UNIFIED

UNIFIED MEMORY FUNDAMENTALS

Single pointer

On-demand migration

GPU memory oversubscription
Concurrent CPU/GPU access

System-wide atomics

void *data;
data = malloc(N);

cpu_funcl(data, N);

gpu_func2<<<...>>>(data, N);
cudaDeviceSynchronize();

cpu_func3(data, N);

free(data);

2 NVIDIA

P9+V100 CLARIFICATIONS

cudaMallocManaged still works as before
(including performance hints)

cudaMalloc still not accessible from the
CPU

void *data;
cudaMallocManaged(&data, N);

cpu_funcl(data, N);

gpu_func2<<<...>>>(data, N);
cudaDeviceSynchronize();

cpu_func3(data, N);

cudaFree(data);

3

NVIDIA

PERFORMANCE HINTS

cudaMemPrefetchAsync(ptr, size, processor, stream)
Similar to cudaMemcpyAsync

cudaMemAdvise(ptr, size, advice, processor)
ReadMostly: duplicate pages, writes possible but expensive
PreferredLocation: “resist” migrations from the preferred location

AccessedBy: establish mappings to avoid migrations and access directly

4

NVIDIA

USER HINTS

Read Mostly

In this case prefetch creates a copy
char *data; instead of moving data
cudaMallocManaged(&data, N);
init data(data, N); Bpth processors can read data
simultaneously without faults

cudaMemAdvise(data, N, ..SetReadMostly, myGpuld);

cudaMemprefetchAsync(data, N, myGpuld, s); Writes invalidate the copies on other
mykernel<<<..., s>>>(data, N); .
processors (expensive)

use_data(data, N); CPU: init_data

N
Y

cudaFree(data); . o k |
CPU: use_data -E - my_kerne

5 <ANVIDIA.

USER HINTS

Preferred Location: resisting migrations

Here the kernel will page fault

char *data; and generate direct mapping to
cudaMallocManaged(&data, N); data on the CPU

init_data(data, N); . . .
The driver will “resist”
cudaMemAdvise(data, N, ..PreferredLocation, cudaCpuDeviceld); migrating data away from the

mykernel<<<..., s>>>(data, N); preferred location

e datatdata, 1) CPU: init_data
cudaFree(data);
CPU: use_data GPU: my_kernel

6 <ANVIDIA.

USER HINTS

Preferred Location: page population on first-touch

Here the kernel will page fault,
char *data; populate pages on the CPU
cudaMallocManaged(&data, N); and generate direct mapping to

data on the CPU

cudaMemAdvise(data, N, ..PreferredlLocation, cudaCpuDeviceld); Pages are populated on the

preferred location if the
faulting processor can access it

use_data(data, N);
cudaFree(data);
GPU: my_kernel
CPU: use _data)

7 <ANVIDIA.

mykernel<<<..., s>>>(data, N);

USER HINTS

Accessed By

char *data;
cudaMallocManaged(&data, N);

init_data(data, N);
cudaMemAdvise(data, N, ..SetAccessedBy,

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

GPU will establish direct mapping of
data in CPU memory, no page faults
will be generated

Memory can move freely to other
myGpuld); processors and mapping will carry
over

CPU: init_data

CPU: use_data GPU: my_kernel

8 <ANVIDIA.

P9+V100 NEW FEATURES

Available since CUDA 9.1:
NVLINK2: increased migration throughput
NVLINK2: enabling HW coherency (CPU access GPU memory)
Indirect peers: GPU access memory of remote GPUs on a different socket
Native atomics support for all accessible memory
Work in progress:
cudaMallocManaged may use access counters to guide migrations (opt-in)

ATS: GPU can access all system memory (malloc, stack, mmap files)

9 NVIDIA

NVLINK2: INCREASED THROUGHPUT

GPUS PER CPU CPU-GPU GPU-GPU*
2xP8+4xP100 2 40GB/s 40GB/s
2xP9+6xV100 (1) 3 50GB/s 50GB/s
2xP9+4xV100 (2) 2 75GB/s 75GB/s

Copies, prefetches and direct access can achieve roughly 80% of peak BW
On-demand migrations have lower BW due to page fault overheads

*Indirect peers have lower BW due to P9 interconnect path

10 <A NVIDIA.

CPU can directly access and cache GPU memory; native CPU-GPU atomics

GPU

page2 maps to CPU physical memory, page3 maps to GPU physical memory

NVLINK2: COHERENCY

Works for cudaMallocManaged and malloc

GPU memory CPU memory

page2
remote access

age3

local access

CPU

11 <A NVIDIA.

ACCESS COUNTERS

Opt-in and only for cudaMallocManaged at acceptance

If memory has AccessedBy set, migration can be triggered by access counters (opt-in)

GPU memory CPU memory
local access
GPU CPU
page?2
few accesses

many accesses
12 <A NVIDIA.

FAULTS VS ACCESS COUNTERS

Faults: eager migration

When using faults all touched pages will be moved to the GPU (eager migration)

GPU memory CPU memory

GPU CPU

page2
local access

local access 13 <ANVIDIA

FAULTS VS ACCESS COUNTERS

Access counters: delayed migration

With access counters only hot pages will be moved to the GPU (delayed migration)

GPU

GPU memory

CPU memory

CPU

. remote access

local access

.

14 <ANVIDIA.

USER HINTS ON P9+V100

Preferred Location: CPU can directly access GPU memory

Here the kernel will page fault

char *data; and migrate data to the GPU
cudaMallocManaged(&data, N);

1 3 ({3 ; b2/
init_data(data, N); The dr!ver will “resist
migrating data away from the
cudaMemAdvise(data, N, ..PreferredLocation, gpuld); preferred location

mykernel<<<..., s>>>(data, N);

use_data(data, N); CPU: init_data —>-
cudaFree(data); /\‘-E GPU kernel
- my_kerne
CPU: use_data -

on non P9+V100 systems the driver will migrate back to the CPU 15 <AnVIDIA

USER HINTS ON P9+V100

Accessed By: using access counters on P9+V100

GPU will establish direct mapping of

char *data; data in CPU memory, no page faults
cudaMallocManaged(&data, N); will be generated

init_data(data, N);
Access counters may eventually
cudaMemAdvise(data, N, ..SetAccessedBy, myGpuld); trigger migration of frequently

mykernel<<<..., s>>>(data, N); accessed pages to the GPU

t t N);
use-datatdata,) CPU: init_data -
cudaFree(data); ..
CPU: use_data [Tl¢— GPU: my_kernel

on non P9+V100 systems all pages will stay in CPU memory 16 <nVIDIA

cudaMallocManaged vs malloc
(on the system at acceptance)

FIRST TOUCH

ptr = cudaMallocManaged(size);

doStuffOnGpu<<<...>>>(ptr, size); GPU page faults

Unified Memory driver allocates on GPU
GPU accesses GPU memory

Note: you may alter this behavior by using perf hints,
e.g. PreferredLocation=CPU will allocate on CPU on first touch

18 NVIDIA.

FIRST TOUCH

ptr = malloc(size);

doStuffOnGpu<<<...>>>(ptr, size); GPU uses ATS, faults
OS allocates on CPU (by default)
GPU uses ATS to access CPU memory

19 NVIDIA.

ON-DEMAND MIGRATION

ptr = cudaMallocManaged(size);

fillData(ptr, size);

doStuffOnGpu<<<...>>>(ptr, size);

cudaDeviceSynchronize();

doStuffonCpu(ptr, size);

20 NVIDIA.

ON-DEMAND MIGRATION

malloc: no automatic migrations®

ptr = malloc(size); No on-demand malloc data movement except by APIs

fillData(ptr, size);

doStuffOnGpu<<<...>>>(ptr, size); // GPU accesses CPU memory through ATS

cudaDeviceSynchronize();

doStuffOnCpu(ptr, size); // CPU accesses CPU memory

*In the future we’ll use access counters to migrate malloc memory (not at acceptance time) 2 <nvioa

USER-DIRECTED MIGRATION

ptr = malloc_support ? malloc(size) : cudaMallocManaged(size);
fillData(ptr, size);

cudaMemPrefetchAsync(ptr, size, dest gpu id);
doStuffOnGpu<<<...>>>(ptr, size);

cudaMemPrefetchAsync(ptr, size, cudaCpuDeviceld);
cudaDeviceSynchronize();

doStuffonCpu(ptr, size);

22 NVIDIA.

USER-DIRECTED MIGRATION

Performance considerations

cudaMallocManaged: no performance regressions, increased bandwidth (NVLINK2)

X3 NVLINK

23 <ANVIDIA.

USER-DIRECTED MIGRATION

Performance considerations

malloc: for system acceptance migrations could be implemented through CPU (slow
path) but we're working on enabling the direct P2P transfer in the future (fast path)

x3 NVLINK

24 <ANVIDIA.

EVICTION TABLE

Can [row] evict [column] from GPU to CPU?

cudaMalloc cudaMallocManaged malloc

cudaMalloc No Yes No

cudaMallocManaged No Yes No

malloc No No No
Green: Working as intended Red: Want to change in future

25 <ANVIDIA.

USER HINTS: ATS

Advise hints have no impact on malloc allocations
When pages are populated they are automatically AccessedBy all GPUs in the system
PreferredLocation or ReadMostly are no-ops for malloc at acceptance

ReadMostly does not work by design (ATS uses single page table)

PreferredLocation will work in the future

26 NVIDIA.

GENERAL RECOMMENDATIONS

Take advantage of CPU access to GPU memory (including native atomics) so that
data that is occasionally read by the CPU does not need to move from GPU

cudaMallocManaged is the most performant way to use Unified Memory now

Use perf hints to obtain more predictable memory access patterns and data
movement behavior between CPU and GPU (only for cudaMallocManaged)

When using system malloc consider current performance implications (no on-demand
migrations, possibly low prefetch bandwidth)

Use pooled allocator to alleviate cost of memory allocation

27 NVIDIA.

LEARN MORE AT GTC 2018

S8430 - Everything You Need to Know About Unified Memory
Tuesday, Mar 27, 4:30 PM - 5:20 PM - Room 211A

Look out for a “Connect with the Experts” session on Unified Memory

28 NVIDIA.

