
Steve Abbott, OLCF Intro to HPC, June 2018

INTRODUCTION TO OPENACC

OUTLINE
Topics to be covered

§ What is OpenACC

§ Profile-driven Development

§ OpenACC Fundamentals

§ OpenACC Data Directives

§ OpenACC Loop Optimizations

§ Where to Get Help

ABOUT THIS SESSION

§ The objective of this session is to give you a brief introduction of OpenACC

programming for NVIDIA GPUs

§ There will be a hands on session mixed in where you get to try this out, and it will

lead us into profiling tools

§ Feel free to interrupt with questions

INTRODUCTION TO OPENACC

OpenACC is a directives-
based programming approach
to parallel computing
designed for performance
and portability on CPUs
and GPUs for HPC.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

OpenACC

§ OpenACC is designed to be portable to many
existing and future parallel platforms

§ The programmer need not think about specific
hardware details, but rather express the
parallelism in generic terms

§ An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having
separate memories.

Host
Device

Host
Memory Device

Memory

OPENACC PORTABILITY
Describing a generic parallel machine

Single Source Low Learning CurveIncremental

OPENACC
Three major strengths

Incremental

OPENACC

§ Maintain existing
sequential code

§ Add annotations to
expose parallelism

§ After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)
{

< loop code >
}

for(i = 0; i < N; i++)
{

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,

remove/alter OpenACC
code as needed.

Single Source Low Learning CurveIncremental

OPENACC

§ Maintain existing
sequential code

§ Add annotations to
expose parallelism

§ After verifying
correctness, annotate
more of the code

Single Source

OPENACC

§ Rebuild the same code
on multiple
architectures

§ Compiler determines
how to parallelize for
the desired machine

§ Sequential code is
maintained

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Single Source Low Learning CurveIncremental

OPENACC

§ Maintain existing
sequential code

§ Add annotations to
expose parallelism

§ After verifying
correctness, annotate
more of the code

§ Rebuild the same code
on multiple
architectures

§ Compiler determines
how to parallelize for
the desired machine

§ Sequential code is
maintained

Low Learning Curve

OPENACC

§ OpenACC is meant to
be easy to use, and
easy to learn

§ Programmer remains
in familiar C, C++, or
Fortran

§ No reason to learn
low-level details of the
hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU Parallel Hardware

The programmer will
give hints to the

compiler about which
parts of the code to

parallelize.
The compiler will then
generate parallelism
for the target parallel

hardware.

Single SourceIncremental

OPENACC

§ Maintain existing
sequential code

§ Add annotations to
expose parallelism

§ After verifying
correctness, annotate
more of the code

§ Rebuild the same code
on multiple
architectures

§ Compiler determines
how to parallelize for
the desired machine

§ Sequential code is
maintained

Low Learning Curve

§ OpenACC is meant to
be easy to use, and
easy to learn

§ Programmer remains
in familiar C, C++, or
Fortran

§ No reason to learn
low-level details of the
hardware.

LSDalton

Quantum Chemistry
Aarhus University

12X speedup
1 week

Massively Scaling Computational
Electromagnetics Code Using OpenACC

NekCEM, or Nekton for Computational Electromagnetics, is a code designed for highly efficient, accurate predictive
modeling of physical systems arising in electromagnetics, photonics, electronics, quantum mechanics, and accelerator
physics. It’s used in the design of large particle accelerators for producing high-energy photons and in the design of
photonic and semiconductor devices for solar energy production.

“NekCEM enables researchers to prototype advanced numerical algorithms for solving the underlying partial differential
equations at extreme scales of parallelism,” said Dr. Misun Min, a computational scientist at Argonne National Laboratory.
“Simulation-based investigation with NekCEM will help research communities understand fundamental physics over
range of length scales, with extreme-scale computing capability on the future-generation HPC platforms.” Such research,
said Min, can significantly reduce the cost and risk of the design and analysis of physical systems.

Challenge
Dr. Min’s team needed to process enormous amounts of
data with a high degree of accuracy. Frequent performance
bottlenecks, excessive time required for data processing, and
the need to scale to future GPU-based architectures were the
team’s main challenges.

“Our principal challenge is rapid time to solution,” said Min.
“NekCEM strong-scales to a few hundred points per core on the
Argonne Leadership Computing Facility (ALCF) Blue Gene/P
and Blue Gene/Q. Our biggest challenge on next-generation

architectures is to be able to strong- scale but keep low
solution times for problems involving a few hundred million
grid points.”

A second challenge is maintaining code portability. NekCEM
is part of a larger code base that has been in development
for decades and has hundreds of users. “During this time,
many architectures have come and gone, and we cannot port
to models for which there is little demand,” said Min. “That
OpenACC is truly open source was an important factor in our
decision to use it for our research.”

SUCCESS STORY

PowerGrid

Medical Imaging
University of Illinois

40 days to
2 hours

INCOMP3D

CFD
NC State University

4X speedup

NekCEM

Comp Electromagnetics
Argonne National Lab

2.5X speedup
60% less energy

COSMO

Weather and Climate
MeteoSwiss, CSCS

40X speedup
3X energy efficiency

CloverLeaf

Comp Hydrodynamics
AWE

4X speedup
Single CPU/GPU code

MAESTRO
CASTRO

Astrophysics
Stony Brook University

4.4X speedup
4 weeks effort

FINE/Turbo

CFD
NUMECA

International
10X faster routines

2X faster app

OPENACC SUCCESSES

OPENACC SYNTAX

OPENACC SYNTAX

§ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

§ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

§ “acc” informs the compiler that what will come is an OpenACC directive

§ Directives are commands in OpenACC for altering our code.

§ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code
C/C++
#pragma acc directive clauses
<code>

Fortran
!$acc directive clauses
<code>

EXAMPLE CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

EXAMPLE: JACOBI ITERATION
§ Iteratively converges to correct value (e.g. Temperature), by computing new

values at each point from the average of neighboring points.

§ Common, useful algorithm

§ Example: Solve Laplace equation in 2D: !"#(%, ') = *

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

+,-. /, 0 = +,(/ − 1, 0) + +, / + 1, 0 + +, /, 0 − 1 + +, /, 0 + 1
4

JACOBI ITERATION: C CODE

21

while (err > tol && iter < iter_max) {
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];
}

}

iter++;
}

Iterate until converged

Iterate across matrix
elements

Calculate new value from
neighbors

Compute max error for
convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

OPENACC DEVELOPMENT CYCLE
§ Analyze your code to determine

most likely places needing
parallelization or optimization.

§ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

§ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE

Profile Your Code

This can include information such as:
§ Total runtime
§ Runtime of individual routines
§ Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

OPENACC PARALLEL DIRECTIVE

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.
gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
op

lo
op

lo
op

lo
op

lo
op

lo
op

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

§ Use a parallel directive to mark a region of
code where you want parallel execution to occur

§ This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

§ The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++
#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran
!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

§ This pattern is so common that you can do all of
this in a single line of code

§ In this example, the parallel loop directive
applies to the next loop

§ This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

§ When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++
#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

§ To parallelize multiple loops, each loop should
be accompanied by a parallel directive

§ Each parallel loop can have different loop
boundaries and loop optimizations

§ Each parallel loop can be parallelized in a
different way

§ This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;

REDUCTION CLAUSE

§ The inner-most loop is not parallelizable

§ If we attempted to parallelize it without any
changes, multiple threads could attempt to write
to c[i][j]

§ When multiple threads try to write to the same
place in memory simultaneously, we should
expect to receive erroneous results

§ To fix this, we should use the reduction clause

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

WITHOUT A REDUCTION

#pragma acc parallel loop
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = size-1

C[i][j] When running this loop in
parallel, we cannot guarantee

that the threads will “take turns”

When running this loop
sequentially, the loop iterations will

“take turns” writing to c[i][j]

REDUCTION CLAUSE
§ The reduction clause is used when taking

many values and “reducing” it to a single value
such as in a summation

§ Each thread will have their own private copy of
the reduction variable and perform a partial
reduction on the loop iterations that they
compute

§ After the loop, the reduction clause will perform
a final reduction to produce a single global
result

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma parallel acc loop \
reduction(+:tmp)

for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

REDUCTION CLAUSE

§ The compiler is often very good at
detecting when a reduction is needed so
the clause may be optional

§ May be more applicable to the parallel
directive (depending on the compiler)

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma parallel acc loop \

reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

REDUCTION CLAUSE OPERATORS
Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)

PARALLELIZE WITH OPENACC PARALLEL LOOP

42

while (err > tol && iter < iter_max) {
err=0.0;

#pragma acc parallel loop reduction(max:err)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Parallelize first loop nest,
max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

BUILDING THE CODE (GPU)

43

$ pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c
main:

63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])
Generating implicit copyout(Anew[:])
Generating implicit copy(error)

66, Loop is parallelizable
74, Accelerator kernel generated

Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])
Generating implicit copyout(A[:])

77, Loop is parallelizable

BUILDING THE CODE (MULTICORE)

44

$ pgcc -fast -ta=multicore -Minfo=accel laplace2d_uvm.c
main:

63, Generating Multicore code
64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction(max:error)

66, Loop is parallelizable
74, Generating Multicore code

75, #pragma acc loop gang
75, Accelerator restriction: size of the GPU copy of Anew,A is unknown
77, Loop is parallelizable

OPENACC SPEED-UP

1.00X
3.23X

41.80X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

SERIAL MULTICORE V100

Sp
ee
d-
U
p

Speed-up

TRY IT OUT!
• Grab the OpenACC tests code

• Put it somewhere compute accessible ($MEMBERWORK/trn001 might be a good
start)

• Start an interactive batch job on Titan, and make sure can build and run the code

• Use the PGI compiler (TIP: module load PrgEnv-pgi)
• Build (TIP: make)
• Run and verify the GPU code works (TIP: aprun –n1 ./openacc_demo_c)

EXPECTED CPU OUPUT

OpenACC_tests> aprun -n 1 ./openacc_demo_c
Initialize check:
A[0] = 0 (0) B[0] = 0 (0)
A[100] = 100 (100) B[100] = 200 (200)
A[1623] = 1623 (1623) B[1623] = 3246 (3246)
A[111111] = 111111 (111111) B[111111] = 222222 (222222)
saxpy check:
C[0] = 0 (0)
C[100] = 400 (400)
C[1623] = 6492 (6492)
C[111111] = 444444 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2237s
Init time: 0.0949s
SAXPY time: 0.0547s
SumC time: 0.0739s
Application 17826144 resources: utime ~0s, stime ~0s, Rss ~121276, inblocks ~98, outblocks

TRY IT OUT!

• Use the following OpenACC directives to parallelize the code

[#pragma/!] acc parallel loop [reduction(+:)]

• Edit the makefile and add TO COMPILE: -acc –ta=tesla

• Run with: aprun –n1 ./openacc_demo_c

(or checkout the git branch “Stage1”, but try it!)

PAY ATTENTION TO THE COMPILER!
cc -Minfo=all -acc -ta=tesla -o openacc_demo_c openacc_demo.c
main:

25, Accelerator kernel generated
Generating Tesla code
26, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
25, Generating implicit copyout(A[:10000000],B[:10000000])
46, Accelerator kernel generated

Generating Tesla code
47, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
46, Generating implicit copyout(C[:10000000])

Generating implicit copyin(B[:10000000],A[:10000000])
67, Accelerator kernel generated

Generating Tesla code
67, Generating reduction(+:sumC)
68, #pragma acc loop gang, vector(128) /* blockIdx.x

threadIdx.x */
67, Generating implicit copyin(C[:10000000])

RUN THE GPU VERSION NOW
OpenACC_tests> aprun -n 1 ./openacc_demo_c
Initialize check:
A[0] = 0 (0) B[0] = 0 (0)
A[100] = 100 (100) B[100] = 200 (200)
A[1623] = 1623 (1623) B[1623] = 3246 (3246)
A[111111] = 111111 (111111) B[111111] = 222222 (222222)
saxpy check:
C[0] = 0 (0)
C[100] = 400 (400)
C[1623] = 6492 (6492)
C[111111] = 444444 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.5025s
Init time: 0.3881s
SAXPY time: 0.1026s
SumC time: 0.0116s
Application 17826388 resources: utime ~0s, stime ~1s, Rss ~267308,
inblocks ~257, outblocks ~123

Why did we get slower?

PROFILE!

• Running nvprof is a little tricky on Titan

• Binary must be on a compute accessible file system (lustre)

• Need some magic flags

• Run: PMI_NO_FORK=1 aprun –n 1 –b nvprof ./openacc_demo_c

Titan magic to make nvprof/cuda-memcheck/cuda-gdb work!
Not needed on most other machines.

RUN THE GPU VERSION NOW
==1467== Profiling application: ./openacc_demo_c
==1467== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 49.98% 20.031ms 10 2.0031ms 1.7280us 2.8053ms [CUDA memcpy HtoD]

44.66% 17.901ms 10 1.7901ms 2.2080us 2.5109ms [CUDA memcpy DtoH]
2.12% 848.38us 1 848.38us 848.38us 848.38us main_67_gpu
1.80% 721.88us 1 721.88us 721.88us 721.88us main_46_gpu
1.05% 420.03us 1 420.03us 420.03us 420.03us main_25_gpu
0.39% 157.95us 1 157.95us 157.95us 157.95us main_67_gpu_red

API calls: 58.84% 287.27ms 2 143.64ms 860ns 287.27ms cuDevicePrimaryCtxRetain
20.99% 102.46ms 1 102.46ms 102.46ms 102.46ms cuDevicePrimaryCtxRelease
9.27% 45.268ms 1 45.268ms 45.268ms 45.268ms cuMemHostAlloc
4.60% 22.457ms 1 22.457ms 22.457ms 22.457ms cuMemFreeHost

Time spent in :
Data Movement

Initialization
NOT Compute!

OPTIMIZE DATA MOVEMENT

EXPLICIT MEMORY MANAGEMENT

§ Many parallel accelerators (such as
devices) have a separate memory pool
from the host

§ These separate memories can become
out-of-sync and contain completely
different data

§ Transferring between these two memories
can be a very time consuming process

Key problems

CPU
Memory device

Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

device

IO Bus

OPENACC DATA DIRECTIVE

§ The data directive defines a lifetime
for data on the device

§ During the region data should be
thought of as residing on the
accelerator

§ Data clauses allow the programmer
to control the allocation and
movement of data

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

DATA CLAUSES
copy(list) Allocates memory on GPU and copies data from host to GPU when

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

§ Sometimes the compiler needs help understanding the shape of an array

§ The first number is the start index of the array

§ In C/C++, the second number is how much data is to be transferred

§ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device

ARRAY SHAPING (CONT.)
Partial Arrays

copy(array(i*N/4:i*N/4+N/4))

copy(array[i*N/4:N/4]) C/C++

Fortran

Both of these examples copy only ¼ of the full array

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}
}

Action

Host Memory Device memory

A B C

Allocate A on
device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device

OPTIMIZED DATA MOVEMENT
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])
while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {
A[j][i] = Anew[j][i];

}
}
iter++;

}

Copy A to/from the
accelerator only when

needed.

Copy initial condition of
Anew, but not final value

REBUILD THE CODE
pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c
main:

60, Generating copy(A[:m*n])
Generating copyin(Anew[:m*n])

64, Accelerator kernel generated
Generating Tesla code
64, Generating reduction(max:error)
65, #pragma acc loop gang /* blockIdx.x */
67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable
75, Accelerator kernel generated

Generating Tesla code
76, #pragma acc loop gang /* blockIdx.x */
78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only
happens at our data

region.

OPENACC SPEED-UP

1.00X
3.23X

41.80X
42.99X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

50.00X

SERIAL MULTICORE V100 V100 (DATA)

Sp
ee
d-
U
p

Speed-up

TRY IT OUT!
• Take your existing code, and try to enclose it with a data region using the following

directives/clause

[#pragma/!] acc data [copyin, copyout, create]

cc -Minfo=all -acc -ta=tesla -o openacc_demo_c openacc_demo.c
main:

28, Generating copyin(A[:N],B[:N],C[:N])
Generating copyout(sumC)

31, Accelerator kernel generated
Generating Tesla code
32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

52, Accelerator kernel generated
Generating Tesla code
53, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

72, Accelerator kernel generated
Generating Tesla code
72, Generating reduction(+:sumC)
73, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

RUN THE NEW CODE
> aprun -n 1 ./openacc_demo_c
Initialize check:
A[0] = 0 (0) B[0] = 0 (0)
A[100] = 0 (100) B[100] = 0 (200)
A[1623] = 0 (1623) B[1623] = 0 (3246)
A[111111] = 0 (111111) B[111111] = 0 (222222)
saxpy check:
C[0] = 0 (0)
C[100] = 0 (400)
C[1623] = 0 (6492)
C[111111] = 0 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2814s
Init time: 0.2792s
SAXPY time: 0.0007s
SumC time: 0.0013s
Application 17826786 resources: utime ~0s, stime ~1s, Rss ~150268,
inblocks ~256, outblocks ~122

Compute got really fast!

RUN THE NEW CODE
> aprun -n 1 ./openacc_demo_c
Initialize check:
A[0] = 0 (0) B[0] = 0 (0)
A[100] = 0 (100) B[100] = 0 (200)
A[1623] = 0 (1623) B[1623] = 0 (3246)
A[111111] = 0 (111111) B[111111] = 0 (222222)
saxpy check:
C[0] = 0 (0)
C[100] = 0 (400)
C[1623] = 0 (6492)
C[111111] = 0 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2814s
Init time: 0.2792s
SAXPY time: 0.0007s
SumC time: 0.0013s
Application 17826786 resources: utime ~0s, stime ~1s, Rss ~150268,
inblocks ~256, outblocks ~122

Compute got really fast!

But we’re getting wrong answers!

DATA SYNCHRONIZATION

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])
#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))
!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*
#pragma acc update self(A[0:N])

The data must exist on
both the CPU and device
for the update directive

to work.

SYNCHRONIZE DATA WITH UPDATE
int* allocate_array(int N){

int* A=(int*) malloc(N*sizeof(int));
#pragma acc enter data create(A[0:N])
return A;

}

void deallocate_array(int* A){
#pragma acc exit data delete(A)
free(A);

}

void initialize_array(int* A, int N){
for(int i = 0; i < N; i++){

A[i] = i;
}
#pragma acc update device(A[0:N])

}

§ Inside the initialize function we alter the
host copy of ‘A’

§ This means that after calling initialize the
host and device copy of ‘A’ are out-of-sync

§ We use the update directive with the
device clause to update the device copy of
‘A’

§ Without the update directive later compute
regions will use incorrect data.

TRY IT OUT!
• Take your existing code, and add the update directive to get the answers off the

GPU

[#pragma/!] acc update [self/device]

Remember! Data slicing rules apply here too! Pay attention to the compiler output!cc -Minfo=all -acc -ta=tesla -o openacc_demo_c openacc_demo.c
main:

28, Generating copyin(A[:N],B[:N],C[:N])
Generating copyout(sumC)

31, Accelerator kernel generated
Generating Tesla code
32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

43, Generating update self(B[100],A[100],B[111111],A[111111],A[:1],B[:1],B[1623],A[1623])
53, Accelerator kernel generated

Generating Tesla code
54, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

63, Generating update self(C[100],C[111111],C[:1],C[1623])
73, Accelerator kernel generated

Generating Tesla code
73, Generating reduction(+:sumC)
74, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

ONE MORE OPTIMIZATION
• We don’t need to copy A,B,C, just create!

[#pragma/!] acc data create

cc -Minfo=all -acc -ta=tesla -o openacc_demo_c openacc_demo.c
main:

28, Generating create(A[:N],B[:N],C[:N])
Generating copyout(sumC)

31, Accelerator kernel generated
Generating Tesla code
32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

43, Generating update self(B[100],A[100],B[111111],A[111111],A[:1],B[:1],B[1623],A[1623])
53, Accelerator kernel generated

Generating Tesla code
54, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

63, Generating update self(C[100],C[111111],C[:1],C[1623])
73, Accelerator kernel generated

Generating Tesla code
73, Generating reduction(+:sumC)
74, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

RUN THE NEW CODE
> aprun -n 1 ./openacc_demo_c
Initialize check:
A[0] = 0 (0) B[0] = 0 (0)
A[100] = 100 (100) B[100] = 200 (200)
A[1623] = 1623 (1623) B[1623] = 3246 (3246)
A[111111] = 111111 (111111) B[111111] = 222222 (222222)
saxpy check:
C[0] = 0 (0)
C[100] = 400 (400)
C[1623] = 6492 (6492)
C[111111] = 444444 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2258s
Init time: 0.1779s
SAXPY time: 0.0008s
SumC time: 0.0014s
Application 17827100 resources: utime ~0s, stime ~1s, Rss ~150284,
inblocks ~257, outblocks ~131

Fast compute!

Right Answers!

PROFILE AGAIN
Ø PMI_NO_FORK=1 aprun -n 1 -b nvprof ./openacc_demo_c
…
==1684== Profiling application: ./openacc_demo_c
==1684== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 38.97% 842.08us 1 842.08us 842.08us 842.08us main_73_gpu

33.28% 719.04us 1 719.04us 719.04us 719.04us main_53_gpu
19.38% 418.69us 1 418.69us 418.69us 418.69us main_31_gpu
7.30% 157.66us 1 157.66us 157.66us 157.66us main_73_gpu_red
1.07% 23.168us 13 1.7820us 1.5040us 3.1040us [CUDA memcpy DtoH]

API calls: 61.93% 287.19ms 2 143.59ms 723ns 287.19ms cuDevicePrimaryCtxRetain

Time spent in :
Initialization

Setting up GPUs takes some (almost) constant time, and this is a very small code. This 0.2s won’t
matter in a real simulation code.

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools

CLOSING REMARKS

KEY CONCEPTS
In this lab we discussed…

§ How to profile a serial code to identify loops that should be
accelerated

§ How to use OpenACC’s parallel loop directive to parallelize key loops

§ How to use OpenACC’s data clauses to control data movement

§ To always check accuracy first!!

