
ORNL	SummitDev	
Training	

Interconnect
MPI

GPU Direct

Outline

• Part 1 – IB Interconnect
• Overview
• Component	technologies	
• RDMA	

• Part 2 – GPU direct
• GPUDirect	capabilities
• IB	interface
• Managed	Memory	vs	Device	memory

• Part 3 – Spectrum MPI use
• Spectrum	MPI	overview/GPU	support
• Usage	hints	for	MPI	programs
• GPU	recommendations	 2

Part	1	– IB	interconnect

High	Bandwidth	low	latency	switched	fabric	interconnect

Open	hardware	standard
Open	source	software	stack,	OpenFabrics	Enterprise	Distribution	(OFED)
– Mellanox	maintains	its	own	version	of	OFED	containing	to	be	

incorporated	changes	to	the	standard
Lossless	network	with	link	level	retry

3

Technology HW latency 1x effective
bandwidth

4x effective
bandwidth

FDR ~0.7 usec 1.7 GB/sec 6.8 GB/sec

EDR ~0.5 usec 3.0 GB/sec 12.1 GB/sec

HDR ~0.5 usec 6.1 GB/sec 24.2 GB/sec

IB	components
• HCA	– Host	Channel	Adapter

• Connection	from	Host	CPU	to	network
• Has	network	unique	Logical	ID	(LID)
• Supports	multiple	independent	network	interfaces	(Qpairs	or	QPs)
• Supports	multiple	message	types

• RDMA	(READ	and	WRITE)
• SEND/RECEIVE
• ATOMIC	operations	(Compare	and	Swap/Fetch	and	Add)

• Supports	multiple	connection	types
• UD	(Unreliable	Datagram	– SEND/RECEIVE	only)
• RC	(Reliable	Connected	– All	message	types)
• DCT	(Dynamic	Connected	Transport	– Eventually	all	message	
types)

• CORAL	system	will	have	either	EDR		or	HDR
• Packets	routed	from	source	(LID,QP)	to	destination	(LID,QP) 4

IB	components	– continued
• IB	Switches

• Routes	packets	from	HCA	to	switch,	HCA	to	HCA,	switch	to	
HCA,	or	switch	to	switch

• Multiple	topologies	supported.	CORAL	will	use	FAT	tree	as	
below.

5

Endpoint 0

Endpoint 18

Leaf switch 0

…
.

Endpoint0

Endpoint 18

Leaf switch 18

…
.

Endpoint 0

Endpoint 18

Leaf switch 0

…
.

Endpoint 0

Endpoint 18

Leaf switch 18

…
.

Endpoint 0

Endpoint 18

Leaf switch 0

…
.

Endpoint 0

Endpoint 18

Leaf switch 18

…
.

Endpoint 0

Endpoint 18

Leaf switch 0

…
.

Endpoint 0

Endpoint 18

Leaf switch 18

…
.

648 port
Second level

Director
swtich

…
.

…
.

…
.

…
.

648 port
Second level

Director
switch

648 port
Second level

Director
switch

648 port
Second level

Director
switch

648 port
Third level
Director
switch

648 port
Third level
Director
switch

9x18=162 connections each blue/red line

18 endpoints connected to each leaf switch
18(leaf switches)x18(connections/leaf)=324

connections from leaf switches to director switch

IB	components	– continued
• IB	subnet	manager

• Assigns	network	unique	LID	to		each	HCA
• Assigns	to	routes	between	LIDS
• Monitors	Network	for	network	issues
• Defines	SL	to	VL	translations

• For	Mellanox	the	subnet	manager	is	UFM
• Can	control	UFM	from	a	GUI

• http://UFM_SERVER_NAME/ufmui
• Network	configuration
• Event	monitoring

• Event	log	can	be	found	in	/opt/ufm/files/log/event.log

6

IB	components	– continued
• IB	Verbs	– standardized		interface	to	HCA,	software	support	with	OFED

• Components
• Protection	Domain
• Send	Queue

• Work	Queue	Request	Entry	put	on	the	send	queue
• Work	request	ID
• Destination	(UD	and	DCT)
• Work	Request	type	(ATOMIC,	RDMA	READ/WRITE,	or	
SEND/Receive)

• Tag	matching	WR	under	discussion	for	OFED
• Memory	Key	(LKEY/RKEY)	and	virtual	address	for	
memory	accesses	

• Completion	Queue	– notification	of	completed	work	requests
• Network	requests	initiated	by	posting	a	request	to	send	queue
• IB	complexity	hidden	in	MPI	– for	OpenMPI	in	PAMI/OpenIB	
btl/MXM/UCX

7

Virtual	memory	registration
• User	calls	ibv_reg_mr	with	a	pointer	to	memory,	length,	
protection	domain	pointer,	and	access	bits.

• ibv_reg_mr	calls	kernel	mr	registration	function
• Pins	the	memory
• Creates	DMA	bus	mapping	for	region
• Associates	lkey	and	rkey	with	bus	mapping
• Provides	HCA	with	DMA	mapping	lkey	and	rkey
• Returns	a	ibv_mr	struct	containing

• Virtual	address
• Length	
• Lkey	and	rkey

• The	lkey/address	can	the	be	used	for	local	access	and	the	
rkey/address	can	be	used	for	remote	access

• This	flow	is	similar	to	the	GPU	direct	case	– will	discuss	later
8

On	Demand	Paging
• A	special	ODP	flag	can	be	used	when	registering	memory

• Will	not	pin	the	memory
• Translations	are	done	on	the	fly	and	the	HCA	maintains	a	cache	
of	translations

• Final	CORAL	system	will	have	enhancements
• Two	types	of	ODP

• Explicit	– a	standard	memory	region	is	created	with	unpinned	pages
• Implicit	– The	whole	of	the	user	address	space	can	be	mapped

• Support	for	Atomic/RDMA	operations	for	this	will	complete	in	
2017

• Allows	for	better	use	of	system	memory
• Will	be	important	to	support		GPUDirect	on	final	CORAL	system	with	
managed	memory

9

Part	2	– GPUDirect

High	Bandwidth	low	latency	switched	fabric	interconnect

10

GPU	Direct	Family	
• Features to support efficient inter-node and

intra-node GPU-GPU communication
• Accelerated communication via sharing

“Pinned buffers” with IB’s HCA (inter-node)
• Direct RDMA (inter-node)

• Ability	to	perform	send/recv,	RDMA	operations	
between	GPUs	via	IB

• RDMA	allows	HCA	DMA	engines	to	saturate	IB	
link	b/w

• By-pass	CPU	memory	for	reducing	latency
• GPU	Direct	RDMA	across	

NVLink2ßàPHBßàPCIeßàIB.	
• Async (inter- or intra-node)

• GPU	can	initiate	and	wait	for	network	operation	
from	CUDA	streams

• Remove	synchronization	between	GPU	and	CPU
• Peer-to-Peer Transfers between GPUs (intra-

node)
• Use	GPU	DMA	engines	to	saturate	the	link	b/w	

across	GPUs
• Within	a	socket	via	PCI-E	and	NVLINK1	
• Across	sockets	with	NVLINK2

11

GPUDirect	RDMA	
• NVIDIA provides a kernel extension that provides calls to return a DMA

bus mapping for GPU device memory
• When the user creates a IB memory region, it signals to the device driver

that the address is for GPU device memory
• The IB	device	driver	calls	the	NVIDIA	provided	routine	to	obtain	the	DMA	
mapping
– After	the	DMA	mapping	is	obtained,	the	MR	setup	continues	normally

• The	IB	client	program	uses	the	returned	ibv_mr	structure	as	if	it	were	pointing	
to	host	memory

sbuf_
ptr

Peer 0’s GPU buffer mapped
to Peer 1’s GPU Virtual Address
Space

MPI Peer 0 MPI Peer 1

MPI Peer 0 MPI Peer 1

cudaIpcGetEventHandle
(&event_handle, event)

cuMemGetAddressRange
(&base_ptr, sbuf_ptr)

cudaIpcGetMemHandle
(&handle, base_ptr)rbuf_

ptr

cudaIpcOpenMemHandle
(&base_ptr, handle)

cudaMemcpy
(rbuf_ptr, base_ptr+displ)

cudaEventRecord
(&ipc_event, event_handle)

Cuda IPC – for GPUDirect P2P support

• Method of accessing the
peer’s buffer via Handles

• Useful for point-to-point as
well as collective operations

• Getting and Opening handles
costly

• Cache them

GPU	Async

14

Requirement	for	GPUDirect	support

• Accessed GPU memory must be GPU Device memory, not a pointer to unified
memory

• For GPUDirect RDMA
– GPU	and	HCA	both	on	PCIe	buses	on	the	same	PCIe	Domain

• For	POWER8,	the	data	path	for	the	Pascal	GPU	is	over	NVLINK1	(there	is	a	control	
PCIe	connection)

• For	POWER8,	each	PCIe	slot	is	on	a	different	PCIe	Domain
– GPUDirect	RDMA	will	only	work	on	POWER8	if	both	the	HCA	and	GPU	are	
on	PCIe	cards	in	an	external	PCIe	expansion	chassis.

– We	internally	have	done	tests	this	way,	but	not	intended	for	external	use
• Async (inter- or intra-node)

• Same	requirements	a	GPUDirect	RDMAU
• Peer-to-Peer Transfers between GPUs (intra-node)

• GPU	and	HCA	on	same	PCIe	domain
• Within	a	socket	via	PCIe	and	NVLINK1	

• Some	of	these	limitations	will	be	relaxed	in	the	future

15

Unified	Memory

• Available since CUDA 6 with enhanced support for GP100 and CUDA 8
• Allocate memory and return a pointer that can be dereferenced by either

the GPU or CPU
– Actual	pages	can	be	either	on	the	GPU	or	in	host	memory
– For	GP100/POWER8	GPU	only	has	load/store	access	to	GPU	memory	and	

CPU	only	has	load/store	access	to	host	memory
• Drive	moves	data	as	needed	to	provide	transparent	access

– In	the	future,	we	intend	to	enhance	these	capabilities

16

Pascal
GPU

POWER
CPU

Unified Memory

Part	3	– Spectrum	MPI

17

18

PAMI

MPI
PAMI Client

1contex
t

APPLICATIO
N

contex
t

work
queue

In
te
r-n
od
e

In
tra
-n
od
e

In
tra
-n
od
e

In
te
r-n
od
e

•PAMI
• Contexts:	Independent	network	end-

points	(addressable)
• Protocols:	variations	of	basic	eager,	

rendezvous	
• In-line	progress	or	spawn	separate	threads

• PAMI API
• Non-blocking	API,	Active	Message	style	

semantics	with	completions	via	
asynchronous	callback	handlers

• Point-to-point:	PAMI_Send_imm,	
PAMI_Send

• Remote	Memory	Access:	Various	flavors	of	
PAMI_Put/PAMI_Get	operations	and	
memory	region	management	

• Collectives:	PAMI_Bcast,	PAMI_Allreduce,	
PAMI_Barrier	etc.

• Context	specific:	independently	progress	a	
context	/	lock	a	context/	“hand-off	”	
messaging	functions	to	a	context	etc. IB network

19

PAMI PML and
OSC component

IB Verbs over
RC and DCT CUDA Runtime IB Async Verbs Ext CUDA Async Ex

MPI (Point-to-point &
Collectives) MPE_Acc API

GPU
Direct
RDMA

OpenMPI

Spectrum	MPI	Stack		

Existing
PAMI API

GPU
Direct
P2P

GPU
Support

PAMI Services
And Utilities

IB reg mr
cache

Cuda hook
cache

Cuda hook caching for: a) GPU addresses/Contexts and b) GDR copy handles

GDR
copy

nv_peer_me
m
For GDR

Libgdsync
For Async

GPU
Direct
Async

Enhanced
PAMI Async
API

Other Services
And libraries

CUDA
IPC
For P2P

Gdrdrv
For
Copy() 2017

support

PAMI	Caching	services

• CudaHook	
• “Address	Cache”	to	store	all	the	GPU	buffer	pointers,	ranges

• Interception	library	with	callbacks	whenever	cuda	driver	calls	are	
invoked	

• Cache	hit	when	the	buffer	is	in	the	range	stored	in	the	cache
• “GDR	Cache”		stores	the	GDR	Copy	handles	when	opened	for	first	
time

• “IPC	Cache”	stores	the	IPC	handles	
• when	they	are	first	opened	using	get	(sender	side	cache)
• Also	stores	the	mapped	IPC	handles	from	open	(receiver	side	cache)

• Cache	entries	are	purged	when	the	associated	GPU	buffer	is	
deallocated

• Registration Cache
• Separate	Cache	to	store	GPU	buffer	registration	entries	with	IB	HCA
• Registration	will	be	enhanced	in	the	future

20

Protocol	implementations	for	GPU_SUPPORT

• PAMI Send Immediate & PAMI Send APIs
• Use	2-Copy	Eager	protocols
• cudaMemcpy	into	Cuda	and	IB	registered	pre-allocated	buffers	
• Transports:	Shared	memory	(intra-node)	and	IB	(inter-node)	

• PAMI Get
• Pipelined	Rndv
• Protocol	Pipelining	overlaps	cuda	memcpys	in	the	node	with	network	transfers
• Credit	control	by	keeping	a	constant	buffer	pool	(Memory	scalability)
• The	number	of	elements	posted	on	the	recvQ	is	the	total	number	of	credits	a	process	has
• Current	size	is	32	with	the	buffer	being	1MB
• Can	use	both	RC	and	DCT	

• Optimizations
• Latency:	Use	gdrcopy	instead	of	cudaMemcpy	

• Effectively	uses	CPU	to	load/store	from	GPU	memory	to	system	memory
• Map	the	GPU	addresses	by	BAR	and	MMIO	mappings
• ~	2	usec		from	20-25	usec

• Bandwidth:
• All	pipeline	units	are	concurrently	progressed
• Near	saturation	of	network	b/w

21

• GPUs per socket for ORNL(3), LLNL (2)
• Topology of NVLINK: Cliques (nice

property)
• Each GPU is connected to others and

the host
• Crucial for collectives (broadcast,

reduce)
• Saturate IB network b/w

GPU
1 GPU2

IB

PHB

NVLINK

Host
Memory

GPU0

P
0

P
1

P
2

NVLINK

GPU1GPU0

IB

NVLINK

Host
Memory

GPU1

P
2

P
1

P
0

NVLINK

P8 Socket P8 Socket

Coral Early Access (EA) Node

Firestones	+	K40	+	Connect	IB	+	External	PCI	Switch

• Both GPU Direct and GDR Copy give latencies close to 3.79 usec
• GDR Copy: 2-Copy Eager, gdr copy used on both sides (read slower than write)
• GPU Direct: 1-Copy Eager, gdr copy used on receiver (good for small to medium messages)
• GPU Support: Pipelined Rndv good for long messages, coming close to Network bandwidth
• Better than GPU Direct RDMA (True also for CORAL Whitherspoon?)
• GPU Direct: Z-Copy Rndv good for medium messages 23

Firestone	+	ConnectX-4	+	K80

• PAMI PML latency of 2.14 usec using 2-Copy Eager with gdrcopy optimization
• GPU Support good for long messages, coming close to SysMem bandwidth

24

Garrison/Pascal	+	ConnectX-4

• We get about 34.6 GB/sec B/W over
NVLINK1 unidirectional (osu-bw)

• 65 GB/sec bidirectional (osu-bibw)
• Able to stripe across multiple network

links (rail)
• 10.2 GB/sec with one lane and 23

GB/sec with two rails

Spectrum	MPI	usage
• Follows most of the OpenMPI usage

– In	the	future	we	will	support	job	steps	with	slightly	different	
syntax

• For GPU support:
– Add	-gpu	flag	in	the	mpirun	command
– In	the	future	we	will	be	adding	programmatic	support	for	

GPUDirect	Async,	but	this	is	not	available	in	the	EA	system
– GPUDirect	RDMA/P2P	will	be	used	when	supported
– Allows	GPU	device	memory	pointers	to	be	passed	into	SMPI

• Other flags of interest
– -hcoll	– use	HCOLL	collectives
– -aff	– for	predefined	affinity	options

© 2014 International Business Machines Corporation

Predefined affinity options
-aff=[option,option,…]

Enables affinity, with any of the following options:

v / vv

Displays output in verbose mode.

cycle:unit

Interleaves the binding over the specified element. The values that can be specified for unit are
hwthread, core, socket (the default), numa, or board.

bandwidth | default

Interleaves sockets but reorders them.

latency

Pack.

width:unit

Binds each rank to an element of the size that is specified by unit. The values that can be specified
for unit are hwthread, core, socket (the default), numa, or board.

© 2014 International Business Machines Corporation

Displaying affinity options
Options for showing the affinity mappings

– -report-bindings	option
– Output display similar to:

[hostA:ppid] MCW rank 0 bound to socket 0[core 0[hwt 0-1]]:
[BB/../../../../../../..][../../../../../../../..]

– -display-devel-map	option
– Output display similar to:

Mapper requested: NULL Last mapper: round_robin Mapping policy: BYCORE
Ranking policy: CORE Binding policy: CORE:IF-SUPPORTED Cpu set: NULL
PPR: NULL Cpus-per-rank: 1
Num new daemons: 0
New daemon starting vpid INVALID
Num nodes: 2
Data for node: hostA
State: 3
Daemon: [[11988,0],1]
Daemon launched: True
Num slots: 4
Slots in use: 4 Oversubscribed: FALSE
Num slots allocated: 4 Max slots: 0
Num procs: 4
Next node_rank: 4
Data for proc: [[11988,1],0]
Pid: 0 Local rank: 0 Node rank: 0
App rank: 0
State: INITIALIZED
App_context: 0
Locale: [BB/../../../../../../..][../../../../../../../..]
Binding: [BB/../../../../../../..][../../../../../../../..]

© 2014 International Business Machines Corporation

Collective communication enhancements

IBM provides its own collective library
• Incorporates	algorithms	from	Platform	MPI	

and		PEMPICH
This library usually, but not always beats other

collective libraries
• We	provide	options	to

» Select	a	collective	library
» Selectively	use	other	libraries	for	specific	

collectives
» Selectively	choose	the	algorithm

© 2014 International Business Machines Corporation

Collective component default priorities

95 : ibm (libcoll)

90 : hcoll (Mellanox)
80 : fca (Mellanox - replaced by hcoll)
78 : cuda (disabled for our builds)
75 : self (loopback)
40 : inter (intercommunicator collectives)
30 : tuned
10 : libnbc (nonblocking collectives)
10 : basic (blocking, neighborhood collectives)
0 : sm (shared memory - seen as unstable)

© 2014 International Business Machines Corporation

Simple profiling support

Compile program with -g -Wl,--hash-style=sysv -emit-stub-syms and xlc

$ mpicc -O3 -g -Wl,--hash-style=sysv -emit-stub-syms -c scattermodule.c

$ mpicc -O3 -g -Wl,--hash-style=sysv -emit-stub-syms -c reducemodule.c

…

$ mpicc -Wl,--hash-style=sysv -o tstmod ${OBJS}

Instrument the code

$ hpctInst -dhpm -dmpi -dopm ./tstmod

Run:

$ HPM_EVENT_SET=49 [hpcrun] mpirun -np 4 ./tstmod.inst

Events found with the commands

$. /opt/ibmhpc/ppedev.hpct/env_sh

$ hpccount -l

Add instrumentation for OpenMP
Add instrumentation for MPI

Add instrumentation for hardware counters

© 2014 International Business Machines Corporation

Example profiling output
hpct_0_0.hpm.tstmod.txt:

######## Resource Usage Statistics ########
Total amount of time in user mode : 1.593604 seconds
Total amount of time in system mode : 1.593604 seconds
Number of page faults without I/O activity : 2562
Number of page faults with I/O activity : 2
Number of voluntary context switches : 1432
Number of involuntary context switches : 22

….
PM_DATA_FROM_L2 (The processor's data cache was reloaded from local core's L2 due to a demand load) : 2479
PM_DATA_FROM_L2MISS (Demand LD - L2 Miss (not L2 hit)) : 1571
PM_DATA_FROM_L3MISS (Demand LD - L3 Miss (not L2 hit and not L3 hit)) : 81
PM_DATA_FROM_L3 (The processor's data cache was reloaded from local core's L3 due to a demand load) : 1490
PM_RUN_INST_CMPL (Run instructions) : 437359
PM_RUN_CYC (Run cycles) : 1029751

Utilization rate : 23.970 %
Instructions per run cycle : 0.425
Total Loads from local L2 : 0.002 M
Local L2 load traffic : 0.303 MB
…

hpct_0_0.mpi.txt

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 3 0.0 0.000
MPI_Comm_rank 3 0.0 0.000
MPI_Send 36566 19872.6 0.059
MPI_Recv 36569 19871.0 0.088
MPI_Bcast 27 6.1 0.000
MPI_Barrier 171 0.0 0.000
MPI_Gather 48 8.0 0.000
MPI_Allreduce 73 6.6 0.000

© 2014 International Business Machines Corporation

CUDA/MPI programming recommendations

Feature POWER8/GP100 Final CORAL system
Unified memory
With
CUDAMemAdvise

Currently testing SMPI Good performance

CUDA aware MPI
(pass GPU pointers)

Yes Yes

GPUDirect RDMA No Yes
GPUDirect P2P Yes (GPU device

memory only)
Yes (GPU Device
memory only)

GPUDirect Async No (API prototype will
be available 2017)

Yes

