
UNIFIED MEMORY ON 
P9+V100



2

UNIFIED MEMORY FUNDAMENTALS

Single pointer

On-demand migration

GPU memory oversubscription

Concurrent CPU/GPU access

System-wide atomics

void *data;

data = malloc(N);

cpu_func1(data, N);

gpu_func2<<<...>>>(data, N);

cudaDeviceSynchronize();

cpu_func3(data, N);

free(data);



3

P9+V100 CLARIFICATIONS

cudaMallocManaged still works as before 
(including performance hints)

cudaMalloc still not accessible from the 
CPU

void *data;

cudaMallocManaged(&data, N);

cpu_func1(data, N);

gpu_func2<<<...>>>(data, N);

cudaDeviceSynchronize();

cpu_func3(data, N);

cudaFree(data);



4

PERFORMANCE HINTS

cudaMemPrefetchAsync(ptr, size, processor, stream)

Similar to cudaMemcpyAsync

cudaMemAdvise(ptr, size, advice, processor)

ReadMostly: duplicate pages, writes possible but expensive

PreferredLocation: “resist” migrations from the preferred location

AccessedBy: establish mappings to avoid migrations and access directly



5

USER HINTS
Read Mostly

char *data;
cudaMallocManaged(&data, N);

init_data(data, N); 

cudaMemAdvise(data, N, ..SetReadMostly, myGpuId);
cudaMemPrefetchAsync(data, N, myGpuId, s);
mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

In this case prefetch creates a copy 

instead of moving data

Both processors can read data 

simultaneously without faults

Writes invalidate the copies on other 

processors (expensive)

GPU: my_kernel

CPU: init_data

CPU: use_data



6

USER HINTS
Preferred Location: resisting migrations

char *data;
cudaMallocManaged(&data, N);

init_data(data, N); 

cudaMemAdvise(data, N, ..PreferredLocation, cudaCpuDeviceId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

Here the kernel will page fault

and generate direct mapping to 

data on the CPU

The driver will “resist” 

migrating data away from the 

preferred location

GPU: my_kernel

CPU: init_data

CPU: use_data



7

USER HINTS
Preferred Location: page population on first-touch

char *data;
cudaMallocManaged(&data, N);

cudaMemAdvise(data, N, ..PreferredLocation, cudaCpuDeviceId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

Here the kernel will page fault, 

populate pages on the CPU 

and generate direct mapping to 

data on the CPU

Pages are populated on the 

preferred location if the 

faulting processor can access it

GPU: my_kernel
CPU: use_data



8

USER HINTS
Accessed By

char *data;
cudaMallocManaged(&data, N);

init_data(data, N); 

cudaMemAdvise(data, N, ..SetAccessedBy, myGpuId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

GPU will establish direct mapping of 

data in CPU memory, no page faults

will be generated

Memory can move freely to other 

processors and mapping will carry 

over

GPU: my_kernel

CPU: init_data

CPU: use_data



9

P9+V100 NEW FEATURES

Available since CUDA 9.1:

NVLINK2: increased migration throughput

NVLINK2: enabling HW coherency (CPU access GPU memory)

Indirect peers: GPU access memory of remote GPUs on a different socket

Native atomics support for all accessible memory

Work in progress:

cudaMallocManaged may use access counters to guide migrations (opt-in)

ATS: GPU can access all system memory (malloc, stack, mmap files)



10

NVLINK2: INCREASED THROUGHPUT

Copies, prefetches and direct access can achieve roughly 80% of peak BW

On-demand migrations have lower BW due to page fault overheads

*Indirect peers have lower BW due to P9 interconnect path

GPUS PER CPU CPU-GPU GPU-GPU*

2xP8+4xP100 2 40GB/s 40GB/s

2xP9+6xV100 (1) 3 50GB/s 50GB/s

2xP9+4xV100 (2) 2 75GB/s 75GB/s



11

NVLINK2: COHERENCY

CPU can directly access and cache GPU memory; native CPU-GPU atomics

page2 maps to CPU physical memory, page3 maps to GPU physical memory

Works for cudaMallocManaged and malloc

page2

page3

page2

page3

GPU memory CPU memory

GPU CPU

local access

remote access

remote access



12

ACCESS COUNTERS

If memory has AccessedBy set, migration can be triggered by access counters (opt-in)

Opt-in and only for cudaMallocManaged at acceptance

page1

page2

page3

page1

page2

page3

GPU CPU
local access

GPU memory CPU memory

many accesses

few accesses



13

FAULTS VS ACCESS COUNTERS

When using faults all touched pages will be moved to the GPU (eager migration)

Faults: eager migration

page1

page2

page3

page1

page2

page3

GPU CPU

page migration
local access

GPU memory CPU memory

local access



14

FAULTS VS ACCESS COUNTERS

With access counters only hot pages will be moved to the GPU (delayed migration)

Access counters: delayed migration

page1

page2

page3

page1

page2

page3

GPU CPU

page migration
local access

GPU memory CPU memory

remote access



15

USER HINTS ON P9+V100
Preferred Location: CPU can directly access GPU memory

char *data;
cudaMallocManaged(&data, N);

init_data(data, N); 

cudaMemAdvise(data, N, ..PreferredLocation, gpuId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

Here the kernel will page fault

and migrate data to the GPU

The driver will “resist” 

migrating data away from the 

preferred location

on non P9+V100 systems the driver will migrate back to the CPU

GPU: my_kernel

CPU: init_data

CPU: use_data



16

USER HINTS ON P9+V100
Accessed By: using access counters on P9+V100

char *data;
cudaMallocManaged(&data, N);

init_data(data, N); 

cudaMemAdvise(data, N, ..SetAccessedBy, myGpuId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

GPU will establish direct mapping of 

data in CPU memory, no page faults

will be generated

Access counters may eventually 

trigger migration of frequently 

accessed pages to the GPU

on non P9+V100 systems all pages will stay in CPU memory

GPU: my_kernel

CPU: init_data

CPU: use_data



17

cudaMallocManaged vs malloc
(on the system at acceptance)



18

FIRST TOUCH

ptr = cudaMallocManaged(size);

doStuffOnGpu<<<...>>>(ptr, size);

cudaMallocManaged: same behavior as x86

GPU page faults
Unified Memory driver allocates on GPU
GPU accesses GPU memory

Note: you may alter this behavior by using perf hints,
e.g. PreferredLocation=CPU will allocate on CPU on first touch



19

FIRST TOUCH

ptr = malloc(size);

doStuffOnGpu<<<...>>>(ptr, size);

malloc: always allocate on CPU

GPU uses ATS, faults
OS allocates on CPU (by default)
GPU uses ATS to access CPU memory



20

ON-DEMAND MIGRATION

ptr = cudaMallocManaged(size);

fillData(ptr, size);

doStuffOnGpu<<<...>>>(ptr, size); // ptr migrates to GPU

cudaDeviceSynchronize();

doStuffOnCpu(ptr, size); // ptr migrates to CPU

cudaMallocManaged: same behavior as x86



21

ON-DEMAND MIGRATION

ptr = malloc(size);

fillData(ptr, size);

doStuffOnGpu<<<...>>>(ptr, size); // GPU accesses CPU memory through ATS

cudaDeviceSynchronize();

doStuffOnCpu(ptr, size); // CPU accesses CPU memory

malloc: no automatic migrations*

No on-demand malloc data movement except by APIs

*In the future we’ll use access counters to migrate malloc memory (not at acceptance time)



22

USER-DIRECTED MIGRATION

ptr = malloc_support ? malloc(size) : cudaMallocManaged(size);

fillData(ptr, size);

cudaMemPrefetchAsync(ptr, size, dest_gpu_id); // moves data to GPU

doStuffOnGpu<<<...>>>(ptr, size); // GPU accesses GPU memory

cudaMemPrefetchAsync(ptr, size, cudaCpuDeviceId); // moves data to CPU

cudaDeviceSynchronize();

doStuffOnCpu(ptr, size); // CPU accesses CPU memory

Works for all allocators



23

USER-DIRECTED MIGRATION

cudaMallocManaged: no performance regressions, increased bandwidth (NVLINK2)

Performance considerations

GPU GPU

CPU

x3 NVLINK



24

USER-DIRECTED MIGRATION

malloc: for system acceptance migrations could be implemented through CPU (slow 
path) but we're working on enabling the direct P2P transfer in the future (fast path)

Performance considerations

GPU GPU

CPU

x3 NVLINK



25

cudaMalloc cudaMallocManaged malloc

cudaMalloc No Yes No

cudaMallocManaged No Yes No

malloc No No No

EVICTION TABLE
Can [row] evict [column] from GPU to CPU?

Green: Working as intended Red: Want to change in future



26

USER HINTS: ATS

Advise hints have no impact on malloc allocations

When pages are populated they are automatically AccessedBy all GPUs in the system

PreferredLocation or ReadMostly are no-ops for malloc at acceptance

ReadMostly does not work by design (ATS uses single page table)

PreferredLocation will work in the future



27

GENERAL RECOMMENDATIONS

Take advantage of CPU access to GPU memory (including native atomics) so that 
data that is occasionally read by the CPU does not need to move from GPU

cudaMallocManaged is the most performant way to use Unified Memory now

Use perf hints to obtain more predictable memory access patterns and data 
movement behavior between CPU and GPU (only for cudaMallocManaged)

When using system malloc consider current performance implications (no on-demand 
migrations, possibly low prefetch bandwidth)

Use pooled allocator to alleviate cost of memory allocation



28

LEARN MORE AT GTC 2018

S8430 - Everything You Need to Know About Unified Memory

Tuesday, Mar 27, 4:30 PM - 5:20 PM – Room 211A

Look out for a “Connect with the Experts” session on Unified Memory


