
© 2011 IBM Corporation
T.J. Watson, IBM Research

Alexandre Eichenberger

01/10/17

OpenMP 4.5
– Relevant Accelerator Features –

© 2011 IBM Corporation

A Paradigm Change with OpenMP 4.5
§ Extracting maximum performance:

– to program a GPU: you have to use CUDA, OpenCL, OpenGL, DirectX,
Intrinsics, C++AMP, OpenACC

– to program a host SIMD unit: you have to use Intrinsics, OpenCL, or auto-
vectorization (possibly aided by compiler hints)

– to program the CPU threads, you might use C/C++11, OpenMP, TBB, Cilk, MS
Async/then continuation, Apple GCD, Google executors

§ With OpenMP 4.5 and up:
– you can use the same standard to program the GPU, the SIMD units, and the

CPU threads

2 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

[sources: Michael Wong]

© 2011 IBM Corporation

OpenMP 4+ Features
§ Directives

– parallel regions
• thread affinity

–worksharing
• loop, sections,…
• ordered(do across)

–SIMD
–tasking

• loops, groups, dep, prio
–accelerator (target)

• unstructured, nowait
–synchronization
–cancellation
–data attributes

• shared, private [first/last]
• [user] reductions
• target: map data to/from
• target: [first] private, subset

3 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

§ Environment Vars
–number of threads
–scheduling type
–dynamic thread

adjustment
–nested parallelism
–thread limit
–description of

hardware thread
affinity

–thread affinity policy
–default accelerator

devices

§ Runtime Variables
–number of

threads
–thread id
–dynamic thread

adjustment
–nested parallelism
–schedule
–active levels
–thread limit
–nesting level
–team size
–locks [hint]
–mapping API

[italic means in progress]

© 2011 IBM Corporation

OpenMP Execution Model for Parallel Regions
§ Fork and join model

§ Model:
– sequential code executed by the master thread
– parallel code executed by the master and workers
– parallel region terminated by a synchronization barrier
– memory touched in parallel region is “released/flushed” at barrier

4 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

master thread

parallel
region

worker
threads

synchronization barrier

parallel
region

worker
threads

synchronization barrier

© 2011 IBM Corporation

Parallel Construct Example
§ Example

– output: “hello world hello world” or “hello hello world world”

§ Additional clauses can modify the parallel region
– dealing with threads (if, num_threads, proc_bind)
– dealing with data (shared, private, first-private)
– dealing with reductions

5 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

#pragma omp parallel num_threads(2)
{

printf(“hello ”);
printf(world ”);

}

printf(“\n”);

parallel work, code sequence
executed by each thread

mandatory synchronization barrier

© 2011 IBM Corporation

Worksharing Construct for Loops
§ Worksharing constructs distribute work to threads of a parallel region

– examples are loops and sections

– output: “hello hello hello hello world”

– many of parallel region clauses apply here as well
• e.g. shared, private, first-private, reduction

– a few clauses are new
• e.g. schedule, nowait, last-private, ordered

6 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

#pragma omp parallel
{

#pragma omp for
for(i=0; i<4; i++) {

printf(“hello ”);
}

}
printf(“world\n”);

iterations distributed among the
threads of the parallel region

synchronization barrier

© 2011 IBM Corporation

OpenMP Accelerator Overview
§ Simply add a target construct

– target transfer control of execution to a SINGLE device thread
– clause “map” are used to fine tune copying of data; default is “map(tofrom:)”

7 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

double A[n,n], B[n,n], C[n,n];
#pragma omp target

map(to: A, B) map(from: C)
{

int n = 64;
#pragma omp parallel for
for(int i=0; i<n; i++) {

for(int j=0; j<n; j++)
for(k=0; k<n; k++)

C[i, j] = A[I, k] * B[k, j];
}

}

* at most one copy of each data structure exists on a device; outermost target map copies data to/from device, copies optional with unified memory

host thread

device
parallel
region

device master thread

device
worker
threads

copy* A, B

copy* C

device
sync
barrier

© 2011 IBM Corporation

Difference with Typical GPU Programming Models
§ Traditional models: “Execute this one, exclusively-parallel loop”

– such as found in CUDA, OpenCL,…
– transfer control to a single “parallel loop”
– no sequential code (e.g. to initialize data serially on GPU)

§ OpenMP model: “Just another normal OpenMP program, on device”
– leverages every+ OpenMP construct
– includes parallel regions, parallel loops, tasks, …
– includes fine grain and coarse grain synchronizations within one team

• e.g. locks, critical regions, barriers…
– can have sequential and parallel code

§ OpenMP supports traditional model too:
– it is a “target teams distribute parallel for simd” combined construct

8 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

+ exception: target constructs cannot be nested

© 2011 IBM Corporation

Target Data
§ Data scope & data movement

– approaches to minimizing transfers

§ Data types that can be mapped
– scalars, arrays, structs & classes

§ Memory Model
– handling unified vs. distributed memory

9 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Overcoming Data Movement
§ Scope of data is important

– data scope is limited by the target constructs
– no data scope for variable C between the two constructs on the device
– results in needless copies of C

10 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

double A[n,n], B[n,n], C[n,n];
#pragma omp target

map(to: A, B) map(from: C)
{

// define C in terms of A, B
}

#pragma omp target
map(to: C) map(from: D)

{
// define D in terms of C

}

host thread

device
threads

copy A,B

copy C

copy C

copy D

© 2011 IBM Corporation

Overcoming Data Movement (cont.)
§ Scope of data is important

– C is now a temporary variable that remains on the device
– C is not initialized on the device

11 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

double A[n,n], B[n,n], C[n,n];
#pragma omp target data

map(alloc: C)
{

#pragma omp target
map(to: A, B)

{
// define C in terms of A, B

}

#pragma omp target
map(from: D)

{
// define D in terms of C

}
}

host thread

copy A, B

device threads

copy D

C

A,B

D

© 2011 IBM Corporation

Forcing Data Movement
§ Device has at most a single copy of each mapped variable

– map clauses are ignored when data is already in device scope

– add “#pragma omp target update from(C)” force a copy back to the host
– or use “always” qualifier in the map clause, e.g. “map(always from: C)”

12 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

double A[n,n], B[n,n], C[n,n];
#pragma omp target data map(alloc: C)
{

#pragma omp target map(to: A, B) map(from: C)
{

// define C in terms of A, B
}

#pragma omp target map(from: D) map(to: C)
{

// define D in terms of C
}

}

thus inner map
clauses of c are
ignored

c is already in
device scope

© 2011 IBM Corporation

Data Always Residing on Accelerator
§ Static data

– use “target declare” to create a resident copy
– if need to move back and forth, can use “target update”

§ Dynamic data
– use “target declare” for pointer to data structure
– use malloc within target regions to populate the pointer
– cannot bring pack the dynamic data (not mapped)

13 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

#pragma omp declare target
double A[100];
int *p;
#pragma omp end declare target

#pragma omp target
{

A[20] = 100;
p = malloc(10*sizeof(int));

}
#pragma omp target update from(A)

© 2011 IBM Corporation

Summary of Data Scope
§ Scope linked with device execution: target

– “#pragma omp target map(x) {…}”
– defines a data scope for the duration of execution on device

§ Pure Scope, without associated device execution: target data
– “#pragma omp target data map(x) {…}”
– only defines a data scope, without launching execution on device

§ User can also declare data on the device
– “#pragma omp declare target to(x)”
– “#pragma omp declare target” … “#pragma omp end declare target”
– user is responsible to move data back and forth (except for static initialization)

§ Unstructured pure scopes: target entry/exit
– “pragma omp target enter/exit data map(x)”
– unstructured scope, can be inserted anywhere while executing on the host

14 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

In Details: When Are Values Consistent?
§ Values are consistent between the host and a device after:

– top level target* map clause with to / from
– target* map clause with to / from & always qualifier
– target exit data with a delete clause
– target update with to/from clause

§ Top Level?
– we have a ref count for each map
– incremented by 1 for each of the following constructs

• on entry of a target / target data
• target enter data

– decremented by 1 for each of the following constructs
• on exit of a target / target data
• target enter data

– exceptions?
• maps associated with target declare have infinite ref counts
• target exit data have a “delete” clause that forces ref counts to zero

* specifically: target, target data, target enter data, target exit data
15 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

#pragma omp declare target
int a = 0;
#pragma omp end declare target

#pragma omp target data
map(fromto: a, b)

{
#pragma omp target

map(fromto: b, c) map(from: d)
{
}

#pragma omp target update to(a)

#pragma omp target
map(to: a, c, e)

{
}

}

to: a, b, c, d, e ?

from: a, b, c, d, e?

to: a, b, c, d, e ?
from: a, b, c, d, e?

to: a, b, c, d, e ?

to: a, b, c, d, e ?

from: a, b, c, d, e?

to: a, b, c, d, e ?

Putting it Together: When Copy May Occur?

16 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

X X X X
X X X

X X X X X
declare target get init on both
sides, when starting the
program

X X X X
a is already mapped: Ø
b is new: alloc, copy to

b is already mapped: Ø
c is new: alloc, copied to
d is new: alloc

b is already mapped: Ø
c was new: copied from, free
d was new: copy from, free

X X X X unconditionally: copy a to

X X X
a is already mapped: Ø
c, e are new: alloc, copied to

X X X X X a already mapped: Ø
c, e were new: free

X X X X
a was already mapped: Ø
b was new: copied from, free

© 2011 IBM Corporation

Other Data Clauses on Target
§ Private

– makes a private copy on the device

§ First private
– makes a private copy on the device, initialized with the host value

§ Interactions with mapped data
– a variable cannot be in a map and a private clause on the same construct

17 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Target Data Mapping Types

18 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Data Mapping Types: Basic Types
§ Mapping maintains one copy of data per device

§ Scalar, whole arrays
– int a, B[100], C[1000];
– #pragma omp target map(a, B)

§ Array shaping
– can shape an array to only load a subset of it with “[offset: length]” syntax
– #pragma omp target map(C[500:100])

§ Restrictions:
– a name (e.g. “C” above) can only be used in one array shaping

• e.g. the following is forbidden: map(C[0:100], C[500:100])
• different names can be used (e.g. int *p = &C[0], *q = &C[500])

– a shape can only be resized to a smaller shape
• e.g. map(C[0:200]) is illegal if map(C[0:100]) is already mapped in context

19 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Data Mapping Types: Pointers
§ Pointers should be qualified

– otherwise, the runtime doesn’t know what amount of data to allocate and move
– pointer is a firstprivate (modification of pointer on device are not reflected back)

§ Unqualified pointers will attempt to locate data
– if the pointer points to mapped data (at offset 0, for length of 0 bytes),

• it will be set to that mapped data
– otherwise, it will be set to NULL

20 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

int A[N], B[N], *p;
p = x ? &A : &B;
#pragma omp target data map(A)
#pragma omp target map(p[0:0])
{

printf(”0xllx\n”, p); // x ? map of A : NULL
}

– int *p = malloc(100*sizeof(int))
– #pragma omp target map(p[0:100])

© 2011 IBM Corporation

Data Mapping Types: Struct
§ Structs can be mapped in their entirety

– entire struct is bitwise copied (i.e. pointer p contains an host pointer address)
– struct {int a, B[100], *p, pNum;} s, S[10];
– pragma omp target map(s, S);

§ Subset of structs can be mapped
– best way to understand how? Array subsection analogy.
– think as is each struct element is a name for an array element.
– pragma omp target map(s.a, s.B);
– pragma omp target map(s.pNum, s.p[0:s.pNum]);

§ Restrictions
– can only access subfields that were explicitly mapped

• if one subfield is explicitly mapped, they must all be explicitly mapped
• if no subfield is explicitly mapped, the the whole struct is mapped

– cannot add additional subfields in an enclosed target constructs

21 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Data Mapping Types: Classes
§ Map an entire class to the device

– using target declare on the whole class using target declare target
– class can then be used on host or device
– constructor/destructor used on host/device, but bitwise copy

§ New for OpenMP 4.5 – TR4 (preliminary for 5.0
– can also map individual methods
– can map class static variables
– can map class that have virtual functions, as long as they are not used on the

device

– still has issue using the map(*this)… onging work to make it happen

22 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

#pragma omp declare target
class A { public: int a, b; int foo() {return a+b;} };
#pragma omp end declare target

© 2011 IBM Corporation

Data Mapping Types: Classes (cont.)
§ Introduce target constructs in methods of a class

– within a method, can introduce a target construct
– class instance variables are mapped as struct elements

23 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

class A { public: int a, b, sum;
int foo() {
#pragma omp target // implicit map(this->a, this->b, this->sum}
sum = a + b;

return sum;
}};

© 2011 IBM Corporation

Default Mapping
§ References used in the target region have a default mapping

– references used outside of the target region (e.g. in a called function) must be
explicitly mapped, or included in a declare target region.

§ Default for arrays: map(tofrom: A)
– array are mapped in their entirety

§ Default for scalars: firstprivate(i)
– default can be changed using “defaultmap(tofrom:scalar)” clause

§ Default for pointers: map(tofrom: p[0:0])
– default is zero-length pointers

24 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Default Scalar Mapping Pitfalls
§ Pitfalls with scalars:

– data that you want back will not be seen with firstprivate

– should write this instead [temporary fix]

– new to TR4: reduction clause on map, which will negate the need to map sum

25 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

int A[N], sum=0, i;
#pragma omp target
#pragma omp teams distribute parallel for reduction(+:sum)

for(i=0; i<N; i++) sum += A[i];

int A[N], sum=0;
#pragma omp target map(sum)
#pragma omp teams distribute parallel for reduction(+:sum)

for(int i=0; i<N; i++) sum += A[i];

© 2011 IBM Corporation

Default Pointer Mapping Pitfalls
§ Pitfalls with pointers:

– pointers will become implicit zero-length arrays
– result in NULL value on the device if data is not mapped

– should write this instead

– “export XLSMPOPTS=mapwarning=on” will emit warning for NULL pointers

26 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

int A[N], *p; p = &A;
#pragma omp target map(p[0:0])

for(i=0; i<N; i++) p[i]++;

int A[N], *p; p = &A;
#pragma omp target data map(A) // at some earlier time

#pragma omp target map(p[0:0])
for(i=0; i<N; i++) p[i]++;

© 2011 IBM Corporation

Default Pointer Mapping Pitfalls (cont.)
§ These map pairs are not equivalent:

– map(p[:]) maps the pointer to data mapped before (or NULL if not)
– map(p) maps the pointer as a scalar, copy host address on the device

– map(p[:N]) maps an array of N elements
– map(P[N]) maps the Nth element

27 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Implicit Scalar-Map Pitfall
§ Mapping a scalar in outer-scope does not change implicit rules

– while it is true that sum is mapped in the target data
– it is implicit on the target

• target does not “care” that it was previously mapped
• it will be first private

§ Correct

28 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

int sum = 0
#pragma omp target data map(sum)
{

#pragma omp target // implicit map of sum -> first private
sum++;

}

int sum = 0
#pragma omp target data map(sum)
{

#pragma omp target map(sum)
sum++;

}

© 2011 IBM Corporation

Target Memory Model

29 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Accelerator Memory Model
§ Programmers may not assume which model is used

– so the values of c may (unified) or may not (distributed) change during target
execution

– user should not assume one or the other in a valid OpenMP program

30 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

#pragma omp target
map(from: a,b)
map(to: c)

{
// define c in
// terms of a, b

}

unified

c

distributed

c

c

host
mem & thread

device
threads

c

c

c

host
mem & thread

device
threads & mem

copy

copy

© 2011 IBM Corporation

Accelerator Memory Model: Valid Program
§ Different results depending on memory model: not a valid program

§ How to write a legal OpenMP program:
– must schedule a ‘target update’ or ’target map(always:)’

• each time that a value def/used on one device
• and then def/used on another device

– [use/use pattern is fine without intervening target update/map always]

31 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Accelerators with Unified Memory
§ Map clause does not need to copy data to device private memory

– since it can access shared memory
– user must still have them…

§ But we may decide to selectively copy data
– e.g. read only data accessed by both host and accelerators

• without copy: may generate misses if not cacheable in both
• with explicit copy: no misses

– e.g. dense array may be copied over
• single DMA moves all of the data

– e.g. data structures with pointers may not be copied over
• to “deep copy” (feature not avail as of now) a linked list, one needs to DMA

each element of the list to the device, update all of the pointers, … and they
may not be used anyway

32 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Target Execution Model

33 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Target & Target Teams
§ Target constructs

– start a single team of threads
– single initial thread executes until encountering a parallel construct
– #pragma omp target

§ Target teams constructs
– start a league of teams (of threads)
– teams cannot synchronize, but we can have reductions over all teams

• atomic operations on data no larger than 64 bits allowed
– one initial thread executes, per team (just like threads in a parallel)
– execution can diverge when executing a “distribute” (just like “for” in a parallel)
– standalone construct

• must be directly nested within a target construct
• #pragma omp teams, directly nested inside

– combined constructs, e.g.
• #pragma omp target teams

34 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Target Teams
§ Combined target teams construct

– target transfer control of execution to one device thread per team
– every team initially execute the same code
– in a “#pragma omp distribute”, each team get it’s subset of iteration space

35 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

#pragma omp target teams
map(to: a, b) map(from: c)

{
int n = 64;
#pragma omp distribute
for(int i=0; i<n; i++) {

#pragma omp parallel for
for(int j=0; j<n; j++)

for(k=0; k<n; k++)
c[i, j] = a[I, k] * b[k,

j];
}

}

host thread
device initial
threads

one team

© 2011 IBM Corporation

Teams Clauses
§ Several clauses can be used with teams (not target)

– num_teams(int): number of desired teams in the league
– thread_limit(int): upper bound on the number of threads per team
– reduction(reduction identifier: var list):

• reduction to be performed by all teams in the league
• reduced value available on the host after the target construct is complete

36 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Distribute Construct
§ Distribute work of a loop among teams

– similar to “#pragma omp for”, but for teams instead of threads
– fewer schedule policies (only static at this time)
– has same data attributes (private, firstprivate, lastprivate) and collapse
– but no barrier or reductions at the end of the distribute

37 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Reductions
§ Reductions can be added on

– teams
– distribute
– parallel
– for
– simd

38 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Optimized Constructs
§ Current construct that are optimized (special pattern)

– target teams distribute parallel for
– teams distribute parallel for

– result in a much optimized pattern, for compiler and runtime.

39 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Interaction with Device Native Routines
§ On target data, use_device_ptr(p)

– allows the user to extract the device address of a mapped variable
– can be used to call native routines of a device (e.g. Cuda kernels)

§ On target, is_device_ptr(p)
– allows the user to give a device computation the address of a device buffer

§ Typical use

40 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

int A[N];
#pragma omp target data map(A) use_device_ptr(A)
{

cuda_step1(A);
#pragma omp target is_device_ptr(A)
{ /* step 2 */ }
cuda_step3(A);

}

© 2011 IBM Corporation

Runtime Routines & Environment Variables

41 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Compiler Flags
-fopenmp-nonaliased-maps

– flag enables non-coherent texture loads

42 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Environment Variables
§ OMP_DEFAULT_DEVICE

– set default device, when “device(num)” clause is not specified

§ OMP_TEAMS_LIMIT [non-standard]
– set maximum number of teams, override “num_teams(num)” when too large

§ OMP_NUM_TEAMS [non-standard]
– set default number of teams, when “num_teams(num)” is not specified

§ XLSMPOPTS=' TARGETTHREADLIMIT=num’
– set the maximum number of threads on a target, if thread_limit is not specified

§ XLSMPOPTS=‘TARGETNUMTHREADS=num’
– set default number of threads on a target

§ XLSMPOPTS=' MAPWARNING=ON’
– emit runtime warning when a zero-length pointer is not mapped

§ XLSMPOPTS=' TARGET=MANDATORY | DISABLED | OPTIONAL’
– force running on the device, disable running on the device, or run if possible

43 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Environment Variables
§ Other host environment variables have no impact on devices

§ When target code works on host:
– need OMP_NESTED to parallelize teams and parallel on host
– need OMP_NUM_THREADS to specifies number of host threads
– need OMP_PROC_BIND to bind threads to hardware
– need OMP_PLACES to specify machine configuration (esp. with MPI)

44 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Runtime Routine
§ Set/get default device (host only)

– void omp_set_default_device(int num);
– int omp_get_default_device();

§ Get number of target devices (host only)
– int omp_get_num_devices();

§ Are we executing on the host? (host/targets)
– int omp_is_initial_device();

§ Getting team info (host/targets)
– int omp_get_num_teams();
– int omp_get_team_num();

45 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Device Memory Routine
§ Manually handle maps via routines

§ Alloc/Free memory
– void* omp_target_alloc(size_t size, int device_num);
– void omp_target_free(void * device_ptr, int device_num);

§ Maps
– int omp_target_is_present(void * ptr, int device_num);
– int omp_target_associate_ptr(void * host_ptr, void * device_ptr, size_t size,

size_t device_offset, int device_num);
– int omp_target_disassociate_ptr(void * ptr, int device_num);

§ Memory move
– int omp_target_memcpy(void * dst, void * src, size_t length, size_t dst_offset,

size_t src_offset, int dst_device_num, int src_device_num);

§ Host device number [to be used in device_num here]
– int omp_get_initial_device()

46 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

© 2011 IBM Corporation

Concluding Remarks
§ OpenMP 4+ has lots of support for accelerators

§ Our implementation is 4.5 compliant
– still working on a few bugs & issues

§ Our implementation is progressing toward high performance
– initial focus is on functionality
– have started, and will continue, to tune for higher performance
– have started, and will continue, to work on performance portability

§ Objectives of this meeting, from the compiler’s perspective
– feedback on language features, wish list,…
– getting micro-benchmarks for performance tuning

47 IBM - OpenMP for Exascale - Alexandre Eichenberger11 January 2017

