
Jeff Larkin, CAAR Workshop March 2018

NVIDIA DEVELOPER TOOLS: 
NEW CAPABILITIES IN CUDA 9.X



2

CUDA TOOLS



3

CUDA TOOLS

CUDA-GDB

• Debug CUDA kernels with CLI

• Debug CPU and GPU code

• CPU and GPU core dump support

NVPROF

• Collect Performance events and metrics

VISUAL PROFILER

• Trace CUDA activities

• Profile CUDA kernels

• Correlate performance instrumentation 

with source code

• Expert-guided performance analysis

CUDA-MEMCHECK

• Detect out-of-bounds and misaligned memory 

accesses

• Detect race condition in memory accesses

• Detect uninitialized global memory accesses

• Detect incorrect GPU thread synchronization

NVDISASM, CUOBJDUMP

GPU LIBRARY ADVISOR

• Detect CUDA library optimization 

opportunities



4

NEW TOOLS FEATURES IN CUDA 9



5

SUPPORT FOR VOLTA ARCHITECTURE

Support for GPUs with Compute Capability 7.0



6

CUDA-GDB

• GPU core dump generation is supported on Volta-MPS

• Reading lightweight GPU core dump files is supported

New features post CUDA 9

$ time CUDA_ENABLE_COREDUMP_ON_EXCEPTION=1 
CUDA_ENABLE_LIGHTWEIGHT_COREDUMP=1 ./simple_cuda_program

Before: 9.85s user 12.33s system 173% cpu 12.794 total

After: 0.41s user 1.36s system 75% cpu 2.350 total



7

CUDA-MEMCHECK

• Support for host API functions with pitch parameter.

• Initial support for the Cooperative Groups programming model.

• Support for shared memory atomic instructions. 

• Support for detecting invalid accesses to global memory on Pascal and later 
architectures that extend beyond the end of an allocation. 

• Support for limiting the numbers of errors printed by cuda-memcheck. 

• Racecheck analysis reports are assigned a severity level. 

• Default print level changed from INFO to WARN.

• A new command line option to report deprecated instructions even when they are 
used in safe execution paths. (post CUDA 9)



8

CUDA VISUAL PROFILER

Unified Memory

NVLink

Multi-hop remote profiling

Tracing and profiling of Cooperative Kernel launches

PC sampling

Enhancements in CUDA 9.0



9

VISUAL PROFILER

Segment mode interval Heat map for CPU 
page faults

Segment mode timeline



12

VISUAL PROFILER

Selected interval Source location

CPU Page Fault Source Correlation



13

CPU PAGE FAULT SOURCE CORRELATION

Unguided Analysis

Option to collect 
Unified Memory 

information

Summary of all 
CPU page faults



14

VISUAL PROFILER

Source line causing 
CPU page fault

CPU Page Fault Source Correlation



15

VISUAL PROFILER - NEW UNIFIED MEMORY EVENTS
Page throttling, Memory thrashing, Remote map

Memory 
thrashing

Page 
throttling

Remote map



16

VISUAL PROFILER
Filter and Analyze

Filtered intervals



17

OPTIMIZATION

int threadsPerBlock = 256;
int numBlocks = (length + threadsPerBlock – 1) / threadsPerBlock;

kernel<<< numBlocks , threadsPerBlock >>>(A, B, C, length);

OLD

NEW

int threadsPerBlock = 256;
int numBlocks = (length + threadsPerBlock – 1) / threadsPerBlock;

cudaMemAdvise(A, size, cudaMemAdviseSetReadMostly, 0);
cudaMemAdvise(B, size, cudaMemAdviseSetReadMostly, 0);

kernel<<< numBlocks , threadsPerBlock >>>(A, B, C, length);



18

OPTIMIZED APPLICATION

No DtoH Migrations and thrashing

2.9 ms

Speedup 4x (2.9 vs 12.2)



19

VISUAL PROFILER
NVLINK visualization

Color codes for 

NVLink

Topology

Static 

properties

Runtime 

values

Option to collect 

NVLink information

Unguided Analysis

Selected 

NVLink

Version



20

VISUAL PROFILER

MemCpy API

NVLink Events on 

Timeline

Color Coding of 

NVLink Events

NVLink events on timeline - Segment mode



21

VISUAL PROFILER

Host Compute NodeLogin Node

Visual Profiler Script
CUDA 

Application
ssh

ssh

scp

Multi-hop remote profiling

Script available on github: https://github.com/NVIDIA/cuda-profiler/tree/master/one_hop_profiling) 



22

VISUAL PROFILER

1 2 3

Login Node

Script

Connect Visual Profiler 
to the login node

Configure script on the 
login node

Use the custom script 
option

Multi-hop remote profiling - One-Time Setup



23

VISUAL PROFILER

1 2 Application transparently runs on compute node and 
profiling data is displayed in the Visual Profiler

Select custom script, 
then create a remote 
session as usual

Multi-hop remote profiling - Application Profiling



24

VISUAL PROFILER
CPU Sampling (post CUDA 9)

Percentage of time spent collectively by all threads 

Range of time 

spent across 

all threads

Selected thread 

is highlighted in 

Orange

Bar chart of the 

amount of time 

spent by thread



25

VISUAL PROFILER - PC SAMPLING
Option to select sampling period (post CUDA 9)



26

VISUAL PROFILER

Pie chart for sample distribution for a CUDA 
function

Source-Assembly view

PC SAMPLING UI



27

MPI PROFILING



28

MPI PROFILING

$ LD_PRELOAD=“libnvtx_pmpi.so mpirun -n 4 nvprof --process-name "MPI Rank 
%q{PMIX_RANK}" --context-name "MPI Rank %q{PMIX_RANK}" -o 
timeline.%q{PMIX_RANK}.nvprof ./simpleMPI
Running on 4 nodes
==21977== NVPROF is profiling process 21977, command: ./simpleMPI
==21983== NVPROF is profiling process 21983, command: ./simpleMPI
==21979== NVPROF is profiling process 21979, command: ./simpleMPI
==21982== NVPROF is profiling process 21982, command: ./simpleMPI
<program output>
==21982== Generated result file: timeline.0.nvprof
==21977== Generated result file: timeline.3.nvprof
==21983== Generated result file: timeline.1.nvprof
==21979== Generated result file: timeline.2.nvprof

nvprof



30

MPI PROFILING

1 4

Importing into the Visual Profiler

2 3



31

MPI PROFILING
Visual Profiler

MPI Rank-based 
naming

NVTX Markers & 
Ranges

See: https://devblogs.nvidia.com/parallelforall/gpu-pro-

tip-track-mpi-calls-nvidia-visual-profiler



32

MPI PROFILING
MPI + NVTX

nvtxEventAttributes_t range = {0};
range.message.ascii = "MPI_Scatter";
nvtxRangePushEx(range);
int result = MPI_Scatter(...);
nvtxRangePop();

Auto-generate mpi_interception.so

LD_PRELOAD=mpi_interception.so

Run your MPI app with nvprof.

MPI calls will be auto-annotated using NVTX.

Manual mode Interception mode

1

2

3

https://devblogs.nvidia.com/parallelforall/gpu-
pro-tip-track-mpi-calls-nvidia-visual-profiler/



33

MPI PROFILING
Interception

int res = MPI_Scatter(...);

MPI app Interception library
(LD_PRELOAD)

int MPI_Scatter(...) { 
nvtxRangePushEx(range);
int res = PMPI_Scatter(...);
nvtxRangePop();
return res;

}

MPI library

int PMPI_Scatter(...) 



34

FOR MORE INFORMATION …

CUDA 9 Features Revealed Parallel Forall Blog Post : 
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

CUDA Documentation: http://docs.nvidia.com/cuda/

Download CUDA Toolkit: https://developer.nvidia.com/cuda-downloads

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/
http://docs.nvidia.com/cuda/
https://developer.nvidia.com/cuda-downloads




36

BACKUP SLIDES 



37

DGX-1V NVLINK TOPOLOGY



38

PC SAMPLING

PC sampling feature is available for device with CC >= 5.2

Provides CPU PC sampling parity + additional information for warp states/stalls 
reasons for GPU kernels

Effective in optimizing large kernels, pinpoints performance bottlenecks at specific 
lines in source code or assembly instructions

Samples warp states periodically in round robin order over all active warps

No overheads in kernel runtime, CPU overheads to parse the records



39

FILTER AND ANALYZE

1 Select unified memory in the 
unguided analysis section

2 Select required events and click 
on ‘Filter and Analyze’

Summary of 
filtered intervals



40

FILTER AND ANALYZE
Unfiltered



41

CPU PAGE FAULT SOURCE CORRELATION

Unguided Analysis

Option to collect 
Unified Memory 

information

Summary of all 
CPU page faults



42

CPU SAMPLING

• CPU profile is gathered by periodically sampling the state of each thread in the 
running application.

• The CPU details view summarizes the samples collected into a call-tree, listing 
the number of samples (or amount of time) that was recorded in each function.


