

• do loop syntax
integer :: index 

.  .  .        
do index=min,max

operation(index)
enddo
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Integer:: I

Real  :: a

a=1.01

do i=1,10

a=a+i

enddo

write(*,*) a



Hello++ World Fortran
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cp hello+.f90 hello++.f90

vi hello++.f90

To compile gfortran hello+.f90

To run:./a.out

program hello
implicit none
integer:: x, i
character (len=12):: phrase
x=10
phrase="hello world!”
do i=1,x  

write(*,*) phrase, i
enddo
end program hello

Vi Cheat sheet

To start  vi hello++.f90
To write  i
Delete 

if in write mode delete
if not in write mode x

To stop writing esc
Save :w
Exit :q



Hello World++ Fortran
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Selection FORTRAN

Syntax for if statements

IF (logical-expression) THEN

statements-1

ELSE

statements-2

END IF
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Fortran Selection

if (x < 10)then

write(*,*) “low”

else

write(*,*) “high”

Endif

As close to C syntax as can be imagined…
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Fortran Subroutines

Subroutine(arguments)
body

end subroutine

Program mainpr
call subroutine(par1)
do something with par1
End mainpr
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subroutine square (i,isquare)
integer, intent(in)  :: i            
integer, intent(out) :: isquare 
isquare = i**2

end subroutine square

program sq
implicit none
integer :: i,isq,icub
i = 4
call square(i,isq)
print*,"i,i^2=",i,isq,icub

end program sq



Array Fundamentals

•An array is a collection of data of the same type.
•Syntax:

type, DIMENSION(shape, shape ) :: name1,name2,name3
or
type, DIMENSION:: name1(shapeA,shapeB), name2(shapeC, shapeD),…

• The rank shown above is 2. 
• A three-dimensional array would have, e.g., (shape,shape,shape).
• Fortran90 can handle up to rank 7.  
• The shape is the number of elements in that dimension. 
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Array Fundamentals

• There is one more attribute, extent, that allows you to control where the indices start. The 
default is to start at 1 (C indexing starts at 0).

• Modern FORTRAN does also have dynamic memory allocation 

INTEGER ERR
INTEGER, ALLOCATABLE :: A(:), B(:)
...
ALLOCATE(A(10:25), B(SIZE(A)), STAT=ERR)  ! A is invalid as an 
argument to function SIZE



Array Fundamentals

•One-dimensional
–Real, dimension(3) :: A  ! A 1D floating point array with thee 

elements
– integer, dimension (5) :: B ! A 1D integer array with 5 elements

•Two-dimensional
–Real, dimension(2,2):: A  ! A 2D array, (2 by 2) 
– Integer, dimension(2,3):: B ! A 2D array (2 by 3) 

–Not covered here, but arrays in Fortran can be allocated, after they 
are declared. 

– Integer, dimension(x,y):: B ! A 2D array x and y can be set later in 
the program.



How arrays are stored in memory
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A[0][0]
a11

A[0][1]
a12

A[0][2]
a13

A[0][3]
a21

A[1][0]
a22

A[1][1]
a23

. . .

A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) . . .

Fortran
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array.f90
PROGRAM ARRAYTEST

INTEGER, PARAMETER :: COLSIZE = 10000
INTEGER, PARAMETER :: ROWSIZE = 20000 
INTEGER :: array(ROWSIZE, COLSIZE) 
INTEGER :: i 
INTEGER :: j 

DO  j = 1, COLSIZE

DO i = 1, ROWSIZE 

array(i, j) = j*1.7*i 

END DO 

END DO 

END PROGRAM

> time ./a.out github.com/bronson79/fortranTut.git



PROGRAM ARRAYTEST

INTEGER, PARAMETER :: COLSIZE = 10000
INTEGER, PARAMETER :: ROWSIZE = 20000 
INTEGER :: array(ROWSIZE, COLSIZE) 
INTEGER :: i 
INTEGER :: j 

DO i = 1, ROWSIZE

DO  j = 1, COLSIZE

array(i, j) = j*1.7*i 

END DO 

END DO 

END PROGRAM

array_fortran.f90

> time ./a.out
github.com/bronson79/fortranTut.git



Questions?


