
Frank Winkler (frank.winkler@tu-dresden.de)

Performance Analysis at Scale:
The Score-P Tools Infrastructure

Disclaimer

Performance tools will not automatically make
your code run faster. They help you
understand, what your code does and where to
put in work.

Performance engineering workflow

•Calculation of metrics
•Identification of
performance problems

•Presentation of results

•Modifications intended to
eliminate/reduce
performance problem

•Collection of
performance data

•Aggregation of
performance data

•Prepare application with
symbols

•Insert extra code
(probes/hooks)

Preparation Measurement

AnalysisOptimization

Performance Analysis Approaches: Profiling vs. Tracing

Analysis Layer Analysis Technique

Data
Acquisition

Data
Recording

Data
Presentation

Profiling Tracing

Sampling Event-based
Instrumentation

Summarization

Statistics

Logging

Timelines

So what is the right choice?

Score-P: Functionality

• Typical functionality for HPC performance tools
– Instrumentation (various methods)

– Sampling (experimental)

• Flexible measurement without re-compilation
– Basic and advanced profile generation

– Event trace recording

• Programming paradigms:
– Multi-process

• MPI, SHMEM

– Thread-parallel
• OpenMP, Pthreads

– Accelerator-based
• CUDA, OpenCL, OpenACC

Hybrid parallelism

Score-P: Architecture

Application (Process×Thread×Accelerator)

Score-P measurement infrastructure

Hardware counter
(PAPI, rusage, PERF, plugins)

Memory Recording
(libc/C++ API)

Vampir Cube PeriscopeTAU

Event traces (OTF2) Call-path profiles
(CUBE4, TAU)

Online interface

Instrumentation wrapper

Process-level
(MPI, SHMEM)

Thread-level
(OpenMP, Pthreads)

Accelerator-based
(CUDA, OpenACC)

Sampling Interrupts
(PAPI, PERF, timer)

Scalasca

Source code instrumentation
(Compiler, PDT, User)

IO Recording
(Posix, NETCDF, HD5F, ADIOS)

3rd-Party Library
Wrapping

Score-P Workflow: Profiling

Instrumentation

Profile Run

Profile Analysis

Score-P Workflow: Instrumentation

CC = cc
CXX = CC
F90 = ftn

CC = scorep <options> cc
CXX = scorep <options> CC
F90 = scorep <options> ftn

• To see all available options for instrumentation:
$ scorep --help
This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:
...
--cuda Enables cuda instrumentation.

...
--user Enables user instrumentation.

...
--openacc Enables OpenACC instrumentation.

Score-P Workflow: Advanced Instrumentation

• For CMake and autotools based build systems it is recommended to
use the scorep-wrapper script instances

#CMake

SCOREP_WRAPPER=OFF cmake .. \
-DCMAKE_C_COMPILER=scorep-icc \
-DCMAKE_CXX_COMPILER=scorep-icpc \
-DCMAKE_Fortran_COMPILER=scorep-ifc

#Autotools

SCOREP_WRAPPER=OFF ../configure \
CC=scorep-icc \
CXX=scorep-icpc \
FC=scorep-ifc \
--disable-dependency-tracking

• Pass instrumentation and compiler flags at make

make SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--user" \
SCOREP_WRAPPER_COMPILER_FLAGS="-g –O2"

scorep --user <your_compiler> –g –O2

Disable
instrumentation

Score-P Workflow: Measurement

• Measurements are configured via environment variables

$ export SCOREP_ENABLE_PROFILING=true
$ export SCOREP_ENABLE_TRACING=false
$ export SCOREP_EXPERIMENT_DIRECTORY=profile

$ aprun <instrumented binary>

• Example for generating a profile:

$ scorep-info config-vars --full

SCOREP_ENABLE_PROFILING
[...]

SCOREP_ENABLE_TRACING
[...]

SCOREP_TOTAL_MEMORY
Description: Total memory in bytes for the measurement system
[...]

SCOREP_EXPERIMENT_DIRECTORY
Description: Name of the experiment directory
[...]

Score-P: Cube

• Profile analysis tool for displaying performance data of parallel
programs

• Originally developed as part of Scalasca toolset

• Available as a separate component of Score-P

• Representation of values (severity matrix)
on three hierarchical axes
– Performance property (metric)

– Call-tree path (program location)

– System location (process/thread)

• Three coupled tree browsers

Call
path

Pr
op

er
ty

Location

Score-P: Cube Analysis Presentation

What kind of
performance

metric?

Where is it in the
source code?

In what context?

How is it
distributed across

the processes/threads?

Score-P Workflow: Profiling + Tracing

Instrumentation

Profile Run

Trace Run

Profile Analysis

Trace Analysis

scorep-score

Filtering

Reduce overhead and
trace size

Score-P Workflow: Filtering

• Use scorep-score to define a filter
– Exclude short frequently called functions from measurement

• For profiling: reduce measurement overhead (if necessary)
• For tracing: reduce measurement overhead and total trace size

$ scorep-score –r profile/profile.cubex
Estimated aggregate size of event trace: 40GB
Estimated requirements for largest trace buffer (max_buf): 10GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 10GB

[...]
Flt type max_buf[B] visits time[s] time[%] time/visit[us] region

[...]
USR 3,421,305,420 522,844,416 144.46 13.4 0.28 matmul_sub
USR 3,421,305,420 522,844,416 102.40 9.5 0.20 matvec_sub
USR 3,421,305,420 522,844,416 200.94 18.6 0.38 binvcrhs
USR 150,937,332 22,692,096 5.58 0.5 0.25 binvrhs
USR 150,937,332 22,692,096 13.21 1.2 0.58 lhsinit

• Filter file:
$ vim scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
matmul_sub
matvec_sub
binvcrhs

About 10 GB just for
these 3 regions per

process!

Reduce measurement overhead and
size of event trace to about 40 GB!

(Example uses 4 processes)

Score-P Workflow: Measurement

• Example for generating a trace
$ export SCOREP_ENABLE_PROFILING=false
$ export SCOREP_ENABLE_TRACING=true
$ export SCOREP_EXPERIMENT_DIRECTORY=trace
$ export SCOREP_TOTAL_MEMORY=2G
$ export SCOREP_FILTERING_FILE=scorep.filt

$ aprun <instrumented binary>

Vampir: Event Trace Visualization

• Show dynamic run-time behavior graphically at a fine level of detail

• Provide summaries (profiles) on performance metrics

Timeline charts
• Show application activities and

communication along a time axis

Summary charts
• Provide quantitative results for the

currently selected time interval

Vampir: Performance Charts

Detailed information about
functions, communication and

synchronization events for
collection of processes.

Master Timeline

Vampir: Performance Charts

• Trace visualization of FDS (Fire Dynamics Simulator)

Vampir at Scale: FDS with 8192 cores

• Fit to chart height feature in Master Timeline

Overview of the entire
application run across
all processes based on

available pixels on
screen.

Demo: Jacobi Solver

• Jacobi Example
– Iterative solver for system of equations

– Code uses OpenMP, CUDA and MPI
for parallelization

• Domain decomposition
– Halo exchange at boundaries:

• Via MPI between processes
• Via CUDA between hosts and accelerators

Uold =U
ui, j = buold,i, j + ax (uold,i−1, j +uold,i+1, j)+ ay (uold,i, j−1 +uold,i, j+1)− rHs / b

The Score-P Tools Infrastructure

Instrumentation

Profile Run

Trace Run

Profile Analysis

Trace Analysis

scorep-score

Filtering

Reduce overhead and
trace size

• Documentation at https://www.olcf.ornl.gov/support/software/

Thank you for
your attention!

• Connect to Summit-dev and copy sources
$ cp /ccs/home/winklerf/scorep_tutorial/jacobi.tar.gz .
$ tar xzvf jacobi.tar.gz
$ cd jacobi

• Change programming environment and load modules
$ module load gcc/5.4.0
$ module load cuda
$ module load scorep

• Compile benchmark and submit job
$ make
$ cd bin
$ bsub < run.lsf
$ less run.lsf
Jacobi relaxation Calculation: 8192 x 8192 mesh with
2 processes and 6 threads + one Tesla P100-SXM2-16GB for each process.
614 of 4097 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.
0, 0.489197
100, 0.002397
[...]
total: 9.409952 s

Demo: Jacobi Solver / Setup

• Build instrumented executable
$ make clean
$ make scorep
scorep --cuda cc … -o bin/jacobi_mpi+openmp+cuda

• Submit job for profiling run
$ less run_profile.lsf
[...]
export SCOREP_ENABLE_PROFILING=true
export SCOREP_ENABLE_TRACING=false
export SCOREP_EXPERIMENT_DIRECTORY=jacobi_profile
export SCOREP_CUDA_ENABLE=yes
[...]
mpirun -n 2 ./jacobi_mpi+openmp+cuda 8192 8192 0.15

$ bsub < run_profile.lsf
$ less jacobi.o[JOB_ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
2 processes and 6 threads + one Tesla P100-SXM2-16GB for each process.
[...]
total: 10.678350 s

Demo: Jacobi Solver / Profiling

• Perform flat profile analysis with cube_stat
$ cd bin
$ cube_stat -t 10 -p jacobi_mpi+openmp+cuda_profile/profile.cubex
cube::Region NumberOfCalls ExclusiveTime InclusiveTime
!$omp for @jacobi_cuda.c:188 32000.000000 131.797289 131.797289
!$omp implicit barrier 32000.000000 104.298683 104.298683
!$omp for @jacobi_cuda.c:258 32000.000000 42.999056 50.568642
[...]

• Perform call-path profile analysis with Cube
$ cube jacobi_profile/profile.cubex

Demo: Jacobi Solver / Profile Analysis

• Do we need a filter? (Overhead and memory footprint)

$ scorep-score jacobi_profile/profile.cubex
Estimated aggregate size of event trace: 10MB
Estimated requirements for largest trace buffer (max_buf): 5MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 41MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=41MB to avoid intermediate
flushes or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
ALL 4,924,060 310,504 308.53 100.0 993.63 ALL
OMP 4,135,850 256,417 287.31 93.1 1120.46 OMP
CUDA 494,338 38,025 10.40 3.4 273.53 CUDA
COM 156,260 12,020 10.46 3.4 870.58 COM
MPI 137,222 4,012 0.30 0.1 73.96 MPI

MEMORY 260 20 0.06 0.0 2972.15 MEMORY
USR 130 10 0.00 0.0 10.26 USR

No filtering
required.

Demo: Jacobi Solver / Scoring

• Submit job for tracing run
$ cd ..
$ less run_trace.lsf
[...]
export SCOREP_ENABLE_PROFILING=false
export SCOREP_ENABLE_TRACING=true
export SCOREP_EXPERIMENT_DIRECTORY=jacobi_trace
export SCOREP_CUDA_ENABLE=yes
export SCOREP_TOTAL_MEMORY=50MB
[...]
mpirun -n 2 ./jacobi_mpi+openmp+cuda 8192 8192 0.15

$ bsub < run_trace.lsf
$ less jacobi.o[JOB_ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
2 processes and 6 threads + one Tesla P100-SXM2-16GB for each process.
614 of 4097 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.

0, 0.489197
100, 0.002397
[...]
900, 0.000269
total: 9.895828 s

Demo: Jacobi Solver / Tracing

• Perform analysis on the trace data with Vampir
$ cd bin
$ module load vampir
$ vampir jacobi_trace/traces.otf2

Demo: Jacobi Solver / Trace Analysis

