IBM Power8 CPUs - Overview

Each compute node has two sockets, with 10 cores per socket => 20 cores per node.

On summitdev, nodes are in SMT8 mode => 8 hardware threads per core => 160 hw threads per node.
Linux treats each hardware thread as a logical cpu.

Placement and binding of threads is very important for good performance.

There is a significant NUMA nature to memory access : memory local to your socket is best.

On summitdev, each compute node has 256 GB main memory.

There are four Pascal GPUs per node (devices 0,1 on socket 0, devices 2,3 on socket 1).

Some commands to run on the compute nodes :

$ numactl --hardware (lists logical cpus and numa domains)

$ cat /proc/meminfo (lists host memory)

S cat /proc/cpuinfo (minimal info on CPUs .. more about frequency later)
$ nvidia-smi -g (information about the NVIDIA GPUs)

$ nvidia-smi topo -m (shows GPU/CPU topology and affinity information)

Sketch of Power8 Nodes on summitdev

Each CPU socket has 10 cores, 80 hardware threads.

GPUs 0,1 are connected by NVLINK to CPUO, and have affinity for logical cpus 0-79.
GPUs 2,3 are connected by NVLINK to CPU1, and have affinity for logical cpus 80-159.

Each Pascal GPU has 16 GB memory, peak dp Flops ~5 TF, stream triad bw ~520 GB/sec.
Total host memory = 256 GB, peak dp Flops ~560 GF, stream triad bw ~180 GB/sec.

Power8 frequency can be adjusted by the Linux kernel, ~3.5 GHz is typical for HPC workloads.
GPU clocks can be controlled via nvidia-smi.

Power8 CPU Details

64 KB L1 data-cache per core, 3-5 cycles latency load to use.

32 KB L1 instruction cache per core.

512 KB L2 cache per core, ~12 cycles latency.

8 MB L3 cache per core (NUCA architecture), ~27 cycles latency.
Two independent fixed-point units (FXU).

Two independent load-store units (LSU) plus two more load units.
Two independent floating-point units (VSU) (vector/scalar units).
Max double-precision floating point issue rate is 4 fmadds per cycle.
Max single-precision floating-point issue rate is 8 fmadds per cycle.
Max instruction completion rate is 8 per cycle.

Floating-point pipeline latency ~7 cycles.

Basic CPU performance measurements - summitdev

Measured double-precision Flops using dgemm() from IBM ESSL library: per-node performance
summitdev-r0cln02 reports 507.916 GFlops

summitdev-r0c2n02 reports 507.689 GFlops (507GF ~ 20*8*3.5GHz*0.90)
summitdev-r0cOnl0 reports 507.013 GFlops

Measured single-precision Flops using sgemm() from IBM ESSL library: per-node performance
summitdev-r0c2n02 reports 962.680 GFlops

summitdev-r0cOn06 reports 962.092 GFlops (962GF ~ 20*16*3.5GHz*0.86)
summitdev-r0c2n07 reports 962.073 GFlops

Stream benchmark : host = summitdev-rOcOn15
The total memory requirement 1is 35.8 GB
You are running each test 20 times
Function Rate (GB/s) Avg time Min time Max time

Copy': 149.08 0.1738 0.1542 0.1751
Scale: 147.87 0.1748 0.1575 0.1777
Add: 182.53 0.2119 0.2026 0.2140
Triad: 177.66 0.2179 0.2062 0.2266
Load: 143.20 0.2714 0.2464 0.3175

Power8 double-precision SIMD width is two : max dp Flops = #cores * 8 * Freq.
Power8 single-precision SIMD width is four : max sp Flops = #cores * 16 * Freq.
Normal frequency is ~3.5 GHz for dgemm/sgemm => ~90% of peak Flops is achieved.

For memory bandwidth : max read bw = 8*19.2 = 153.6 GB/sec per node
max write bw = 8*9.6 = 76.8 GB/sec per node
max triad bw = 230.4 GB/sec (8*19.2 read + 8*9.6 write) per node

Aggregate Bandwidth (GB/sec)

Power8 Memory Bandwidth Test - daxpy

2000

1800

1600

—— DSCR 7
—m— Standard

1400

1000

800

600

400

200

1000

10000

100000 1000000 10000000

Array Size (Bytes/core)

100000000

1000000000

daxpy : y(1) = a*x(i) + y()

Basic GPU health check on summitdev

export OMP NUM THREADS=10; export OMP PLACES={0:10:8}

./health

(code executes on socket 0)

found 4 GPU devices on host summitdev-r0cOnl3

checking device 0 =
host to device transfer rate
host to device transfer rate
device to host transfer rate
device to host transfer rate
GPU daxpy bandwidth = 503.35
GPU dgemm TFlops = 4.848

checking device 1 =
host to device transfer rate
host to device transfer rate
device to host transfer rate
device to host transfer rate
GPU daxpy bandwidth = 504.59
GPU dgemm TFlops = 4.955

checking device 2 =
host to device transfer rate
host to device transfer rate
device to host transfer rate
device to host transfer rate
GPU daxpy bandwidth = 502.11
GPU dgemm TFlops = 5.002

checking device 3 =
host to device transfer rate
host to device transfer rate
device to host transfer rate
device to host transfer rate
GPU daxpy bandwidth = 502.07
GPU dgemm TFlops = 4.932

Tesla P100-SXM2-16GB

from pinned
from pageable
from pinned
from pageable
GB/sec

Tesla P100-SXM2-16GB

from pinned
from pageable
from pinned
from pageable
GB/sec

Tesla P100-SXM2-16GB

from pinned
from pageable
from pinned
from pageable
GB/sec

Tesla P100-SXM2-16GB

from pinned
from pageable
from pinned
from pageable
GB/sec

memory
memory
memory
memory

memory
memory
memory
memory

memory
memory
memory
memory

memory
memory
memory
memory

32
14.
34.
10

32.
14.

.35

46
01

.57

34
72

GB/sec
GB/sec
GB/sec
GB/sec

GB/sec
GB/sec

34.01 GR/sec
6.04 GB/sec

29.75 GB/sec
17.36 GB/sec
21.85 GB/sec
6.31 GB/sec

29.72 GB/sec
17.16 GB/sec
21.87 GB/sec
6.27 GB/sec

Programming Environment on summitdev

The summitdev system uses the modules infrastructure :

$ module list (shows the modules that are loaded in your environment)

$ module avail (shows the available modules)

$ module add pgi/16.10 (loads the current PGI compiler, with some side effects)

$ module unload module_name (unloads the specified module, with some side effects)

Your choice of modules affects PATH, LD LIBRARY_PATH, and other env variables.

Default user limits are different on the login node and the compute nodes (check ulimit -a).
Stack and core-file size are limited on the login node, but not on the compute nodes.

Use the login node to edit, compile, and submit jobs ... run all jobs on compute nodes.
Compilers : clang, gnu, pgi, ibom xlI ... nvcc ... a lot of options to consider

gcc, g++, gfortran : default version is 4.8.5;
Some options to be aware of ;. -mcpu=power8 , -Ofast, -fopenmp
The gnu compilers are the default for nvcc, but you can control that with the -ccbin option.

pgcc, pgc++, pgfo0 : most recent version is 16.10 ... your best option for OpenACC support.
Example invocation : pgcc -c -mp -acc -ta=tesla:cc60 -Minfo=accel -fast nbody1l.c

xlc_r, xIC_r (13.1.5), xIf2008 r (15.1.5) : has OpenMP 4.5 features : -gsmp=omp -qoffload
Some options to know : -gversion, -ghot, -qsimd=auto, -glist, -gipa, -gcuda, ...
IBM XL compilers often generate the most efficient CPU code. CUDA Fortran is supported.
Two XL Fortran porting issues : -gextname to add an underscore; -WF,-DABC,-DXYZ for cpp.

clang, clang++, xlflang : OpenMP 4.5 features : -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda

nvcc : -arch=sm_60 option for Pascal GPUs; can specify compiler using -ccbin

Some Compiler Documentation — Useful Links

IBM XL C/C++ 13.1.5 pdf files :
http://www-01.ibm.com/support/docview.wss?uid=swg27048883

IBM XL Fortran 15.1.5 pdf files :
http://www-01.ibm.com/support/docview.wss?uid=swg27048884

PGI Documetation for OpenPOWER and NVIDIA Processors ... pdf files :
https://www.pgroup.com/resources/docs-openpower.htm

GNU compilers : https://gcc.gnu.org/
The clang compiler : http://clang.llvm.org/

OpenMP specifications : http://www.openmp.org/

http://www-01.ibm.com/support/docview.wss?uid=swg27048883
http://www-01.ibm.com/support/docview.wss?uid=swg27048884
https://www.pgroup.com/resources/docs-openpower.htm
https://gcc.gnu.org/
http://clang.llvm.org/
http://www.openmp.org/

MPI on summitdev

IBM Spectrum MPI ... based on openmpi, with IBM additions.
The most common compiler scripts are : mpicc, mpicxx, mpif90 ... but there are many others:

mpiCC, mpic++, mpicc, mpicxx, mpif77, mpif90, mpifort
mpipgic++, mpipgicc, mpipgifort, mpixlC, mpixlc, mpixlf

The mpi* scripts use compilers controlled by env variables: OMPI_CC, OMPI_CXX, OMPI_FC.
Your choice of modules will set the associated OMPI_* env variables.

Example : you have XL compilers loaded, but you want “mpicc” to use GNU compilers:
$ export OMPI CC=gcc; mpicc -show => gcc is now being used

Note that the OMPI_* env variables take precedence for all of the mpi* compile scripts. For
example, if you “module add clang/2.9.cuda8”, mpixlc -show => you have the clang compiler.

You can check what the mpicc compile script is doing : mpicc -show (same for mpicxx, mpif90).
The “modules” approach sets PATH, LD_LIBRARY_PATH, and OMPI_* variables.

Most job scripts will use mpirun or mpiexec ... look at output from mpirun --help .

To enable CUDA-aware support, you must use : mpirun -gpu ...

To label output by MPI rank : mpirun --tag-output ...; or mpirun -stdio p ...

To get some insight into the MPI components : ompi_info

Exchange Time (microsec)

1000

100

10

0.1

On-node Exchange with CUDA-aware MPI

—4&— CPUO-CPUQ-shared-mem
—#— GPUO-GPUO-mps
—&—— GPUO-GPU1-no-mps

10

100 1000 10000 100000
Message Size(Bytes)

1000000

10000000

10

Exchange Time (microsec)

1000

Off-node Exchange with CUDA-aware MPI

100

—&— CPUO-CPUO-IB
—#— GPUO-GPUO-IB

10

0.1

10

100

1000 10000 100000 1000000
Message Size(Bytes)

10000000

11

Binding Processes and Threads

It is highly recommended to bind processes and threads, and to verify binding.

For serial tests, use the taskset command : taskset -c 8 a.out (binds a.out to logical cpu 8).
Check the man page for taskset for more info.

For single-process OpenMP tests, use OMP_PLACES.
Suggested syntax : export OMP_PLACES={startproc:numthreads:stride}.
Example: one thread per core on all cores of socket 1: export OMP_PLACES={80:10:8}.

The mpirun command has affinity options, but they are not sufficient for many purposes.
The same is true for LSF ... it can set an affinity mask, but it cannot enforce thread binding.
If you have a non-threaded code and you want one MPI rank per core, you can use

mpirun --bind-to core ...

Spectrum MPI exports env variables OMPI_COMM_WORLD_LOCAL_RANK, and
OMPI_COMM_WORLD_LOCAL_SIZE. You can use these in a helper script.

#!/bin/bash

let cpus_per rank=160/$OMPI_ COMM WORLD LOCAL SIZE)

let startproc=$cpus per _ rank*SOMPI COMM WORLD LOCAL RANK
let stride= cpus_per_rank/$OMP_NUM_THREADS

export OMP PLACES={$startproc:$OMP NUM THREADS:S$stride}

sa
mpirun --bind-to none -np NumRanks helper.sh your.exe [args]

Caveat: the mpirun command sets default affinity masks that can interfere with your attempt
to control affinity with OMP_PLACES, so it is best to disable mpirun affinity.

For a more elaborate example binding helper script : /ccs/home/walkup/bin/bind.sh
12

Routines to Set Affinity or Query Affinity

#define GNU_SOURCE
#include <sched.h>
int cpu = sched getcpu(); // returns the logical cpu for the executing thread

#define _ GNU_ SOURCE

#include <pthread.h>

cpu_set t cpuset;

int rc, cpu = 8;

pthread t thread = pthread self();

CPU_ZERO(&cpuset);

CPU_SET(cpu, &cpuset);

rc = pthread setaffinity np(thread, sizeof(cpu set t), &cpuset);

rc = pthread getaffinity np(thread, sizeof(cpu set t), &cpuset);
// use : int CPU_ISSET(int cpu, &cpuset); to see if “cpu” is in the affinity mask

Note that using pthread_setaffinity_np() inside your application amounts to re-binding the thread.
For OpenMP threads, it is preferable to use OMP_PLACES, because the OpenMP runtime can
use that to get affinity right from the start, instead of re-binding later.

Example of using pthread_setaffinity _np(): /ccs/home/walkup/codes/bind/bindthreads.c

You can use the ps command to check affinity. Script “psbind” is listed below:

#!/bin/bash
if [-z "$1"]; then
echo syntax: psbind executable file
exit
fi
for pid in $(pgrep $1); do ps -mo pid,tid, fname,user,psr -p $pid;done

13

LSF on summitdev

For LSF documentation, version 10.1 is currently on summitdev ... web link :

http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/Isf_welcome/Isf_welcome.html
For pdf files, do a web search for : IBM Spectrum LSF Wiki

Essential LSF commands : bsub, bjobs, bkill, bpeek, bqueues, bmod, brsvs, bhosts

summitdev has man pages : man bkill (for example)

$ env | grep LSF
LSF_SERVERDIR=/opt/1sf/10.1/1inux3.10-glibc2.17-ppc6dle/etc
LSF_LIBDIR=/opt/1lsf/10.1/1linux3.10-glibc2.17-ppc64le/lib

LSF _BINDIR=/opt/1lsf/10.1/1linux3.10-glibc2.17-ppc64le/bin
LSF_ENVDIR=/opt/lsf/conf

Defaults for things like bjobs outputs are defined in the LSF configuration file (/opt/Isf/conf/Isf.conf).

My suggestion for bjobs output format (I put this in my .bash_profile) :

export LSB_BJOBS FORMAT="jobid:7 queue:10 user:12 stat:7 slots:8 first_host:18 submit_time:13 start_time:13 run_time:15"

Simple LSF commands :

bjobs : lists your jobs (uses the format defined by LSB BJOBS FORMAT)
bjobs -uall : lists all jobs

bjobs -1 jobid : lists the details for a specified jobid

bkill jobid : requests LSF to kill the specified job

bpeek jobid : look at a snapshot of stdout/stderr

brsvs : show reservations

14

http://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_welcome/lsf_welcome.html

Simple LSF job scripts
(1) Grab one interactive node for 10 minutes :
$ bsub -n 1 -Is -P project -W 10 -q interactive /bin/bash
After getting a login shell, you might want to source your .bash_profile file.

(2) Simple MPI job script ... this script builds the batch.job file and submits the job.
If the script below is hamed run.sh, you submit the job by typing : run.sh [enter]

#!/bin/bash

nodes=4

ppn=20

let nmpi=$nodes*$ppn

cat >batch.job <<EOF

#BSUB -0 %J.out

#BSUB -e %J.err

#BSUB -R "span[ptile=$ppn]" (sets the number of processes per node)
#BSUB -n Snmpi (sets the total number of processes)
#BSUB -gq batch

#BSUB -P project

#BSUB -W 15

export OMP_ NUM THREADS=1

ulimit -s 10240

mpirun —bind-to core -np $nmpi p3d
EQOF

bsub <batch. job

For LSF jobs, the -R option specifies resources, in this case -R “span[ptile=20]" => 20 MPI ranks/node.
It is not necessary to specify “-np 80" in the mpirun command ... that is already specified by #BSUB -n.

| like to keep the “-np” option to make the mpirun command more clear to humans.

15

More LSF Job scripts

Same MPI example directly using the bsub command :

Job script batch.job, contents listed below:

#BSUB -0 %J.out

#BSUB -e %J.err

#BSUB -R "span[ptile=20]"

#BSUB -n 80

#BSUB -q batch

#BSUB -P project

#BSUB -W 15

export OMP_NUM THREADS=1

ulimit -s 10240

mpirun —bind-to core -np 80 p3d

$ bsub <batch.job
For each option specified by #BSUB, there is a corresponding command-line option for bsub.

| prefer scripts like the one on the previous chart for simpler job submission..

Interactive multi-node MPI jobs via LSF

You can use LSF to grab some number of nodes, and run multi-node MPI jobs interactively.

First do the one-time setup for ssh between nodes (cp id_rsa.pub authorized_keys; in your .ssh dir).

(1) grab Num nodes for 30 minutes (note the -n and ptile settings)

$ bsub -n Num -R "span[ptile=1]" -Is -P project -W 30 -g interactive /bin/bash
(2) make a hostfile to use with mpirun using $LSB_HOSTS

$ echo $LSB HOSTS | sed 's/ /\n/g' > hf

(3) run your job interactively (note the --oversubscribe option)

$ mpirun --oversubscribe -hostfile hf -npernode 20 -np numRanks your.exe [args]

The “--oversubscribe” option is needed because LSF thinks you wanted just one “slot” per node.

The batch job submission method is more typical for MPI jobs, but you can use MPI interactively on the
resources allocated to you by LSF if you want to.

For batch MPI jobs, you can ssh to the nodes used by your job while that job is active. This can be very
useful for diagnostic purposes.

If you need to exclude a “bad” node : #BSUB -R “select[hname!='badnode']” ...please notify the admins so
the bad node can be taken out of the LSF queue.

17

Using NVIDIA MPS via LSF on summitdev

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/#Batch_Scripts
MPS = multi-process service ... designed to support multiple processes per GPU.

To request MPS, add a line to your LSF batch job script :

#BSUB -env "all,JOB_FEATURE=gpumps"
The “all” in the -env option is needed to reproduce your PATH (etc.) on compute nodes.

For MPS to work properly, you need to assign a device to each MPI rank. A block distribution of
MPI ranks to devices normally best. Use a helper script or explicit calls in your code:

int ranks per node = get ranks per node();

int local rank = myrank%ranks per node;

CUDA RC(cudaGetDeviceCount (&numbDevices));

int myDevice = (local rank * numDevices) / ranks per node;
CUDA_RC(cudaSetDevice(myDevice));

Example of a helper script to set a GPU device for each MPI rank (set_device.sh) :

#!/bin/bash

let ngpus=4

let product=$ngpus*$OMPI COMM WORLD LOCAL RANK
let mydevice=$product/$OMPI_ COMM WORLD LOCAL SIZE
export CUDA_VISIBLE_DEVICES=$mydeVice

run the program

n $ @ n

mpirun -np numProcs set device.sh your.exe [args]

You can also explicitly manage MPS yourself with a helper script to start/stop daemons.

18

https://www.olcf.ornl.gov/kb_articles/summitdev-quickstart/#Batch_Scripts

Monitoring LSF job output

LSF on summitdev is configured with LSB_STDOUT_DIRECT=y (see /opt/Isf/conf/Isf.conf).

Job output/error “go directly to the destination file” ... but NFS does not immediately update the output files on
the login node.

The LSF method to see a current snapshot of your output : bpeek jobid
From the login node, the command “bpeek jobid” is basically equivalent to :
$ ssh first host cat $working directory/jobid.out

While your job is running, you can ssh to the “first_host” and monitor your job from there. That will take out the
NFS remote update issue. To identify the first host, you can use commands such as :

$ bjobs -1
| set LSB_BJOBS FORMAT to include “first_host” in the default output from the “bjobs” command.

export LSB_BJOBS_ FORMAT="jobid:7 queue:10 user:12 stat:7 slots:8 first_host:18 submit_time:13 start_time:13 run_time:15"

[summitdev-loginl:~/codes/p3d] bjobs
JOBID QUEUE USER STAT SLOTS FIRST HOST SUBMIT TIME START TIME RUN_TIME
45112 batch walkup RUN 80 summitdev-rOcOnl7 Jan 8 10:50 Jan 8 10:50 21 second(s)

When your job is running, LSF also writes stdout/stderr to temporary files in your SHOME/.Isbatch directory.
Those files will have the same NFS update issue.

19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

