
P100 OPTIMIZATION AND CUDA 8
Peng Wang

HPC Developer Technology, NVIDIA

2

OVERVIEW

GP100 architecture

GP100 is the architecture name. P100 is the GPU product name.

Memory

Instruction

CUDA Lambda

Note: I will focus on P100 (GP100). Titan X (GP102) and GeForce
1080 (GP104) do have some differences in SM, caching and memory.

3

OPTIMIZATION ON P100

Mostly the same as in previous gen GPUs: should see significant
improvement just by recompile and run

The typical best practices, e.g. memory coalescing, shared memory,
occupancy, etc, are all the same.

May need to tune block size, register limit, etc in some cases

Improving performance of productivity features

Unified memory (UM)

You don’t have to use UM if you prefers explicit memory management

I expect explicit memory management leads to better perf in most cases

CUDA lambda

4

GPU COMPARISON
P100 (GP100) K40 (GK110)

Double Precision TFlop/s 5.3 1.4

Single Precision TFlop/s 10.6 4.3

Half Precision Tflop/s 21.2 NA

Memory Bandwidth (GB/s) 732 288

#SM 56 15

L2 Cache Size (MB) 4 1.5

Memory Size 16GB 12GB

fp32/bytes: 7.2 vs 7.5
fp64/bytes: 3.6 vs 2.4

5

GP100 SM

GP100 GK110

CUDA Cores 64 192

Register File 256 KB 256 KB

Shared Memory 64 KB 48 KB

Active Threads 2048 2048

Active Blocks 32 16

GP100 SM

Register-bound kernels will have the same occupancy.
Shared memory and block slot bound kernels may see an occupancy increase.
E.g. 64 size block can reach 100% occupancy on P100.

6

MEMORY

7

GLOBAL MEMORY
HBM2: optimization techniques basically same as GDDR5: coalescing,
alignment, SOA, etc

Bandwidth: peak 732 GB/s = 4096bit * 0.715 GHz * 2 (DDR) / 8 (bit-to-byte)

Latency: similar to GDDR5

A BOE calculation

Total required concurrency (aka Little’s law): ~ BW*L ~ 2.5X of K40

SM ratio: 56/15~3.7X of K40.

Required concurrency/SM: ~2.5/3.7~0.7

P100 should requires similar, sometimes less bytes-in-flight to saturate
bandwidth.

8

COPY EXPERIMENT
Copy kernel: each thread read one word, writes one word.

• For latency-bound kernel, higher
occupancy increase perf

• When occupancy is good enough,
improving it no longer helps

• For the same occupancy,
increasing bytes-in-flight per
thread can increase perf

9

COPY KERNEL

P100

K40

Redraw the data on a different x-axis

For the copy kernel, P100 reaches
peak throughput with less
bytes-in-flight.

10

ECC

ECC-protected: Reg/Tex/L1/SMEM/L2/DRAM

ECC is mostly overhead-free

No overhead in storage space

No overhead in bandwidth

Only exception is scattered write. But still much less overhead than GDDR5.

11

TEX/L1

Unified tex/L1 cache

Global loads are cached by default (-dlcm=ca by default)

32B transaction.

128B in K40. For scattered access, no need to turn L1 off to reduce transaction
size.

On GP104, default is uncached

To ensure caching on both GP100 and GP104, use __ldg

Selective caching to reduce thrashing

Use –dlcm=cg to turn off L1 caching.

Add __ldg explicitly to selected variables

12

LDG OR TEX?

1D data

Global loads are issued in group of 8 threads

TEX are issued in group of 4 threads.

For 4B word, since transaction size is 32B, global loads achieves better
bandwidth for 4B data

For larger word, TEX has similar memory throughput as LDG

TEX and LDG have different indexing mode. May affect instruction bound
code.

2D/3D data

To utilize 2D/3D locality, or interpolation capability, use TEX

13

CACHING EXPERIMENT

for(int i=0; i<num_fetches; i++)

 sum = sum + load(a);

where load(a) is a[i*scale] or tex1D(a, i*scale)

*On GP10x, need to use __ldg(&a[i*scale])

Tex LDG

float 1.28 TB/s 1.85 TB/s

float2 2.54 TB/s 2.59 TB/s

float4 2.54 TB/s 2.60 TB/s

14

SHARED MEMORY

Only 4B bank mode.

64KB.

Each block can use at most 48KB.

No longer split with L1. Previous call to cudaDeviceSetCacheConfig will just
be ignored on Pascal

15

LOCAL MEMORY

Local is cached in L1

If you see more spills when compiling for sm_60

Try increasing maxrregcount

16

INSTRUCTION

17

FP64 ATOMICS

Native fp64 atomics

Kepler uses a SW solution based on atomicCAS

For cases with lots of collision, improves performance significantly

 if (PATTERN == 0) {

 atomicAdd(&a[gid], 1); // DIST

 } else if (PATTERN == 1) {

 atomicAdd(&a[threadIdx.x], 2); // SINGLE

 } else if (PATTERN == 2) {

 atomicAdd(&a[0], 1); // SAME

 }

GOPS/s K40 P100 P100/K40

DIST 13.9 28 2X

SINGLE 0.08 2.8 35X

SAME 0.000113 0.48 4248X

18

FP16 MATH

fp16: 2x throughput of fp32

half, half2

See cuda_fp16.h: also has half2float, etc.

For peak throughput, use paired operation for 2 fp16 instructions w/
half2.

E.g. half2 hmul2(half2 a, half2 b)

Kepler also supports fp16 as storage, math in fp32

Need CUDA 7.5+

fp16 atomics

19

CUDA LAMBDA

20

LAMBDA

C++11 feature, CUDA 7.5+

Concise syntax for defining anonymous functions

Write CUDA in “directive-like” way

No need to define kernel for every loop

Unified CPU and GPU loops

21

NO NEED TO DEFINE EXPLICIT KERNEL

 for_each(counting_iterator<int>(0), counting_iterator<int>(n), [=] __device__ (int i) {
 d_z[i] = a * d_x[i] + d_y[i];
 });

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
 };

__global__ void vec_add(float *x, float *y, float *z, float a, int n) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) z[i] = a * x[i] + y[i];
};

vec_add<<<(n+127)/128, 128>>>(d_x, d_y, d_z, a, n);

C++

CUDA

CUDA+Lambda

22

UNIFIED CPU AND GPU LOOPS

#ifdef USE_GPU
for_each(counting_iterator<int>(0), counting_iterator<int>(n), [=] __device__ (int i) {
#else
for (int i = 0; i < n; i++) {
#endif
 z[i] = a * x[i] + y[i];
 });

With Unified Memory, pointer is unified

23

P100 TUNING SUMMARY

Memory: better latency hiding, L1/tex caching

Instruction: fp64 atomics, fp16

CUDA Lambda

Unified memory

