<X NVIDIA.

UNIFIED MEMORY ON P100
Peng Wang

HPC Developer Technology, NVIDIA



OVERVIEW

How UM works in P100
UM optimization

UM and directives

2 NVIDIA.



HOW UNIFIED MEMORY WORKS IN P100



HETEROGENEOUS ARCHITECTURES

Memory hierarchy

GPUO GPU 1 GPU N




UNIFIED MEMORY

Starting with Kepler and CUDA 6

Developer View With
Unified Memory

Custom Data Management

Unified Memory

1/11/2017 5 <ANVIDIA.



UNIFIED MEMORY IMPROVES DEV CYCLE

|ldentify Identify
Parallel Parallel
Regions Often Regions

\ time-consuming and
bug-prone

Optimize Allocate and Optimize Implement
GPU Kernels Move Data GPU Kernels GPU Kernels

/ Optimize

Implement Data
GPU Kernels Locality

1/11/2017 6 <ANVIDIA.



UNIFIED MEMORY

Single pointer for CPU and GPU

CPU code

GPU code with Unified Memory

void sortfile(FILE *fp, int N) {
char *data;
data = (char *)malloc(N);
fread(data, 1, N, fp);

gsort(data, N, 1, compare);

use_data(data);

free(data);

void sortfile(FILE *fp, int N) {
char *data;
cudaMallocManaged(&data, N);
fread(data, 1, N, fp);

gsort<<<...>>>(data,N,1,compare);
cudaDeviceSynchronize();

use data(data);

cudaFree(data);

1/11/2017

7 <NVIDIA.



UNIFIED MEMORY ON PRE-PASCAL

cudaMallocManaged(&ptr, ...); <«—— Pages are populated in GPU memory
*ptr = 1; <—— CPU page fault: data migrates to CPU
gsort<<<...>>>(ptr); — : data migrates to GPU

Pages allocated before they are used - cannot oversubscribe GPU

Pages migrate to GPU only on kernel launch - cannot migrate on-demand

1/11/2017 8 NVIDIA.



UNIFIED MEMORY ON PRE-PASCAL

Kernel launch triggers bulk page migrations

GPU memory System memory
~0.3 TB/s ~0.1 TB/s

page
fault

ne
cudaMallocﬁﬁpaged page

- v

1/11/2017 9 <ANVIDIA.



PAGE MIGRATION ENGINE

49-bit Virtual Addresses

Sufficient to cover 48-bit CPU address + all GPU memory
GPU page faulting capability

Can handle thousands of simultaneous page faults
Up to 2 MB page size

Better TLB coverage of GPU memory

11.1.2017T. 10 NVIDIA.



UNIFIED MEMORY ON PASCAL

cudaMallocManaged(&ptr, ...); <«—— Empty, no pages anywhere (similar to malloc)
*ptr = 1; <—— CPU page fault: data allocates on CPU
gsort<<<...>>>(ptr); — : data migrates to GPU

If GPU does not have a VA translation, it issues an interrupt to CPU
Unified Memory driver could decide to map or migrate depending on heuristics

Pages populated and data migrated on first touch

1/11/2017 11 NVIDIA.



UNIFIED MEMORY ON PASCAL

True on-demand page migrations

GPU memory System memory

~0.7 TB/s ~0.1 TB/s

page
page interconnect pagk
L fault = ' ' fault
cudaMa nag
pcdla page
fault - =

fault

map VA to
system memory

1/11/2017 12 <ANVIDIA.



UNIFIED MEMORY ON PASCAL

On-demand page migration
GPU memory oversubscription is now practical (*)
Concurrent access to memory from CPU and GPU (page-level coherency)

Can access OS-controlled memory on supporting systems

(*) on pre-Pascal you can use zero-copy but the data will always stay in system memory

1/11/2017 13 NVIDIA.



UM USE CASE: HPGMG

Fine grids are offloaded to GPU (TOC), coarse grids are processed on CPU (LOC)

V-CYCLE F-CYCLE

GPU

THRESHOLD

14 <4 NVIDIA.



HPGMG AMR PROXY

Data locality and reuse of AMR levels

AMR 3 N independent

L d:
Level egen AMR level data multi-grid solves
t=0 start {=Af,
here

0 >

1 > I | > I

2 > >HH >+ >
| I I
k4

3 > > r gum P >H | >HH > >HH

15 <ANVIDIA.



OVERSUBSCRIPTION RESULTS

= x86 = K40 = P100 (x86 PCl-e) = P100 (P8 NVLINK)
200

180 P100 memory size (16GB)

All 5 levels fit in GPU memory
160

Only 2 levels fit
140

120
100
80
60
40
20

Application throughput (MDOF/s)

Only 1 level fits
1.4 4.7 8.6 28.9

58.6
Application working set (GB)

x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads) 16 <ANVIDIA.



UNIFIED MEMORY: ATOMICS

Pre-Pascal: atomics from the GPU are atomic only for that GPU
GPU atomics to peer memory are not atomic for remote GPU

GPU atomics to CPU memory are not atomic for CPU operations

Pascal: Unified Memory enables wider scope for atomic operations
NVLINK supports native atomics in hardware (both CPU-GPU and GPU-GPU)
PCI-E will have software-assisted atomics (only CPU-GPU)

1/11/2017 17 NVIDIA.



_global__ void mykernel(int *addr) {

}

UNIFIED MEMORY ATOMICS

(addr, 10); »

void foo() {

}

int *addr;
cudaMallocManaged(addr, 4);
*addr = 0;

mykernel<<<...>>>(addr);
__sync_fetch_and_add(addr, 10);

Pascal enables system-wide atomics
« Direct support of atomics over NVLink
« Software-assisted over PCle

System-wide atomics not available on
Kepler / Maxwell

18

NVIDIA.



UNIFIED MEMORY: MULTI-GPU

Pre-Pascal: direct access requires P2P support, otherwise falls back to sysmem

Use CUDA_MANAGED FORCE_DEVICE_ALLOC to mitigate this

Pascal: Unified Memory works very similar to CPU-GPU scenario
GPU A accesses GPU B memory: GPU A takes a page fault
Can decide to migrate from GPU B to GPU A, or map GPU A

GPUs can map each other’s memory, but CPU cannot access GPU memory directly

1/11/2017 19

NVIDIA.



UNIFIED MEMORY OPTIMIZATION



GENERAL GUIDELINES

UM overhead
Migration: move the data, limited by CPU-GPU interconnect bandwidth
Page fault: update page table, ~10s of us per page, while execution stalls.
Solution: prefetch

Redundant transfer for read-only data
Solution: duplication

Thrashing: infrequent access, migration overhead can exceed locality benefits
Solution: mapping

1/11/2017 21 NVIDIA.



NEW HINTS APl IN CUDA 8

cudaMemPrefetchAsync(ptr, length, destDevice, stream)

Migrate data to destDevice: overlap with compute
Update page table: much lower overhead than page fault in kernel
Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length, advice, device)

Specifies allocation and usage policy for memory region
User can set and unset at any time

1/11/2017 22

NVIDIA.



PREFETCH

void foo(cudaStream t s) {
char *data;

cudaMallocManaged(&data, N); GPU faults are expensive

prefetch to avoid excess faults
init_data(data, N);

mykernel<<<..., s>>>(data, N, 1, compare); '
CPU faults are less expensive

may still be worth avoiding
cudaStreamSynchronize(s);

use data(data, N);

cudaFree(data);

} 1/11/2017 23 NVIDIA.



PREFETCH EXPERIMENT

__global__ void inc(float *a, int n) n=128M

{
int gid = blockldx.x*blockDim.x + threadldx.x; ms (GB/s)
algid] += 1, time time time

} No prefetch 476 (2.3) 476 (2.3)
_ Prefetch 49 (22) 2 (536) 47 (1 1)
cudaMallocManaged(&a, n*sizeof(float));
for (inti=0;1<n;i++)
afij =1
timer.Start(); Page fault within kernel are expensive.
cudaMemPrefetchAsync(a, n*sizeof(float), 0, NULL);
inc<<<grid, block>>>(a, n);
cudaDeviceSynchronize();
timer.Stop();

24 < NVIDIA.



HPGMG: DATA PREFETCHING

Prefetch next level while performing computations on current level

Use cudaMemPrefetchAsync with non-blocking stream to overlap with default stream

compute O i
AL 0 12 3 4
eviction 0 112

25 <4 NVIDIA.



RESULTS WITH USER HINTS

mx86 m=mK40 =P100 (x86 PCl-e) =P100 + hints (x86 PCl-e) =P100 (P8 NVLINK) =P100 + hints (P8 NVLINK)
200

180 | P100 memory size (16GB)

All 5 levels fit in GPU memory

160
Only 2 levels fit
140

120

100

80
Only 1 level fits

60

40

20

Application throughput (MDOF/s)

1.4 4.7 8.6 28.9 58.6

Application working set (GB)
x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads) 26 <4 NVIDIA.



READ DUPLICATION

cudaMemAdviseSetReadMostly

Use when data is mostly read and occasionally written to

init_data(data, N);

Read-only copy will be

k 1<<<. .. data, N);
MYKERNELCESRN A (d it ab i) created on GPU page fault

use_data(data, N);

\ CPU reads will not page fault

1/11/2017 27

NVIDIA.



READ DUPLICATION

Prefetching creates read-duplicated copy of data and avoids page faults

Note: writes are allowed but will generate page fault and remapping

init_data(data, N);

mykernel<<<...>>>(data, N);
\ \ Read-only copy will be

use_data(data, N); created during prefetch

CPU and GPU reads
will not fault

1/11/2017 28

NVIDIA.



DIRECT MAPPING

cudaMemAdviseSetPreferredLocation

Set preferred location to avoid migrations

First access will page fault and establish mapping
cudaMemAdviseSetAccessedBy

Pre-map data to avoid page faults

First access will not page fault

Actual data location can be anywhere

1/11/2017 29

NVIDIA.



DIRECT MAPPING

CUDA 8 performance hints (works with cudaMallocManaged)

cudaMemAdvise(ptr, size, cudaMemAdviseSetPreferredLocation, cudaCpuDeviceld);
cudaMemAdvise(ptr, size, cudaMemAdviseSetAccessedBy, myGpuld);

cudaMemPrefetchAsync(ptr, size, cudaCpuDeviceld, cudaStreamlLegacy);

1/11/2017 30 NVIDIA.



HYBRID IMPLEMENTATION

Data sharing between CPU and GPU

Memo

Level N

Level N+1

— 7 N\ N

GPU kernels

CPU functions

Level N+1 (small) is shared between CPU and GPU

To avoid frequent migrations allocate N+1: pin page in CPU memory

31 <ANVIDIA.



DIRECT MAPPING

Use case: HPGMG

Problem: excessive faults and migrations at CPU-GPU crossover point

—| [0] GeForce GTX TITAN X
=I Unified Memory
7 Data Migration (DtoH) ACERAAERROR T ORCRC RN AR RCRCORRARRR RO RAN O < >
¥ Data Migration (HtoD)
—| Context 1 (CUDA)

T MemCpy (DtoD)

5 Compute (I (T Uy o

Solution: pin coarse levels to CPU and map them to GPU page tables

Pre-Pascal: allocate data with cudaMallocHost or malloc + cudaHostRegister

—| [0] GeForce GTXTITAN X
—=| Unified Memory
“F Data Migration (DtoH)
“F Data Migration {(HtoD) no page fau lts
—| Context 1 (CUDA)
¥ MemCpy (DtoD)

= Compute L1 LT T THTHENCEE e HAVETIT L

~5% performance improvement on Tesla P100

1/11/2017 32 <ANVIDIA.



MPI AND UNIFIED MEMORY

Using Unified Memory with CUDA-aware MPI needs explicit support from the MPI
implementation:

Check with your MPIl implementation of choice for their support
Unified Memory is supported in OpenMPI since 1.8.5 and MVAPICH2-GDR since 2.2b

Set preferred location may help improve performance of CUDA-aware MPI using
managed pointers

1/11/2017 33 NVIDIA.



MULTI-GPU PERFORMANCE: HPGMG

MPI buffers can be allocated with cudaMalloc, cudaMallocHost, cudaMallocManaged

CUDA-aware MPI can stage managed buffers through system or device memory

MDOF/s

90
80
70
60
50
40
30
20
10

0

managed

2xK40 with P2P support

managed + zero-copy
cuda-aware

device +
cuda-aware

34 <ANVIDIA.



UNIFIED MEMORY AND DIRECTIVES



W/o0 UM

W/ UM

module.F90:
module particle_array

real,dimension(:,:),allocatable :: zelectron

ISacc declare create(zelectron)

setup.F90:
allocate(zelectron(6,me))

call init(zelectron)

ISacc update device(zelectron)

pushe.F90:

real mpgc(4,me)

ISacc declare create(mpgc)

ISacc parallel loop

do i=1,me
zelectron(1,m)=mpgc(1,m)

enddo

ISacc end parallel

ISacc update host(zelectron)
call foo(zelectron)

module.F90:
module particle_array
real,dimension(:,:),allocatable :: zelectron

setup.F90:
allocate(zelectron(6,me))
call init(zelectron)

pushe.F90:

real mpgc(4,me)

ISacc parallel loop

do i=1,me
zelectron(1,me)=...

enddo

ISacc end parallel

call foo(zelectron)

Remove all data directives.
Add “-ta=managed” to compile

36 <ANVIDIA.



UM OPENACC USE CASE: GTC

Plasma code for fusion science

10X slowdown in key compute routine when

turning on Unified Memory

Problem: automatic array.

Allocated/deallocated EACH time entering the routine
Paying page fault cost EACH time entering the routine.

Even though no migration.

module.F90:
module particle_array
real,dimension(:,:),allocatable :: zelectron

setup.F90:
allocate(zelectron(6,me))
call init(zelectron)

pushe.F90:

real mpgc(4,me)

ISacc parallel loop

do i=m,me
zelectron(1,m)=mpgc(1,m)

enddo

ISacc end parallel

call foo(zelectron)

37 NVIDIA.




UNIFIED MEMORY SUMMARY

On-demand page migration
Performance overhead: migration, page fault

Optimization: prefetch, duplicate, mapping

38 NVIDIA.



