
UNIFIED MEMORY ON P100 
Peng Wang 

HPC Developer Technology, NVIDIA 



2  

OVERVIEW 

How UM works in P100 

UM optimization 

UM and directives 



3  

HOW UNIFIED MEMORY WORKS IN P100 



4  

HETEROGENEOUS ARCHITECTURES 
Memory hierarchy 

1/11/2017 

CPU 

System 
Memory 

GPU  
Memory 

GPU 0 GPU 1 GPU N 



5  

UNIFIED MEMORY 
Starting with Kepler and CUDA 6 

1/11/2017 

Custom Data Management 

System 
Memory 

GPU Memory 

Developer View With 
Unified Memory 

Unified Memory 



6  

UNIFIED MEMORY IMPROVES DEV CYCLE 

1/11/2017 

Identify 
Parallel 
Regions 

Allocate and 
Move Data 

Implement 
GPU Kernels 

Optimize 
GPU Kernels 

Often 
time-consuming and  

bug-prone 

Identify 
Parallel 
Regions 

Implement 
GPU Kernels 

Optimize 
Data 

Locality 

Optimize 
GPU Kernels 



7  

UNIFIED MEMORY 
Single pointer for CPU and GPU 

1/11/2017 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort(data, N, 1, compare); 
 
 
  use_data(data); 
 
  free(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  cudaFree(data); 
} 

CPU code GPU code with Unified Memory 



8  

UNIFIED MEMORY ON PRE-PASCAL 
Code example explained 

 

 

 

 

Pages allocated before they are used – cannot oversubscribe GPU 

Pages migrate to GPU only on kernel launch – cannot migrate on-demand 

 

1/11/2017 

cudaMallocManaged(&ptr, ...); 
 
*ptr = 1; 
 
qsort<<<...>>>(ptr); 

CPU page fault: data migrates to CPU  

Pages are populated in GPU memory 

Kernel launch: data migrates to GPU  



9  

UNIFIED MEMORY ON PRE-PASCAL 
Kernel launch triggers bulk page migrations 

1/11/2017 

GPU memory 
~0.3 TB/s 

System memory 
~0.1 TB/s 

PCI-E 

kernel 
launch page  

fault 

page  
fault 

cudaMallocManaged 



10  

PAGE MIGRATION ENGINE 
Support Virtual Memory Demand Paging 

49-bit Virtual Addresses 

Sufficient to cover 48-bit CPU address + all GPU memory 

GPU page faulting capability 

Can handle thousands of simultaneous page faults  

Up to 2 MB page size 

Better TLB coverage of GPU memory 

11.1.2017 Г. 



11  

UNIFIED MEMORY ON PASCAL 
Now supports GPU page faults 

 

 

 

 

If GPU does not have a VA translation, it issues an interrupt to CPU 

Unified Memory driver could decide to map or migrate depending on heuristics 

Pages populated and data migrated on first touch 

1/11/2017 

cudaMallocManaged(&ptr, ...); 
 
*ptr = 1; 
 
qsort<<<...>>>(ptr); 

CPU page fault: data allocates on CPU  

       Empty, no pages anywhere (similar to malloc) 

GPU page fault: data migrates to GPU  



12  

UNIFIED MEMORY ON PASCAL 
True on-demand page migrations 

1/11/2017 

GPU memory 
~0.7 TB/s 

System memory 
~0.1 TB/s 

interconnect page  
fault 

page  
fault 

page  
fault 

page  
fault 

page  
fault 

map VA to  
system memory 

cudaMallocManaged 



13  

UNIFIED MEMORY ON PASCAL 
Improvements over previous GPU generations 

On-demand page migration  

GPU memory oversubscription is now practical (*) 

Concurrent access to memory from CPU and GPU (page-level coherency) 

Can access OS-controlled memory on supporting systems 

 

 

(*) on pre-Pascal you can use zero-copy but the data will always stay in system memory 

1/11/2017 



14  

UM USE CASE: HPGMG 

Fine grids are offloaded to GPU (TOC), coarse grids are processed on CPU (LOC) 

 

 

 

 

 

G
P
U

 

C
P
U

 

THRESHOLD 

V-CYCLE F-CYCLE 



15  

HPGMG AMR PROXY 
Data locality and reuse of AMR levels 



16  

OVERSUBSCRIPTION RESULTS 

0

20

40

60

80

100

120

140

160

180

200

1.4 4.7 8.6 28.9 58.6

x86 K40 P100 (x86 PCI-e) P100 (P8 NVLINK)

A
p
p
li
c
a
ti

o
n
 t

h
ro

u
g
h
p
u
t 

(M
D

O
F
/s

) 

P100 memory size (16GB) 

x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads) 

All 5 levels fit in GPU memory 

Only 2 levels fit 

Only 1 level fits 

Application working set (GB) 



17  

UNIFIED MEMORY: ATOMICS 

Pre-Pascal: atomics from the GPU are atomic only for that GPU 

 GPU atomics to peer memory are not atomic for remote GPU 

 GPU atomics to CPU memory are not atomic for CPU operations 

 

Pascal: Unified Memory enables wider scope for atomic operations 

 NVLINK supports native atomics in hardware (both CPU-GPU and GPU-GPU) 

 PCI-E will have software-assisted atomics (only CPU-GPU) 

 

 

1/11/2017 



18  

UNIFIED MEMORY ATOMICS 
System-Wide Atomics 

__global__ void mykernel(int *addr) { 
  atomicAdd_system(addr, 10); 
} 
 
void foo() { 
  int *addr; 
  cudaMallocManaged(addr, 4); 
  *addr = 0; 
 
  mykernel<<<...>>>(addr); 
  __sync_fetch_and_add(addr, 10); 
} 

System-wide atomics not available on  
Kepler / Maxwell 

Pascal enables system-wide atomics 
• Direct support of atomics over NVLink  
• Software-assisted over PCIe 



19  

UNIFIED MEMORY: MULTI-GPU 

Pre-Pascal: direct access requires P2P support, otherwise falls back to sysmem 

 Use CUDA_MANAGED_FORCE_DEVICE_ALLOC to mitigate this 

 

Pascal: Unified Memory works very similar to CPU-GPU scenario 

GPU A accesses GPU B memory: GPU A takes a page fault 

 Can decide to migrate from GPU B to GPU A, or map GPU A 

GPUs can map each other’s memory, but CPU cannot access GPU memory directly 

1/11/2017 



20  

UNIFIED MEMORY OPTIMIZATION 



21  

GENERAL GUIDELINES 

UM overhead 
    Migration: move the data, limited by CPU-GPU interconnect bandwidth 
    Page fault: update page table, ~10s of μs per page, while execution stalls. 
    Solution: prefetch 

Redundant transfer for read-only data 
    Solution: duplication 

Thrashing: infrequent access, migration overhead can exceed locality benefits 
    Solution: mapping 

 

1/11/2017 



22  

NEW HINTS API IN CUDA 8 

cudaMemPrefetchAsync(ptr, length, destDevice, stream) 

    Migrate data to destDevice: overlap with compute 
    Update page table: much lower overhead than page fault in kernel 
    Async operation that follows CUDA stream semantics 

cudaMemAdvise(ptr, length, advice, device) 

    Specifies allocation and usage policy for memory region  
       User can set and unset at any time 

1/11/2017 



23  

PREFETCH 
Simple code example 

1/11/2017 

void foo(cudaStream_t s) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
  init_data(data, N);  
 
  cudaMemPrefetchAsync(data, N, myGpuId, s); 
  // potentially other compute ... 
  mykernel<<<..., s>>>(data, N, 1, compare); 
  cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s); 
  // potentially other compute ... 
  cudaStreamSynchronize(s); 
 
  use_data(data, N); 
 
  cudaFree(data); 
} 

CPU faults are less expensive  
may still be worth avoiding 

GPU faults are expensive 
prefetch to avoid excess faults 



24  

PREFETCH EXPERIMENT 

__global__ void inc(float *a, int n) 

{ 

  int gid = blockIdx.x*blockDim.x + threadIdx.x; 

  a[gid] += 1; 

} 

  

cudaMallocManaged(&a, n*sizeof(float)); 

for (int i = 0; i < n; i++) 

   a[i] = 1; 

timer.Start(); 

cudaMemPrefetchAsync(a, n*sizeof(float), 0, NULL); 

inc<<<grid, block>>>(a, n); 

cudaDeviceSynchronize(); 

timer.Stop(); 

 

ms (GB/s) Total 

time 

Kernel 

time 

Prefetch 

time 

No prefetch 476 (2.3) 476 (2.3) N/A 

Prefetch 49 (22) 2 (536) 47 (11) 

n=128M 

Page fault within kernel are expensive. 



25  

Prefetch next level while performing computations on current level 

Use cudaMemPrefetchAsync with non-blocking stream to overlap with default stream 

HPGMG: DATA PREFETCHING 

4 4 3 4 4 3 

0 1 2 3 4 

compute 

prefetch 

0 1 2 3 

2 

2 3 

eviction 0 1 2 4 

4 

2 

4 



26  

RESULTS WITH USER HINTS 

0

20

40

60

80

100

120

140

160

180

200

1.4 4.7 8.6 28.9 58.6

x86 K40 P100 (x86 PCI-e) P100 + hints (x86 PCI-e) P100 (P8 NVLINK) P100 + hints (P8 NVLINK)

A
p
p
li
c
a
ti

o
n
 t

h
ro

u
g
h
p
u
t 

(M
D

O
F
/s

) 

x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads) 

All 5 levels fit in GPU memory 

Only 2 levels fit 

Only 1 level fits 

Application working set (GB) 

P100 memory size (16GB) 



27  

 
init_data(data, N); 
 
cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId); 
 
mykernel<<<...>>>(data, N);  
 
use_data(data, N); 
 

READ DUPLICATION 

cudaMemAdviseSetReadMostly 

 Use when data is mostly read and occasionally written to 

1/11/2017 

Read-only copy will be 
created on GPU page fault 

CPU reads will not page fault 



28  

READ DUPLICATION 

Prefetching creates read-duplicated copy of data and avoids page faults 

Note: writes are allowed but will generate page fault and remapping 

 

1/11/2017 

 
init_data(data, N); 
 
cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId); 
cudaMemPrefetchAsync(data, N, myGpuId, cudaStreamLegacy); 
mykernel<<<...>>>(data, N);  
 
use_data(data, N); 
 

Read-only copy will be 
created during prefetch 

CPU and GPU reads  
will not fault 



29  

DIRECT MAPPING 
Preferred location and direct access 

cudaMemAdviseSetPreferredLocation 

 Set preferred location to avoid migrations 

 First access will page fault and establish mapping 

cudaMemAdviseSetAccessedBy 

 Pre-map data to avoid page faults 

 First access will not page fault 

 Actual data location can be anywhere 

1/11/2017 



30  

DIRECT MAPPING 

CUDA 8 performance hints (works with cudaMallocManaged) 

1/11/2017 

// set preferred location to CPU to avoid migrations 
cudaMemAdvise(ptr, size, cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId); 
  
// keep this region mapped to my GPU to avoid page faults 
cudaMemAdvise(ptr, size, cudaMemAdviseSetAccessedBy, myGpuId); 
  
// prefetch data to CPU and establish GPU mapping 
cudaMemPrefetchAsync(ptr, size, cudaCpuDeviceId, cudaStreamLegacy); 



31  

HYBRID IMPLEMENTATION 
Data sharing between CPU and GPU 

Level N (large) is shared between CPU and GPU Level N+1 (small) is shared between CPU and GPU 

Level N Level N+1 

Smoother Residual Restriction 

Memory 

GPU kernels 

Smoother 

CPU functions 

Redisual 

To avoid frequent migrations allocate N+1: pin page in CPU memory 



32  

DIRECT MAPPING 
Use case: HPGMG 

Problem: excessive faults and migrations at CPU-GPU crossover point 

 

 

Solution: pin coarse levels to CPU and map them to GPU page tables 

Pre-Pascal: allocate data with cudaMallocHost or malloc + cudaHostRegister 
 

 

1/11/2017 

no page faults 

~5% performance improvement on Tesla P100 



33  

MPI AND UNIFIED MEMORY 

Using Unified Memory with CUDA-aware MPI needs explicit support from the MPI 
implementation: 

Check with your MPI implementation of choice for their support 

Unified Memory is supported in OpenMPI since 1.8.5 and MVAPICH2-GDR since 2.2b 

Set preferred location may help improve performance of CUDA-aware MPI using 
managed pointers 

 

 

 

 

1/11/2017 



34  

MULTI-GPU PERFORMANCE: HPGMG 

MPI buffers can be allocated with cudaMalloc, cudaMallocHost, cudaMallocManaged 

CUDA-aware MPI can stage managed buffers through system or device memory 

0

10

20

30

40

50

60

70

80

90

managed managed +
cuda-aware

zero-copy device +
cuda-aware

M
D

O
F
/
s 

2xK40 with P2P support 



35  

UNIFIED MEMORY AND DIRECTIVES 



36  

module.F90: 
module particle_array 
real,dimension(:,:),allocatable :: zelectron 
!$acc declare create(zelectron) 
 
setup.F90: 
allocate(zelectron(6,me)) 
call init(zelectron) 
!$acc update device(zelectron) 
 
pushe.F90: 
real mpgc(4,me) 
!$acc declare create(mpgc) 
!$acc parallel loop 
do i=1,me 
   zelectron(1,m)=mpgc(1,m) 
enddo 
!$acc end parallel 

 
!$acc update host(zelectron) 
call foo(zelectron) 

W/o UM W/ UM 

module.F90: 
module particle_array 
real,dimension(:,:),allocatable :: zelectron 
 
setup.F90: 
allocate(zelectron(6,me)) 
call init(zelectron) 
 
pushe.F90: 
real mpgc(4,me) 
!$acc parallel loop 
do i=1,me 
   zelectron(1,me)=... 
enddo 
!$acc end parallel 

call foo(zelectron) 

Remove all data directives.  
Add “-ta=managed” to compile 

NVIDIA and LLNL Confidential 36 



37  

UM OPENACC USE CASE: GTC 

Plasma code for fusion science 

10X slowdown in key compute routine when  
turning on Unified Memory 

module.F90: 
module particle_array 
real,dimension(:,:),allocatable :: zelectron 
 
setup.F90: 
allocate(zelectron(6,me)) 
call init(zelectron) 
 
pushe.F90: 
real mpgc(4,me) 
!$acc parallel loop 
do i=m,me 
   zelectron(1,m)=mpgc(1,m) 
enddo 
!$acc end parallel 

call foo(zelectron) 

Problem: automatic array. 

Allocated/deallocated EACH time entering the routine 

Paying page fault cost EACH time entering the routine.  

Even though no migration. 



38  

UNIFIED MEMORY SUMMARY 

On-demand page migration 

Performance overhead: migration, page fault 

Optimization: prefetch, duplicate, mapping 


