Alexandre Eichenberger
01/10/17

OpenMP 4.5

— Relevant Accelerator Features —

T.J. Watson, IBM Research

© 2011 IBM Corporation

A Paradigm Change with OpenMP 4.5

» Extracting maximum performance:

—to program a GPU: you have to use CUDA, OpenCL, OpenGL, DirectX,
Intrinsics, C++AMP, OpenACC

—to program a host SIMD unit: you have to use Intrinsics, OpenCL, or auto-
vectorization (possibly aided by compiler hints)

—to program the CPU threads, you might use C/C++11, OpenMP, TBB, Cilk, MS
Async/then continuation, Apple GCD, Google executors

= With OpenMP 4.5 and up:
—you can use the same standard to program the GPU, the SIMD units, and the
CPU threads

[sources: Michael Wong]

2 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

OpenMP 4+ Features

= Environment Vars
—number of threads
—scheduling type
—dynamic thread

* Directives
—parallel regions
* thread affinity
—worksharing

* loop, sections,... adjustment

* ordered(do across) —nested parallelism
—SIMD —thread limit
—tasking —description of

* loops, groups, dep, prio
—accelerator (target)

* unstructured, nowait
—synchronization
—cancellation
—data attributes

» shared, private [first/last]

* [user] reductions

« target: map data to/from

» target: [first] private, subset

3 11 January 2017

hardware thread
affinity
—thread affinity policy
—default accelerator
devices

IBM - OpenMP for Exascale - Alexandre Eichenberger

= Runtime Variables
—number of
threads
—thread id
—dynamic thread
adjustment
—nested parallelism
—schedule
—active levels
—thread limit
—nesting level
—team size
—locks [hint]
—mapping API

[italic means in progress]

© 2011 IBM Corporation

OpenMP Execution Model for Parallel Regions

* Fork and join model
master thread

\ 4

parallel l l l l }[/;/]orkedr
region J reads

synchronization barrier

\ 4

parallel worker

synchronization barrier

\ 4

* Model:
—sequential code executed by the master thread
— parallel code executed by the master and workers
— parallel region terminated by a synchronization barrier
—memory touched in parallel region is “released/flushed” at barrier

4 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Parallel Construct Example

= Example

/#pragma omp parallel num_threads(2) \

{

printf(“hello ”); parallel work, code sequence
printf(world ”); executed by each thread

}

Qrintf(“\n”); mandatory synchronization barrier

—output: “hello world hello world” or “hello hello world world”

» Additional clauses can modify the parallel region
—dealing with threads (if, num_threads, proc_bind)
—dealing with data (shared, private, first-private)
—dealing with reductions

5 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Worksharing Construct for Loops

» Worksharing constructs distribute work to threads of a parallel region
—examples are loops and sections

/#pragma omp parallel

{
#pragma omp for
for(i=0; i<4; i++) { iterations distributed among the
} printf(“hello); threads of the parallel region

\I}grintf(“woﬂd\n”)- synchronization barriej

—output: “hello hello hello hello world”

—many of parallel region clauses apply here as well
 e.g. shared, private, first-private, reduction

—a few clauses are new
* e.g. schedule, nowait, last-private, ordered

6 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

OpenMP Accelerator Overview

» Simply add a target construct host thread
double A[n,n], B[n,n], C[n,n]; \ device master thread
#pragma omp target
map(to: A, B) map(from: C) device
{ V parallel
int n = 64; region
#pragma omp parallel for
for(int i=0; i<n; i++) { device
for(int j=0; j<n; j++) worker
for(k=0; k<n; k++) v v bbby threads
Cli, jl = All, K] * Bk, jl < device

) J sync
copy* C barrier

—target transfer control of execution to a SINGLE device thread
—clause “map” are used to fine tune copying of data; default is “map(tofrom:)”

* at most one copy of each data structure exists on a device; outermost target map copies data to/from device, copies optional with unified memory

7 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Traditional models: “Execute this one, exclusively-parallel loop”
—such as found in CUDA, OpenCL,...
—transfer control to a single “parallel loop”
—no sequential code (e.g. to initialize data serially on GPU)

* OpenMP model: “Just another normal OpenMP program, on device”
—leverages every* OpenMP construct
—includes parallel regions, parallel loops, tasks, ...
—includes fine grain and coarse grain synchronizations within one team
* e.g. locks, critical regions, barriers...
—can have sequential and parallel code

= OpenMP supports traditional model too:
—it is a “target teams distribute parallel for simd” combined construct

+ exception: target constructs cannot be nested

8 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Data scope & data movement
—approaches to minimizing transfers

= Data types that can be mapped
—scalars, arrays, structs & classes

* Memory Model
—handling unified vs. distributed memory

9 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Overcoming Data Movement

» Scope of data is important host thread

ﬁuble A[n,n], B[n,n], C[n,n]; \ copy A,B

#pragma omp target
map(to: A, B) map(from: C) device
{ : : threads
/I define C in terms of A, B
i copy C
#pragma omp target copy
map(to: C) map(from: D)
{
// define D in terms of C
copy D

—data scope is limited by the target constructs
—no data scope for variable C between the two constructs on the device
—results in needless copies of C

10 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Overcoming Data Movement (cont.)

» Scope of data is important

@ble Aln.nl, B[n.nl, Cln.nl. \

11

{

#pragma omp target data

map(alloc: C)

#pragma omp target
map(to: A, B)

/I define C in terms of A, B
}

#pragma omp target
map(from: D)

{
\\ // define D in terms of C
) /

host thread

device threads

copy A, B

W

—C is now a temporary variable that remains on the device
— C is not initialized on the device

11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

Forcing Data Movement

» Device has at most a single copy of each mapped variable
—map clauses are ignored when data is already in device scope

~

double A[n,n], B[n,n], C[n,n]; =
#pragma omp target data map(alloc: C)

{
#pragma omp target map(to: A, B) map(

{
m——

#pragma omp target map(from: D) map(to: C)

L

/l define C in terms of A, B

// define D in terms of C

: C)

/

c is already in
device scope

thus inner map
clauses of c are
ignored

—add “#pragma omp target update from(C)” force a copy back to the host
—or use “always” qualifier in the map clause, e.g. “map(always from: C)”

12 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

Data Always Residing on Accelerator

= Static data

—use “target declare” to create a resident copy
—if need to move back and forth, can use “target update”

#pragma omp declare target \
double A[100];

int *p;
#pragma omp end declare target

#pragma omp target

{
A[20] = 100;
p = malloc(10*sizeof(int));

}
%ragma omp target update from(A) /

* Dynamic data
—use “target declare” for pointer to data structure
—use malloc within target regions to populate the pointer
—cannot bring pack the dynamic data (not mapped)

13 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Summary of Data Scope

» Scope linked with device execution: target
—“#pragma omp target map(x) {...}”
—defines a data scope for the duration of execution on device

* Pure Scope, without associated device execution: target data
— “#pragma omp target data map(x) {...}”
—only defines a data scope, without launching execution on device

= User can also declare data on the device
—“#pragma omp declare target to(x)”
—“#pragma omp declare target” ... “#pragma omp end declare target”
—user is responsible to move data back and forth (except for static initialization)

» Unstructured pure scopes: target entry/exit
—“pragma omp target enter/exit data map(x)”
—unstructured scope, can be inserted anywhere while executing on the host

14 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Values are consistent between the host and a device after:
—top level target® map clause with to / from
—target® map clause with to / from & always qualifier
—target exit data with a delete clause
—target update with to/from clause

= Top Level?

—we have a ref count for each map

—incremented by 1 for each of the following constructs
» on entry of a target / target data
* target enter data

—decremented by 1 for each of the following constructs
» on exit of a target / target data
» target enter data

—exceptions?
* maps associated with target declare have infinite ref counts
« target exit data have a “delete” clause that forces ref counts to zero

* specifically: target, target data, target enter data, target exit data

15 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Putting it Together: When Copy May Occur?

ﬁpragma omp declare target
inta=0; <

#pragma omp end declare target

#pragma omp target data
map(fromto: a, b)

{ <
#pragma omp target
map(fromto: b, c) map(from: d)

<€

boe

o0 X X X X X7

to: X, b, X, Xi X7

to: X X c, X X?
from: X, X, c, d, X7

4 ..

declare target get init on both
sides, when starting the
_program

(a is already mapped: &

X b is new: alloc, copy to

c is new: alloc, copied to
(_d is new: alloc

P
b is already mapped: @
c was new: copied from, free

#pragma omp target update to(a) <—— (O: 4, X X X X?

#pragma omp target

map(to: a, c, e)
{ <€

} <

Q

16 11 January 2017

IBM - OpenMP for Exascale - Alexandre Eichenberger

to: X Xcec X, e?

from: X, X X X é(?(a already mapped: @

/ from: X b, X X X

(_d was new: copy from, free

(b is already mapped: @ }

[unconditionally: copy a to

g
a is already mapped: G
| C, € are new: alloc, copied to

J

| C, e were new: free

]\

~

a was already mapped: &

X b was new: copied from, free
© 2011 IBM Corporation g

» Private
—makes a private copy on the device

* First private
—makes a private copy on the device, initialized with the host value

» Interactions with mapped data
—a variable cannot be in a map and a private clause on the same construct

17 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Target Data Mapping Types

18 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

» Mapping maintains one copy of data per device

= Scalar, whole arrays
—int a, B[100], C[1000];
—#pragma omp target map(a, B)

= Array shaping
—can shape an array to only load a subset of it with “[offset: length]” syntax
—#pragma omp target map(C[500:100])

= Restrictions:
—a name (e.g. “C” above) can only be used in one array shaping
* e.g. the following is forbidden: map(C[0:100], C[500:100])
« different names can be used (e.g. int *p = &C[0], *q = &C[500])

—a shape can only be resized to a smaller shape
« e.g. map(C[0:200]) is illegal if map(C[0:100]) is already mapped in context

19 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Pointers should be qualified
—otherwise, the runtime doesn’t know what amount of data to allocate and move
—pointer is a firstprivate (modification of pointer on device are not reflected back)

[—int *p = malloc(100*sizeof(int)) }

—#pragma omp target map(p[0:100])

» Unqualified pointers will attempt to locate data
—if the pointer points to mapped data (at offset 0, for length of 0 bytes),
* it will be set to that mapped data
—otherwise, it will be set to NULL

(int AIN], BN, *P; h
p=x7&A: &B;
#pragma omp target data map(A)
#pragma omp target map(p[0:0])

{
printf("OxlIx\n”, p); // x? map of A: NULL

\d /

20 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Structs can be mapped in their entirety
—entire struct is bitwise copied (i.e. pointer p contains an host pointer address)
—struct {int a, B[100], *p, pNum;} s, S[10];
—pragma omp target map(s, S);

= Subset of structs can be mapped
—best way to understand how? Array subsection analogy.
—think as is each struct element is a name for an array element.
—pragma omp target map(s.a, s.B);
—pragma omp target map(s.pNum, s.p[0:s.pNum]);

= Restrictions
—can only access subfields that were explicitly mapped
« if one subfield is explicitly mapped, they must all be explicitly mapped
« if no subfield is explicitly mapped, the the whole struct is mapped
—cannot add additional subfields in an enclosed target constructs

21 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Map an entire class to the device
—using target declare on the whole class using target declare target
—class can then be used on host or device
— constructor/destructor used on host/device, but bitwise copy

#pragma omp declare target
class A { public: int a, b; int foo() {return a+b;} };
#pragma omp end declare target

* New for OpenMP 4.5 — TR4 (preliminary for 5.0
—can also map individual methods
—can map class static variables
—can map class that have virtual functions, as long as they are not used on the
device

—still has issue using the map(*this)... onging work to make it happen

22 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Data Mapping Types: Classes (cont.)

» Introduce target constructs in methods of a class

23

—within a method, can introduce a target construct
—class instance variables are mapped as struct elements

fclass A { public: int a, b, sum;
int foo() {
#pragma omp target // implicit map(this->a, this->b, this->sum}
sum =a + b;
return sum;

Q};

~

j

11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

» References used in the target region have a default mapping
—references used outside of the target region (e.g. in a called function) must be
explicitly mapped, or included in a declare target region.

= Default for arrays: map(tofrom: A)
—array are mapped in their entirety

» Default for scalars: firstprivate(i)
—default can be changed using “defaultmap(tofrom:scalar)” clause

» Default for pointers: map(tofrom: p[0:0])
—default is zero-length pointers

24 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Default Scalar Mapping Pitfalls

= Pitfalls with scalars:
—data that you want back will not be seen with firstprivate

/int A[N], sum=0, i; h

#pragma omp target
#pragma omp teams distribute parallel for reduction(+:sum)
for(i=0; i<N; i++) sum += A[i];

—should write this instead [temporary fix]
/int A[N], sum=0;)
#pragma omp target map(sum)
#pragma omp teams distribute parallel for reduction(+:sum)
for(int i=0; i<N; i++) sum += A[i];

N /

—new to TR4: reduction clause on map, which will negate the need to map sum

25 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Default Pointer Mapping Pitfalls

= Pitfalls with pointers:
— pointers will become implicit zero-length arrays
—result in NULL value on the device if data is not mapped
int AIN], *p; p = &A;
#pragma omp target map(p[0:0])
for(i=0; i<N; i++) p[i]++;

—should write this instead
/int A[N], *p; p = &A; h
#pragma omp target data map(A) // at some earlier time
#pragma omp target map(p[0:0])
for(i=0; i<N; i++) p[i]++;
\ /

—“export XLSMPOPTS=mapwarning=on” will emit warning for NULL pointers

26 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

* These map pairs are not equivalent:
—map(p[:]) maps the pointer to data mapped before (or NULL if not)
—map(p) maps the pointer as a scalar, copy host address on the device

—map(p[:N]) maps an array of N elements
—map(P[N]) maps the Nth element

27 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Implicit Scalar-Map Pitfall

» Mapping a scalar in outer-scope does not change implicit rules

/int sum =0)
#pragma omp target data map(sum)
{
#pragma omp target // implicit map of sum -> first private
sum++;
J /
—while it is true that sum is mapped in the target data
—it is implicit on the target
« target does not “care” that it was previously mapped
* it will be first private
= Correct
/int sum=0)
#pragma omp target data map(sum)
{

#pragma omp target map(sum)
sum++;

28 11 January 2(%\ YT O POV T T EA TS e To AT T oo oIS Tg o

zoTT m’% Corporation

29

Target Memory Model

11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

Accelerator Memory Model

* Programmers may not assume which model is used

host

unified

mem & thread

o4
\

device
threads

C

/#pragma omp target\

map(from: a,b)
map(to: c)
{
// define ¢ in
/[terms of a, b

\J

distributed

host

mem & thread

C

/

device
threads & mem

cop

copy

—so0 the values of ¢ may (unified) or may not (distributed) change during target
execution
—user should not assume one or the other in a valid OpenMP program

30 11 January 2017

IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

» Different results depending on memory model: not a valid program

* How to write a legal OpenMP program:
—must schedule a ‘target update’ or 'target map(always:)’
« each time that a value def/used on one device
« and then def/used on another device

—[use/use pattern is fine without intervening target update/map always]

31 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Map clause does not need to copy data to device private memory
—since it can access shared memory
—user must still have them...

» But we may decide to selectively copy data
—e.g. read only data accessed by both host and accelerators
 without copy: may generate misses if not cacheable in both
* with explicit copy: no misses

—e.g. dense array may be copied over
» single DMA moves all of the data

—e.g. data structures with pointers may not be copied over
* to “deep copy” (feature not avail as of now) a linked list, one needs to DMA
each element of the list to the device, update all of the pointers, ... and they
may not be used anyway

32 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Target Execution Model

33 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

» Target constructs
—start a single team of threads
—single initial thread executes until encountering a parallel construct
—#pragma omp target

» Target teams constructs
—start a league of teams (of threads)
—teams cannot synchronize, but we can have reductions over all teams
» atomic operations on data no larger than 64 bits allowed
—one initial thread executes, per team (just like threads in a parallel)
—execution can diverge when executing a “distribute” (just like “for” in a parallel)
—standalone construct
» must be directly nested within a target construct
« #pragma omp teams, directly nested inside
—combined constructs, e.g.
» #pragma omp target teams

34 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Target Teams

= Combined target teams construct host thread

device initial
ﬁoragma omp target teams \ reads

map(to: a, b) map(from: c)

’ \
{ 7 T
int n = 64; v

#pragma omp distribute

for(int i=0; i<n; i++) { | | | |
#pragma omp parallel for
for(int j=0; j<n; j++) A 4

for(k=0; k<n; k++)
cli, jl = a[l, k] * b[k,

e,)

—target transfer control of execution to one device thread per team
—every team initially execute the same code
—in a “#pragma omp distribute”, each team get it's subset of iteration space

one team

\%

35 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Several clauses can be used with teams (not target)
—num_teams(int): number of desired teams in the league
—thread_limit(int): upper bound on the number of threads per team
—reduction(reduction identifier: var list):
* reduction to be performed by all teams in the league
 reduced value available on the host after the target construct is complete

36 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Distribute work of a loop among teams
—similar to “#pragma omp for”, but for teams instead of threads
—fewer schedule policies (only static at this time)
—has same data attributes (private, firstprivate, lastprivate) and collapse
—but no barrier or reductions at the end of the distribute

37 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Reductions can be added on
—teams
—distribute
— parallel
—for
—simd

38 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Current construct that are optimized (special pattern)
—target teams distribute parallel for
—teams distribute parallel for

—result in a much optimized pattern, for compiler and runtime.

39 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Interaction with Device Native Routines

= On target data, use _device_ptr(p)
—allows the user to extract the device address of a mapped variable
—can be used to call native routines of a device (e.g. Cuda kernels)

» On target, is_device_ptr(p)
—allows the user to give a device computation the address of a device buffer

» Typical use

it AINI; N

#pragma omp target data map(A) use_device ptr(A)
{

cuda_step1(A);

#pragma omp target is_device ptr(A)
{I"step 2 */}

cuda_step3(A);

\ /

40 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Runtime Routines & Environment Variables

41 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

-fopenmp-nonaliased-maps
—flag enables non-coherent texture loads

42 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= OMP_DEFAULT_DEVICE
—set default device, when “device(num)” clause is not specified

* OMP_TEAMS_LIMIT [non-standard]
—set maximum number of teams, override “num_teams(num)” when too large

* OMP_NUM_TEAMS [non-standard]
—set default number of teams, when “num_teams(num)” is not specified

= XLSMPOPTS=' TARGETTHREADLIMIT=num’
—set the maximum number of threads on a target, if thread_limit is not specified

» XLSMPOPTS=TARGETNUMTHREADS=num’
—set default number of threads on a target

= XLSMPOPTS=' MAPWARNING=ON’
—emit runtime warning when a zero-length pointer is not mapped

= XLSMPOPTS=' TARGET=MANDATORY | DISABLED | OPTIONAL’
—force running on the device, disable running on the device, or run if possible

43 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Other host environment variables have no impact on devices

= When target code works on host:
—need OMP_NESTED to parallelize teams and parallel on host
—need OMP_NUM_THREADS to specifies number of host threads

—need OMP_PROC _BIND to bind threads to hardware
—need OMP_PLACES to specify machine configuration (esp. with MPI)

44 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Set/get default device (host only)
—void omp_set_default_device(int num);
—int omp_get_default_device();

» Get number of target devices (host only)
—int omp_get _num_devices();

* Are we executing on the host? (host/targets)
—int omp_is_initial_device();

= Getting team info (host/targets)
—int omp_get_num_teams();
—int omp_get team_num();

45 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Manually handle maps via routines

» Alloc/Free memory
—void* omp_target_alloc(size t size, int device_num);
—void omp_target free(void * device_ptr, int device_num);

* Maps
—int omp_target _is_present(void * ptr, int device _num);
—int omp_target associate ptr(void * host_ptr, void * device_ptr, size t size,
size t device offset, int device_num);
—int omp_target disassociate ptr(void * ptr, int device_num);

* Memory move
—int omp_target memcpy(void * dst, void * src, size t length, size t dst_offset,
size t src_offset, int dst_device _num, int src_device _num);

» Host device number [to be used in device_num here]
—int omp_get initial _device()

46 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= OpenMP 4+ has lots of support for accelerators

= Our implementation is 4.5 compliant
—still working on a few bugs & issues

= Our implementation is progressing toward high performance
—initial focus is on functionality
—have started, and will continue, to tune for higher performance
—have started, and will continue, to work on performance portability

» Objectives of this meeting, from the compiler’s perspective
—feedback on language features, wish list,...
— getting micro-benchmarks for performance tuning

47 11 January 2017 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

