

OUTLINE

Topics to be covered

What is OpenACC

Profile-driven Development

OpenACC Fundamentals

OpenACC Data Directives

OpenACC Loop Optimizations

Where to Get Help

ABOUT THIS SESSION

= The objective of this session is to give you a brief introduction of OpenACC
programming for NVIDIA GPUs

= There will be a hands on session mixed in where you get to try this out, and it will
lead us into profiling tools

= Feel free to interrupt with questions

IIIIIIIIIIIIIII

INTRODUCTION TO OPENACC

OpenACC is a directives-

based programming approach
to parallel computing

designed for performance

and portability on CPUs
and GPUs for HPC.

Add Simple Compiler Directive

main()
{
<serial code>
#pragma acc kernels

{

<parallel code>

OpenACG

3 WAYS TO ACCELERATE

APPLICATIONS
Applications
. . Compiler Programmin
Libraries omp J J
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

OpenACC .2, [\ OpenACC /

OPENACC PORTABILITY

Describing a generic parallel machine

OpenACC is designed to be portable to many
existing and future parallel platforms

The programmer need not think about specific '
hardware details, but rather express the
parallelism in generic terms

An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having Device
separate memories. Memory

OPENACC

Three major strengths

Incremental Single Source Low Learning Curve

\ J \ J \ J

DEEP
OpenACC o, ioiume

OPENACC

Incremental

Enhance Sequential Code sequential code.
#pragma acc parallel Tloop
= Maintain existing for(C i =05 i < N; i++)
sequential code {

Begin with a working

Toop code ey
= Add annotations to y < g Parallelize it with OpenACC.
expose parallelism

= After verifying

#pragma acc parallel Tloop
for(C i =0; i < N; i++)

correctness, annotate { _
more of the code < Toop code > Rerun the code to verify
} correct behavior,
remove/alter OpenACC
L) code as needed.

Op enACC > G

NVIDIA. INSTITUTE

More Sclence, Less Programming

OPENACC

Incremental Single Source Low Learning Curve

» Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying
correctness, annotate
more of the code

\L 4 \L 4 \ 4
Op enACC & A DEARNING

NVIDIA. INSTITUTE

OPENACC

. The compiler can ignore your
OpenACC code additions, so the same
code can be used for parallel or

sequential execution.

Supported Platforms

POWER

= Rebuild the same code

Sunway on multiple
%86 CPU architectures int main(){
= Compiler determines
x86 Xeon Phi how to parallelize for
the desired machine ’;PP?S’"@ Al et 19°P)
or(int i = ©; i < Nj; i++
NVIDIA GPU = Sequential code is < loop code >
PEZY-SC maintained
\, J

0 pen A[;g < CEARNING

NVIDIA. INSTITUTE

OPENACC

Incremental Single Source Low Learning Curve

= Rebuild the same code
on multiple
architectures

= Maintain existing
sequential code

= Add annotations to : :
. = Compiler determines
expose parallelism how to parallelize for

= After verifying the desired machine
correctness, annotate « Sequential code is

more of the code maintained

OpenACC & ok

IIIIII INSTITUTE

OPENACC

CPU Parallel Hardware

s

e

ENNEEEEEEENEEEEN
ENNEEEEEEENNEEEN
ENNEEEEEEENEEEEN
ENNEEEEEEENEEEEN
ENNEEEEEEENEEEEN
ENEEEEEEEENEEEEN

ENNEEEEEEENNEEEN
ENNEEEEEEENEEEEN
ENNEEEEEEENNEEEN
ENNEEEEEEENNEEEN
ENEEEEEEEENEEEEN
ENEEEEEEEENEEEEN

Low Learning Curve

= OpenACC is meant to
be easy to use, and

The programmer will

int main(){ V give hints to the easy to learn _
compiler about which | * Programmer remains
<sequential code> BB Darts of the code to in familiar C, C++, or
#pragma acc kernels’ <«— Compiler parallelize. Fortran
{p © Hint The compiler will then |* No reason toleam
<parallel code> generate parallelism low-level details of the
} for the target parallel hardware.
hardware.
} . J

’ DEEP
OpenACC o, i

OPENACC

Incremental Single Source

Low Learning Curve

. Maintai st = Rebuild the same code = OpenACC is meant to
ain aT eimscljng on multiple be easy to use, and

sequential code architectures easy to learn

" Add annotatllcl)nl_s to = Compiler determines " Programmer remains
expose Pa'ta elism how to parallelize for in familiar C, C++, or

= After verifying the desired machine Fortran
correct?ess, arc1|notate « Sequential code is = No reason to learn
more of the code maintained low-level details of the

hardware.
\, J \, J \, J

Op enAGG > G

IIIIII INSTITUTE

OPENACC SUCCESSES

LSDalton

Quantum Chemistry
Aarhus University

12X speedup
1 week

NekCEM

Comp Electromagnetics
Argonne National Lab

2.5X speedup
60% less energy

< DEEP
OpenACC 5. e

NVIDIA.

PowerGrid

Medical Imaging
University of Illinois

40 days to
2 hours

MAESTRO
CASTRO

Astrophysics
Stony Brook University

4.4X speedup
4 weeks effort

Weather and Climate
MeteoSwiss, CSCS

40X speedup
3X energy efficiency

Comp Hydrodynamics
AWE

4X speedup
Single CPU/GPU code

INCOMP3D

CFD
NC State University

4X speedup

FINE/Turbo

CFD
NUMECA
International

10X faster routines
2X faster app

OPENACC SYNTAX

OPENACC SYNTAX

Syntax for using OpenACC directives in code

#pragma acc directive clauses I$acc directive clauses
<code> <code>

= A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

= A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

= “acc” informs the compiler that what will come is an OpenACC directive
= Directives are commands in OpenACC for altering our code.

= Clauses are specifiers or additions to directives.

IIIIIIIIIIIIIII

EXAMPLE CODE

LAPLACE HEAT TRANSFER

Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal
plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

S DEEP
OpenACC &, isamue

EXAMPLE: JACOBI ITERATION

= |teratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

= Common, useful algorithm

= Example: Solve Laplace equation in 2D: V4f(x,y) = 0

A(i,j+1)
()
A(i-1,))—=% A(i+1,])
A(i,])
v 2 o AL +H A+ L)) + A - D+ A+ 1)
A(],J'1) ke () = 4

IIIIIIIIIIIIIII

JACOBI ITERATION: C CODE

while (err > tol && iter < iter max) {
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j]1[i-1] +
A[3J-1]11[1] + A[3+1][1]);

err = max(err, abs(Anew[j][i] - A[j1[i])):;
}
}

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[j]1[i] = Anew[]][1i];
}
}

iter++;
Op enACh S iRwine

NVIDIA. INSTITUTE

Iterate until converged

Iterate across matrix
elements

Calculate new value from
neighbors

Compute max error for
convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

Analyze

= Parallelize your code by starting
with the most time consuming parts
and check for correctness.

OPENACC DEVELOPMENT CYCLE
[- Analyze your code to determine
= Optimize your code to improve I \
observed speed-up from

most likely places needing
parallelization.

parallelization or optimization.
UpenAGp < G

IIIIIIIIIIIIIII

PROFILING SEQUENTIAL CODE

Profile Your Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:

= Total runtime

= Runtime of individual routines
calcNext

= Hardware counters

21.49s

|dentify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

: DEEP
0 pen A[;p n(:p LEARNING

IA. INSTITUTE

OPENACC PARALLEL DIRECTIVE

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

When encountering the
parallel directive, the
compiler will generate

gang gang
1 or more parallel
gangs, which execute
redundantly.
} gang gang

IIIIIII

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

Q

o)

(®)
—

loop

#pragma acc parallel
{ gang gang

loop

loop
loop

or(int 1 = @0; i < N; i++

{ gang gang

// Do Something

loop
loop

This loop will be gang gang

} executed redundantly
openace 2, iy ON €ach gang

Leesproarammne VIDIA. INSTITUTE

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

or(int 1 = @0; i < N; i++

{ gang gang

// Do Something

This means that each gang gang

J gang will execute the
OpenACC <, hwe entire loop

Leesproarammne VIDIA. INSTITUTE

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

fpragma 6E [PEIFEETGE = Use a parallel directive to mark a region of
#pragma acc loop code where you want parallel execution to occur
fog[(il?t: - e J0 N5 14+) = This parallel region is marked by curly braces in
} ’ C/C++ or a start and end directive in Fortran
= The loop directive is used to instruct the

compiler to parallelize the iterations of the next

I
!$acc parallel loop to run across the parallel gangs

I$acc loop
doi=1, N
a(i) =

end do

I$acc end parallel

DEEP

OpenACC 2, e

1A

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

This pattern is so common that you can do all of

#pragma acc parallel loop this in a single line of code
fog[(;?t: C o de NS 14+) = |n this example, the parallel loop directive
- applies to the next loop
= This directive both marks the region for parallel
execution and distributes the iterations of the
loop.
I$acc parallel loop
AN = When applied to a loop with a data dependency,
enz((ljé - parallel loop may produce incorrect results

OPENACC PARALLEL O

Expressing parallelism

IRECTIVE

#pragma acc parallel

{

I

#pragma acc loop
for(int 1 = 0; i < N; i++)

{

I

// Do Something

} The loop directive

informs the compiler
} which loops to

1

parallelize.

IIIIIII

OPENACC PARALLEL LOOP DIRECTIVE

Parallelizing many loops

#pragma acc parallel loop
for(int 1 = 9; 1 < N; i++)
a[i] = ©;

#pragma acc parallel loop
for(int j = 95 j < M; j++)
b[j] = 9;

IIIIIIIIIIIIIII

To parallelize multiple loops, each loop should
be accompanied by a parallel directive

Each parallel loop can have different loop
boundaries and loop optimizations

Each parallel loop can be parallelized in a
different way

This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

REDUCTION CLAUSE

= The inner-most loop is not parallelizable

= If we attempted to parallelize it without any for(i = 0; i < size; i++)
changes, multiple threads could attempt to write for(j = 9; j < size; j++)
toc[i][7] for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][]];

= When multiple threads try to write to the same
place in memory simultaneously, we should
expect to receive erroneous results

= To fix this, we should use the reduction clause

S DEEP
OpenACC o, i

WITHOUT A REDUCTION

#pragma acc parallel loop
for(k = 0; k < size; k++)
c[i][J] += a[i][k] * b[k][]];

II\\

When running this loop
sequentially, the loop iterations will
“take turns” writingto c[i][7j]

CD DEEP
OpenACC 2, e

When running this loop in
parallel, we cannot guarantee
that the threads will “take turns”

REDUCTION CLAUSE

= The reduction clause is used when taking
many values and “reducing” it to a single value
such as in a summation

= Each thread will have their own private copy of
the reduction variable and perform a partial
reduction on the loop iterations that they
compute

= After the loop, the reduction clause will perform
a final reduction to produce a single global
result

EP

’ DE
OpenACC o, i

for(1 = 0; 1 < size; i++)
for(j = 95 j < size; j++)
for(k = 05 k < size; k++)

c[i][J] += a[i][k] * b[k][]];

for(1 = 0; 1 < size; i++)
for(j = 95 j < size; j++)
double tmp = 5

#pragma parallel acc loop \
reduction(+:tmp)

for(k = 9; k < size; k++)
tmp += a[i][k] * b[k][]];

c[i][j] = tmp;

REDUCTION CLAUSE

= The compiler is often very good at for(1 = 0; i < size; i++)
detecting when a reduction is needed so for(J TR B)
the clause may be optional double tmp =
#pragma parallel acc loop \
= May be more applicable to the parallel for("id“Ctlorl‘((’; g"ipz)e it)
directive (depending on the compiler = > K
(depending piler) tmp += a[1][k] * b[K][3]:
c[i][j] = tmp;

OpenACC &, o

IA. INSTITUTE

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)
max Maximum value reduction(max:maximum)
min Minimum value reduction(min:minimum)
& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

| | Logical or reduction(||:val)

EP

’ DE
OpenACC oo, iomue

PARALLELIZE WITH OPENACC PARALLEL LOOP

while (err > tol && iter < iter max) {
err=0.0;

#pragma acc parallel loop reduction (max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Parallelize first loop nest,
max reduction required.

<

Anew[j][i] = 0.25 * (A[j][i+1l] + A[j][i-1] +

A[j-1][i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j1[i])):;
}
}

Parallelize second loop.

<

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; 1i < m-1; i++) {
A[j]1[i] = Anew[j][i];

) We didn’t detail how to
| teerts; parallelize the loops, just which
OpenACC . S IOOpS tO para”ellze'

BUILDING THE CODE (GPU)

$ pgcc -fast -ta=tesla -Minfo=accel laplace2d uvm.c
main:
63, Accelerator kernel generated
Generating Tesla code
64, #pragma acc loop gang /* blockIdx.x */
Generating reduction (max:error)
66, #pragma acc loop vector(128) /* threadIdx.x */
63, Generating implicit copyin(A[:])
Generating implicit copyout (Anew[:])
Generating implicit copy (error)
66, Loop is parallelizable
74, Accelerator kernel generated
Generating Tesla code
75, #pragma acc loop gang /* blockIdx.x */
77, #pragma acc loop vector(128) /* threadIdx.x */
74, Generating implicit copyin (Anew[:])
Generating implicit copyout(A[:])
77, Loop is parallelizable

OpenACC & ok

NVIDIA. INSTITUTE

BUILDING THE CODE (MULTICORE)

$ pgcc -fast -ta=multicore -Minfo=accel laplace2d uvm.c
main:
63, Generating Multicore code
64, #pragma acc loop gang
64, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Generating reduction (max:error)
66, Loop is parallelizable
74, Generating Multicore code
75, #pragma acc loop gang
75, Accelerator restriction: size of the GPU copy of Anew,A is unknown
77, Loop is parallelizable

UpenACG < EgﬁleNG

NVIDIA. INSTITUTE

OPENACC SPEED-UP

Speed-up

45.00X

41.80X

40.00X

35.00X

30.00X

25.00X

20.00X

Speed-Up

15.00X

10.00X

5-00X 3-23\1

SERIAL MULTICORE V100

0.00X

TRY IT OUT!

* Grab the OpenACC tests code

+ Put it somewhere compute accessible (SMEMBERWORK/trn001 might be a good
start)

« Start an interactive batch job on Titan, and make sure can build and run the code

Use the PGI compiler (TIP: module load PrgEnv-pgi)
Build (TIP: make)
Run and verify the GPU code works (TIP: aprun —n1 ./openacc_demo c)

IIIIIIIIIIIIIII

EXPECTED CPU OUPUT

OpenACC tests> aprun -n 1 ./openacc _demo c

Initialize check:

A[0] =0 (0) B[0O] =0 (0)

A[100] = 100 (100) B[100] = 200 (200)

A[1623] = 1623 (1623) B[1623] = 3246 (3246)

A[111111] = 111111 (111111) B[1l1l1111] = 222222 (222222)
saxpy check:

C[0] =0 (0)

C[100] = 400 (400)

C[1623] = 6492 (6492)

C[111111] = 444444 (444444)

sumC check: 2e+14 (2e+14)

Total time: 0.2237s

Init time: 0.0949s

SAXPY time: 0.0547s

SumC time: 0.0739s

Application 17826144 resources: utime ~0s, stime ~0s, Rss ~121276, inblocks ~98, outblocks

P

OpenACC o, e

NVIDIA

TRY IT OUT!

« Use the following OpenACC directives to parallelize the code
[#pragma/!] acc parallel loop [reduction(+:)]

» Edit the makefile and add TO COMPILE: -acc —ta=tesla

* Run with: aprun —n1 ./openacc_demo c

(or checkout the git branch “Stage1”, but try it!)

PAY ATTENTION TO THE COMPILER!

cc -Minfo=all -acc -ta=tesla -0 openacc_demo c openacc_demo.cC
main:
25, Accelerator kernel generated
Generating Tesla code
26, #pragma acc loop gang, vector(128) /* blockIdx.x
threadIdx.x */
25, Generating implicit copyout(A[:10000000],B[:100000007)
46, Accelerator kernel generated
Generating Tesla code
47, #pragma acc loop gang, vector(128) /* blockIdx.x
threadIdx.x */
46, Generating implicit copyout(C[:100000001])
Generating implicit copyin(B[:10000000],A[:100000001])
67, Accelerator kernel generated
Generating Tesla code
67, Generating reduction(+:sumC)
68, #pragma acc loop gang, vector(128) /* blockIdx.x
threadIdx.x */
67, Generating implicit copyin(C[:1000000017)
OpenACC 2L [nwe

NVIDIA. INSTITUTE

RUN THE GPU VERSION NOW

OpenACC_ tests> aprun -n 1 ./openacc_demo c

Initialize check:

A[0] =0 (0) B[0] =0 (0)

A[100] = 100 (100) B[100] = 200 (200)

A[1623] = 1623 (1623) B[1623] = 3246 (3246)

A[111111] = 111111 (111111) B[1l11111l] = 222222 (222222)
saxpy check:

C[0] =0 (0)

C[100] = 400 (400)

C[1623] = 6492 (6492)
C[111111] = 444444 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.5025s

Init time: 0.3881s

SAXPY time: 0.1026s

SumC time: 0.0116s
Application 17826388 resources: utime ~0s, stime ~1s, Rss ~267308,
inblocks ~257, outblocks ~123

UpenAGG A DeArniNG

NVIDIA. INSTITUTE

Why did we get slower?

PROFILE!

* Running nvprof is a little tricky on Titan

Binary must be on a compute accessible file system (lustre)
Need some magic flags

* Run: PMI_NO_FORK=1 aprun —n 1 —b nvprof ./openacc_demo c

Titan magic to make nvprof/cuda-memcheck/cuda-gdb work!
Not needed on most other machines.

IIIIIIIIIIIIIII

RUN THE GPU VERSION NOW

==1467== Profiling application: ./openacc_demo c
==1467== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 49.98% 20.031lms 10 2.0031ms 1.7280us 2.8053ms [CUDA memcpy HtoD]
44.66% 17.901ms 10 1.7901lms 2.2080us 2.5109ms [CUDA memcpy DtoH]

APTI calls:

20.99% 102.46ms 1 102.46ms 102.46ms 102.46ms cuDevicePrimaryCtxRelease
9.27% 45.268ms 1 45.268ms 45.268ms 45.268ms cuMemHostAlloc
4.60% 22.457ms 1 22.457ms 22.457ms 22.457ms cuMemFreeHost

Time spentin :
Data Movement

O Compute

S DEEP
OpenACC 2, e

NVIDIA.

OPTIMIZE DATA MOVEMENT

EXPLICIT MEMORY MANAGEMENT

device
Key problems i o |
B
= Many parallel accelerators (such as t 11t 3 HHEHEEEE
devices) have a separate memory pool R HHHEHHHHE
from the host SHHEEEEE
= These separate memories can become —-1-—-1“1"1---1'
out-of-sync and contain completely
different data

= Transferring between these two memories
can be a very time consuming process

OPENACC DATA DIRECTIVE

Definition

= The data directive defines a lifetime #pragma acc data clauses
for data on the device {

= During the region data should be < Sequential and/or Parallel code >
thought of as residing on the
accelerator }

= Data clauses allow the programmer

to control the allocation and

l$acc data clauses
movement of data

< Sequential and/or Parallel code >

l$acc end data

OpenACC &, iowme

IA. INSTITUTE

DATA CLAUSES

copy(list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.
create(list) Allocates memory on GPU but does not copy.

OpenACC 32, e Principal use: Temporary arrays.

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

In Fortran, the second number is the ending index

‘copy(array[starting_index:length]) ‘CKH+

‘copy(array(starting_index:ending_index)) ‘Ran

omme MVIDIA. INSTITUTE

ARRAY SHAPING (CONT.)

Multi-dimensional Array shaping

‘copy(array[@:N][@:M]) ‘CKH+

Both of these examples copy a 2D array to the device

|copy(array(1:N, 1:M)) | Fortran

ARRAY SHAPING (CONT.)

Partial Arrays

‘copy(array[i*N/4:N/4]) CIC++

Both of these examples copy only Y4 of the full array

|copy(array (i*N/4:1*N/4+N/4)) Fortran

STRUCTURED DATA DIRECTIVE

Example

Ib[@:N])

copyout(c[O:N])

ragma acc data| copyin(a[0:N]

#pragma acc parallel loop
for(int 1 = 0; 1 < N; i++){

}

c[i] = a[i] + b[i];

Host Memory

Device memory

Action

Do/l B mm

Gt éntidvidd

OPTIMIZED DATA MOVEMENT
Copy A to/from the

#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m]) accelerator only when
while (err > tol && iter < iter max) ({ needed.

err=0.0;

Copy initial condition of
for(int § = 1; j < n-1; j++) { Anew, but not final value

#pragma acc parallel loop reduction (max:err)

for(int 1 = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (A[Jj][i+1] + A[JI[i-1] +
A[3-1][1i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j1[i]));
}
}

#pragma acc parallel loop
for(int j =1; j < n-1; j++) {
for(int 1 = 1; 1 < m-1; i++) {
A[j]l[i] = Anew[]j][i];
}

}
iter++;

&Y oeep
OpenABC 2, (e

NVIDIA.

REBUILD THE CODE

pgcc -fast -ta=tesla -Minfo=accel laplace2d uvm.c
main: - Now data movement only
60, Generating copy (A[:m*n]) { happens at our data
Generating copyin (Anew[:m*n]) region_
64, Accelerator kernel generated
Generating Tesla code
64, Generating reduction (max:error)
65, #pragma acc loop gang /* blockIdx.x */
67, #pragma acc loop vector(128) /* threadIdx.x */
67, Loop is parallelizable
75, Accelerator kernel generated
Generating Tesla code
76, #pragma acc loop gang /* blockIdx.x */
78, #pragma acc loop vector(128) /* threadIdx.x */
78, Loop is parallelizable

Op enACC 1 G

NVIDIA. INSTITUTE

OPENACC SPEED-UP

Speed-up

50.00X

45.00X 42:99X

41.80X

40.00X

35.00X

o 30.00X

© 25.00X
o

Q.
9 20.00X

15.00X

10.00X

5.00X 323X

SERIAL MULTICORE V100 V100 (DATA)

TRY IT OUT!

« Take your existing code, and try to enclose it with a data region using the following
directives/clause

[#pragma/!] acc data [copyin, copyout, create]

cc -Minfo=all -acc -ta=tesla -o openacc_demo c openacc_demo.cC
main:
28, Generating copyin(A[:N],B[:N],C[:N])
Generating copyout (sumC)
31, Accelerator kernel generated
Generating Tesla code
32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
52, Accelerator kernel generated
Generating Tesla code
53, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
72, Accelerator kernel generated
Generating Tesla code
72, Generating reduction(+:sumC)
73, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

NVIDIA. INSTITUTE

UpenACG < EgﬁleNG

RUN THE NEW CODE

> aprun -n 1 ./openacc_demo c

Initialize check:

A[0] =0 (0) B[0] =0 (0)

A[100] = 0 (100) B[100] = 0 (200)

A[1623] = 0 (1623) B[1623] = 0 (3246)
A[111111] = 0 (111111) B[1l1l1111l] = 0 (222222)
saxpy check:

C[0] =0 (0)

C[100] = 0 (400)

C[1623] = 0 (6492)
C[111111] = 0 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2814s

Init time: 0.2792s

SAXPY time: 0.0007s

SumC time: 0.0013s
Application 17826786 resources: utime ~0s, stime ~1s, Rss ~150268,
inblocks ~256, outblocks ~122

@A DEEP
OpenACC ., i

RUN THE NEW CODE

> aprun -n 1 ./openacc_demo c
Initialize check:

A[0] =0 (0) B[0O] =0 (0)
A[100] = 0 (100) B[100] = 0 (200) But we’re getting wrong answers!
A[1623] = 0 (1623) B[1623] = 0 (3246)
A[111111] = 0 (111111) B[111111] = 0 (222222)
saxpy check:

C[0] =0 (0)

C[100] = 0 (400)

C[1623] = 0 (6492)
C[111111] = 0 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2814s

Init time: 0.2792s

SAXPY time: 0.0007s

SumC time: 0.0013s
Application 17826786 resources: utime ~0s, stime ~1s, Rss ~150268,
inblocks ~256, outblocks ~122

< DEEP
OpenACC 5. e

NVIDIA.

DATA SYNCHRONIZATION

OPENACC UPDATE DIRECTIVE

update: Explicitly transfers data between the host and the device
Useful when you want to synchronize data in the middle of a data region
Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self (x[0:count])
#pragma acc update device (x[0:count])

C/C++

!Sacc update self(x(l:end index))
!$Sacc update device(x(l:end index))
Fortran

OPENACC UPDATE DIRECTIVE

#pragma acc update device(A[O:N])

both the CPU and device .
for the update directive CPU Memory device Memory

to work.

B*
~—

OpenACC <X hwo #pragma acc update self(A[O:N])

IIIIIIIIIIIIIIIIIIII

SYNCHRONIZE DATA WITH UPDATE

int* allocate_array(int N){ - : initiali i
Ltk A(intF) malloc(N*sizeof(int));: Ihnsutzle the |r]:|‘t5hze function we alter the
#pragma acc enter data create(A[O:N]) OSt Copy O
return A; . e ege 1
} = This means that after calling initialize the
host and device copy of ‘A’ are out-of-sync
void deallocate array(int* A){

ﬁﬁg:%ﬂ;‘,acc B B B RUEELY = We use the update directive with the
} ’ device clause to update the device copy of
‘A!
void initialize array(int* A, int N){
for(int i.f 0; 1 < N; i++){ = Without the update directive later compute
AlL] = 15 regions will use incorrect data.

#pragma acc update device(A[O:N])
}

EP

; DE
OpenACC o, i

TRY IT OUT!

- Take your existing code, and add the update directive to get the answers off the
GPU

[#pragma/!] acc update [self/device]

Remempber! Data slicing rules apg{lﬂx hcere too! Pay attention to the compiler output!

cc -Minfo=all -acc -ta=teslad”-o openac

main:
28,

31,

43,
53,

63,
73,

OpenACC

openacc__ demo=c

Generating copyin(A[:N],B[:N],C[:N])

Generating copyout (sumC)

Accelerator kernel generated

Generating Tesla code

32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
Generating update self(B[100],A[l100],B[1l11111],A[111111],A[:1],B[:1],B[1623],A[1623])
Accelerator kernel generated

Generating Tesla code

54, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
Generating update self(C[100],C[111111],C[:1],C[1623])

Accelerator kernel generated

Generating Tesla code

73, Generating reduction(+:sumC)

74, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

> B
LEARNING
NVIDIA. INSTITUTE

ONE MORE OPTIMIZATION

+ We don’t need to copy A,B,C, just create!

[#pragma/!] acc data create

cc -Minfo=all -acc -ta=tesla -o openacc_demo c openacc_demo.cC
main:
28, Generating create(A[:N],B[:N],C[:N])
Generating copyout (sumC)
31, Accelerator kernel generated
Generating Tesla code
32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
43, Generating update self(B[100],A[l00],B[l11111],A[111111],A[:1],B[:1],B[1623],A[1623])
53, Accelerator kernel generated
Generating Tesla code
54, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
63, Generating update self(C[100],C[111111],C[:1],C[1623])
73, Accelerator kernel generated
Generating Tesla code
73, Generating reduction(+:sumC)
74, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

NVIDIA. INSTITUTE

Op enAGG > G

RUN THE NEW CODE

> aprun -n 1 ./openacc_demo c

Initialize check:

A[0] =0 (0) B[0O] =0 (0)

A[100] = 100 (100) B[100] = 200 (200)
A[1623] = 1623 (1623) B[1623] = 3246 (3246)
A[111111] = 111111 (111111) B[111111] = 222222 (222222)
saxpy check:

C[0] =0 (0)

C[100] = 400 (400)

C[1623] = 6492 (6492)
C[111111] = 444444 (444444)
sumC check: 2e+14 (2e+14)
Total time: 0.2258s

Init time: 0.1779s

SAXPY time: 0.0008s

SumC time: 0.0014s
Application 17827100 resources: utime ~0s, stime ~1s, Rss ~150284,
inblocks ~257, outblocks ~131

< DEEP
OpenACC 5. e

NVIDIA.

Right Answers!

PROFILE AGAIN

» PMI_NO FORK=1 aprun -n 1 -b nvprof ./openacc_demo c

==1684== Profiling application: ./openacc_demo c
==1684== Profiling result:

Type Time(%) Time Calls Avg Min Max Name
GPU activities: 38.97% 842.08us 1 842.08us 842.08us 842.08us main 73 gpu
33.28% 719.04us 1 719.04us 719.04us 719.04us main 53 gpu
19.38% 418.69us 1 418.69us 418.69us 418.69%9us main 31 gpu
7.30% 157.66us 1 157.66us 157.66us 157.66us main 73 gpu red
1.07% 23.168us 13 1.7820us 1.5040us 3.1040us [CUDA memcpy DtoH]
APT calls:

Time sient in :

Setting up GPUs takes some (almost) constant time, and this is a very small code. This 0.2s won't
matter in a real simulation code.

OpenACC & ok

NVIDIA. INSTITUTE

OPENACC RESOURCES

Guides o Talks e Tutorials e Videos e Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

Resources Success Stories
https://www.openacc.org/resources https://www.openacc.org/success-stories
OpenACC OpenACC

Success Stories
Resources

I RI I A comple 'y of OpenACC i puides, Dooks and more. are sharing their resstts and experiences.
R Guides & Books
m W5 10 OpRACE Quick Gukdes] Paraliel Programming with OpenACC
‘ O m p I I e rs - ComiCC Pegramng s Bt Prctces ke -
B Tutorials

Programming Masuvedy Parael Procewon, Third

T e ——————

>Watch more OpenACC Wideos on YouTube

Compilers and Tools Events

@\ https://www.openacc.org/tools https://www.openacc.org/events
\ OpenACC 77 OpenACC LR i

Downloads & Tools

OpenACC compilers, peotl Gesigned and ind acad

Community |

L EDITION

Commercial Compilers

NVIDIA. INSTITUTE

Op enACC 1 G

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://www.openacc.org/tools

CLOSING REMARKS

KEY CONCEPTS

In this lab we discussed...

= How to profile a serial code to identify loops that should be
accelerated

= How to use OpenACC’s parallel loop directive to parallelize key loops
= How to use OpenACC’s data clauses to control data movement

= To always check accuracy first!!

IIIIIIIIIIIIIII

