<X NVIDIA.

P100 OPTIMIZATION AND CUDA 8
Peng Wang

HPC Developer Technology, NVIDIA

OVERVIEW

> GP100 architecture

> GP100 is the architecture name. P100 is the GPU product name.
> Memory

> Instruction

» CUDA Lambda

> Note: | will focus on P100 (GP100). Titan X (GP102) and GeForce
1080 (GP104) do have some differences in SM, caching and memory.

2 <NVIDIA.

OPTIMIZATION ON P100

> Mostly the same as in previous gen GPUs: should see significant
improvement just by recompile and run

» The typical best practices, e.g. memory coalescing, shared memory,
occupancy, etc, are all the same.

> May need to tune block size, register limit, etc in some cases

> Improving performance of productivity features

> Unified memory (UM)
> You don’t have to use UM if you prefers explicit memory management

> | expect explicit memory management leads to better perf in most cases

» CUDA lambda

3 €ANVIDIA.

GPU COMPARISON

P100 (GP100)

Double Precision TFlop/s 5.3
Single Precision TFlop/s 10.6
Half Precision Tflop/s 21.2
Memory Bandwidth (GB/s) 732
#SM 56
L2 Cache Size (MB) 4
Memory Size 16GB

fp32/bytes: 7.2 vs 7.5
fp64/bytes: 3.6 vs 2.4

K40 (GK110)

1.4
4.3
NA
288
15
1.5
12GB

4 <ANVIDIA.

JONIYIANDD

nd9

ASOTICOMHIA L

GP100 SM GP100 SM

Dispatch Unit Dispatch Unit

CUDA Cores 64 192 S S e

«

]
[}

e
Core

Register File 256 KB 256 KB

o o o o
o o -3 -}
= = =

o

e

o

Shared Memory 64 KB 48 KB

(<]
-
=4
@

o o o
° o o
S

o

Active Threads 2048 2048

o
o
o
o

- i -
- 2 -
- : -
- ot o -
- i) -
- o -
- i -

Active Blocks 32 16

-
@
*

Register-bound kernels will have the same occupancy.

Instruction Cache

e GK110 :

SFU

SFU

SFU

SFU

SFU

T SFU

SFU

T | SFU

Texture / L1 Cache

64KB Shared Memory

Core

Shared memory and block slot bound kernels may see an occupancy increase.

E.g. 64 size block can reach 100% occupancy on P100.

o =] =] o -]
= = = = -1 = =
@ o o @ o o o

o
=)
L)

Instruction Buffer

Warp Scheduler

Dispatch Unit

Register File (32,768 x 32-bit)

(<]
o
2
°
o

(2]
-
4
@

o
o
2

o
e

o
°
2

o
-
2

o
o
2
)

o o o o
= = = = = = =
))) ® o o
[
b1

-
)
x

5
g

MEMORY

GLOBAL MEMORY

» HBM2: optimization techniques basically same as GDDR5: coalescing,
alignment, SOA, etc

> Bandwidth: peak 732 GB/s = 4096bit * 0.715 GHz * 2 (DDR) / 8 (bit-to-byte)

> Latency: similar to GDDR5
» A BOE calculation

» Total required concurrency (aka Little’s law): ~ BW*L ~ 2.5X of K40
> SM ratio: 56/15~3.7X of K40.
> Required concurrency/SM: ~2.5/3.7~0.7

» P100 should requires similar, sometimes less bytes-in-flight to saturate
bandwidth.

7 <NVIDIA.

COPY EXPERIMENT

Copy kernel: each thread read one word, writes one word.

/ | k0float2 thread can increase perf
N ki0-floatd
100

0 0.2 0.4 0.6 0.8 1 1.2

Occupancy

600
5
n
w 5% £)i 3 I | :
= « For latency-bound kernel, higher
o occupancy increase perf
£ 400 £ :
= ot — When occupancy is good enough,
i) improving it no longer helps
o) oo 300 == p100-float2
E o » For the same occupancy,
59 S == p100-floatd .) b t s -fl ht
s . R — 10 float increasing bytes-in-flight per
©
Q
-
Q
i
L&
<

8 <ANVIDIA.

COPY KERNEL

Redraw the data on a different x-axis

600

beod—ns——= P100
200
400
*PR9%e% For the copy kernel, P100 reaches
o mploo-float2

peak throughput with less

4 pl00-floatd

f - K40 @ a0 font bytes-in-flight.
200 = = kd0-float2

j / ka0-floatd
100

0 100 200 300 400 200 600

Cache lines in flight per SM

Achieved Memory Throughput
(GB/s)

9 <ANVIDIA.

ECC

» ECC-protected: Reg/Tex/L1/SMEM/L2/DRAM

» ECC is mostly overhead-free
> No overhead in storage space

» No overhead in bandwidth

> Only exception is scattered write. But still much less overhead than GDDR5.

10 <A NVIDIA.

TEX/L1

» Unified tex/L1 cache
> Global loads are cached by default (-dlcm=ca by default)

» 32B transaction.

» 128B in K40. For scattered access, no need to turn L1 off to reduce transaction
size.

> On GP104, default is uncached

> To ensure caching on both GP100 and GP104, use __ldg
» Selective caching to reduce thrashing
» Use -dlcm=cg to turn off L1 caching.

> Add __ldg explicitly to selected variables

11 <A NVIDIA.

LDG OR TEX?

> 1D data
> Global loads are issued in group of 8 threads
» TEX are issued in group of 4 threads.

» For 4B word, since transaction size is 32B, global loads achieves better
bandwidth for 4B data

> For larger word, TEX has similar memory throughput as LDG

» TEX and LDG have different indexing mode. May affect instruction bound
code.

» 2D/ 3D data
» To utilize 2D/3D locality, or interpolation capability, use TEX

12 <A NVIDIA.

CACHING EXPERIMENT

sum = sum + load(a);

float 1.28 TB/s 1.85 TB/s
where load(a) is a[i*scale] or tex1D(a, i*scale) float2 2.54 TB/s 2.59 TB/s

*On GP10x, need to use |dg(&ali*scalel) float4 2 54 TB/s 2 60 TB/s

13 <ANVIDIA.

SHARED MEMORY

> Only 4B bank mode.
» 64KB.

» Each block can use at most 48KB.

> No longer split with L1. Previous call to cudaDeviceSetCacheConfig will just
be ighored on Pascal

14 <ANVIDIA.

LOCAL MEMORY

» Local is cached in L1

> If you see more spills when compiling for sm_60

> Try increasing maxrregcount

15 <ANVIDIA.

INSTRUCTION

FP64 ATOMICS

Native fp64 atomics
Kepler uses a SW solution based on atomicCAS

For cases with lots of collision, improves performance significantly

if (PATTERN == 0) {

atomicAdd(&algid], 1); // DIST

: PS/ K4 P1 P100/K4

} else if (PATTERN == 1) { GOPS/s 0 00 0
atomicAdd(&a[threadldx.x], 2); // SINGLE DIST 13.9 28 2X

} else if (PATTERN == 2) { SINGLE 0.08 2.8 35X

atomicAdd(&al0], 1); // SAME

) SAME 0.000113 0.48 4248X

17 <ANVIDIA.

FP16 MATH

» fp16: 2x throughput of fp32
> half, half2
> See cuda_fp16.h: also has half2float, etc.

» For peak throughput, use paired operation for 2 fp16 instructions w/
half2.

» E.g. half2 hmul2(half2 a, half2 b)

> Kepler also supports fp16 as storage, math in fp32
> Need CUDA 7.5+

» fp16 atomics

18 <A NVIDIA.

CUDA LAMBDA

LAMBDA

» C++11 feature, CUDA 7.5+
» Concise syntax for defining anonymous functions
> Write CUDA in “directive-like” way

> No need to define kernel for every loop

» Unified CPU and GPU loops

20 <ANVIDIA.

NO NEED TO DEFINE EXPLICIT KERNEL

for (inti=0;i<n;i++){
z[i] =a * x[i] + y[i];
b

__global__ void vec_add(float *x, float *y, float *z, float a, int n) {
int i = blockldx.x*blockDim.x + threadldx.x;
if (i < n)z[i] =a * x[i] + y[i];

I

vec_add<<<(n+127)/128, 128>>>(d_x, d vy, d_z, a, n);

for_each(counting_iterator<int>(0), counting_iterator<int>(n), [=] __device _ (inti) {
d _z[i] =a * d_x[i] + d_y][i];

};

C++

CUDA

CUDA+Lambda

21 <4 NVIDIA.

UNIFIED CPU AND GPU LOOPS

With Unified Memory, pointer is unified

#ifdef USE_GPU
for_each(counting_iterator<int>(0), counting_iterator<int>(n), [=] __device__ (inti) {
#else
for(inti=0;i<n;i++)
#endif
z[i] = a * x[i] + y[il;
});

22 <4 NVIDIA.

P100 TUNING SUMMARY

> Memory: better latency hiding, L1/tex caching
> Instruction: fp64 atomics, fp16
> CUDA Lambda

» Unified memory

23 <ANVIDIA.

