
ORNL is managed by UT-Battelle 
for the US Department of Energy

Using Git for 
Version Control

Jack Morrison & James Wynne
Introduction to HPC Workshop (June 27, 2018)



2 Using Git for Version Control

Agenda

• What is Git?
(who, what, when, where, why?)

• Getting started with Git

– Installation

– Basic concepts

– Using the Git CLI

• Demo collaboration using Git and “GitHosts”

• Using Git in HPC environments

• Additional Git resources



3 Using Git for Version Control

What is Git?

• Free, open-source, distributed version control system that tracks 
changes to files

• Ideal for multi-collaborator projects with disparate teams

• Also ideal for individuals
• Fast, flexible, light-weight, safe

1520+
contributors

280+
contributors

1200+
contributors



4 Using Git for Version Control

What is Git?

• Free, open-source, distributed version control system that tracks 
changes to files

• Ideal for multi-collaborator projects with disparate teams

• Also ideal for individuals
• Fast, flexible, light-weight, safe

1520+
contributors

280+
contributors

1200+
contributors



5 Using Git for Version Control

Getting Started with Git
Installation
Git Concepts
Using the CLI



6 Using Git for Version Control

Getting Started with Git
Installation
Git Concepts
Using the CLI



7 Using Git for Version Control

Installation

Linux

Mac

Windows

OLCF Systems



8 Using Git for Version Control

Installation

• Configure user information
– Metadata will be included in git history



9 Using Git for Version Control

Getting Started with Git
Installation
Git Concepts
Using the CLI



10 Using Git for Version Control

A simple git workflow

staging area git history

projectX

projx.c
myScript.sh
Configure.ac

projx.c

Configure.ac
50c11ad

myScript.sh

8d10au5

Folder by Arijit Adak from the Noun Project

local^

working tree



11 Using Git for Version Control

What is a commit?
• Better question: What is a commit like?

– Savepoint

– Snapshot

– Backup

• What are commits for?
– Capture the smallest meaningful addition of new features

– Recover working versions of the code

– Build a historical narrative of your work

• What do commits contain?
– Each commit is identified uniquely by a SHA-1 hash 

(40 digits hexadecimal, generally abbreviated to the first 7 characters)

– Deltas/diffs of changes made

– Meaningful commit message

– Pointer to parent commit

Master 
Branch

Feature 
Branch



12 Using Git for Version Control

What is a branch?
• Better question: How does branching help me work?

– Isolated, alternative timeline for evaluating hypotheses

– A branch addresses an idea/experiment/issue

– Branches are disposable

• References to commits

• Master branches vs. feature branches
– “authoritative and stable” vs. “under development”

Master 
Branch

Feature 
Branch



13 Using Git for Version Control

Merging
• Incorporating new features to known-good code

– Generally between 2 branches

• If multiple branches make changes to the same 
pieces of code, “merge conflicts” can arise, and will
require resolving.

• New commit will include changes made on both source branches

• Merge often and stay away from long-running branches!

Feature 
Branch



14 Using Git for Version Control

Merging
• Incorporating new features to known-good code

– Generally between 2 branches

• If multiple branches make changes to the same 
pieces of code, “merge conflicts” can arise, and will
require resolving.

• New commit will include changes made on both source branches

• Merge often and stay away from long-running branches!

Feature 
Branch



15 Using Git for Version Control

Merging
• Incorporating new features to known-good code

– Generally between 2 branches

• If multiple branches make changes to the same 
pieces of code, “merge conflicts” can arise, and will
require resolving.

• New commit will include changes made on both source branches

• Merge often and stay away from long-running branches!

...
double niter = 200000;

...



16 Using Git for Version Control

Merging
• Incorporating new features to known-good code

– Generally between 2 branches

• If multiple branches make changes to the same 
pieces of code, “merge conflicts” can arise, and will
require resolving.

• New commit will include changes made on both source branches

• Merge often and stay away from long-running branches!
...

double niter = 200000;
...

...
double niter = 500000;

...



17 Using Git for Version Control

“GitHosts”
staging area local repoworking tree remote repo

git add

git commit

git push

git pull

git checkout / git merge



18 Using Git for Version Control

Getting Started with Git
Installation
Git Concepts
Using the CLI



19 Using Git for Version Control

Git CLI

Command Description

$ git init <directory> Initialize an empty git repository in <directory>

$ git status List staged files, unstaged files, and untracked files

$ git add / rm <file/dir> Add files or directories to the staging index

$ git commit –m “<message>” Commit the staged changes, and use the commit message <message>

$ git merge <branch> Merge <branch> into current branch

$ git checkout –b <branch_name> Checkout a new branch, <branch_name>

$ git log List the entire git history



ORNL is managed by UT-Battelle 
for the US Department of Energy

Using Git for 
Version Control

Jack Morrison & James Wynne
Introduction to HPC Workshop (June 27, 2018)


