Code generation and data sharing for

OpenMP offloading to NVIDIA devices

12/01/2017

Gheorghe-Teodor Bercea
Postdoctoral Researcher
IBM TJ] Watson Research Center
Yorktown Heights, NY

Good practces for device offloading

+ Data transfers to and from the device have a high impact on the
overall application performance.

+ Data should be moved between host and device as few times as
possible. In some cases it is enough to map data to the device once.

+ Atypical use case is represented by time-stepping loops:

#pragma omp target enter data map(to:a[:N])
while(time < T){
#pragma omp target data map(to:a[:N])
#pragma omp target teams distribute parallel for
for(int i=0; i<N; i++){

}
#pragma omp target data map(to:a[:N])

#pragma omp target teams distribute
for(int i=0; i<N; i++){

}

time += timestep;

}

tpragma omp target exit data map(from:a[:N])

3 January, 2017

ing data to devices

+ Data accessed on the device is mapped:

- implicitly - any variable whose size in memory can be determined at compile time. Pointers are always
mapped implicitly, the data they point to may be mapped implicitly if the size is known at compile time also.

- explicitly:
#pragma omp target data map(to: a[0:100])
#pragma omp target data map(from: a[0:100])

#pragma omp target data map(tofrom: a[0:100])

#pragma omp target enter data map(to: a[0:10])

#pragma omp target enter data map(alloc: a[0:10])

#pragma omp target exit data map(from: a[0:10])

#pragma omp target exit data map(delete: a[0:10])

#pragma omp target update to(a[0:10])

#pragma omp target update from(a[0:10])

#pragma omp declare target

#pragma omp end declare target

! January, 2017

Inlininge of runtime functions

+ Single parallel loops are amenable to the generation of more efficient code. They do
not require any calls to the OpenMP runtime and the use of any shared data.

+ In the latest version of the CLANG/LLVM compiler, code generation has been modified
to reuse as much of the existing host code generation infrastructure as possible. Code
generation uses runtime calls even for single loops to avoid special casing in the
compiler.

+ To keep overheads low, the runtime functions are inlined and any redundant code is
optimized out by the LLVM backend passes.

= The code that is obtained at the end of the compilation process for single loops
matches the code previously obtained in an earlier version of the compiler where these
type of loops were special cased.

+ |nlining is ensured by having the 1ibomptarget-nvptx.bc library in the $
{CLANG_OMP LIB} folder.

- Build CLANG with the following additional cmake options:
87-DLIBOMPTARGET NVPTX ENABLE BCLIB=true \
-DLIBOMPTARGET NVPTX CUDA COMPILER=${LLVM OBJ}/bin/clang \

-DLIBOMPTARGET NVPTX BC_LINKER=${LLVM OBJ}/bin/llvm-link \

5 January, 2017

Single parallel loops - host

= This loop will be executed on the host.

+ |terations will be assigned to threads as

int N = 100; uniformly as possible to exploit locality.
double *a = (double*) + Example: if the number of threads is equal
malloc (sizeof(double)*N); to 3 then:
#pragma omp parallel for
for(int i=0; i<N; i++){ - Iterations 0-33 are assigned to thread 0
\ af1l = 1; - ijterations 34-66 are assigned to thread 1
- Iterations 67-99 are assigned to thread 2
The default chunk size on host is: N/ num_threads (great for the host side).
a: | IINRRRRRRRRRRRRRNNRENEEEN
s Thread0chunk 3 Thread 1 chunk 3 Thread 2 chunk
) o o
- = =

6 January, 2017

Single parallel loops - device

int N = 100;
double *a = (double*) malloc (sizeof(double) * N);
double *b = (double*) malloc (sizeof(double) * N);
double *c = (double*) malloc (sizeof(double) * N);
#pragma omp target data map(to:a[:N], b[:N]) map(from:c[:N])
tpragma omp target teams distribute parallel for
for(int i=0; i<N; i++){
c[i] = a[i] + alfa*b[i];

}

+ Single data parallel loops are the most suitable OpenMP loops for GPU execution.

+ Data accesses on NVIDIA GPUs are typically grouped together (coalesced) into a single data
access to make full use of the available bandwidth. Data accessed by threads within a warp can

be coalesced in a single memory transaction if all warp threads access consecutive memory
locations.

+ The default schedule on the device (equivalent to the schedule(static, 1) clause) assigns
a loop iteration to each thread in a round-robin fashion hence the accesses to arrays a, b and c:

a,b,c: III
O QN

Thread 31

Thread
Thread
Thread

7 January, 2017

Usecollapse (k) clause

The for directive has a clause called collapse (k).

A perfect loop nest can be collapsed using the collapse (k)
clause where k represents the number of collapsed loops on
both host and device.

#pragma omp parallel for collapse(3)
for(int 1=0; 1<N; 1i++){
for(int j=0; jJ<M; J++){
for(int k=0; k<M; k++){
}

8 January, 2017

Nested parallel loops

+ There are situations in which achieving performance relies on being able
to parallelize over more than one loop.

+ Such application can be found among the CORAL proxy apps such as
HACCMK.

+ More common examples are provided by parallel loops with inner SIMD-
izable loops.

tpragma omp parallel for collapse(3)
for(int i=0; i<N; i++){
for(int j=0; j<M; J++){
for(int k=0; k<P; k++){
double a = omp get thread num();
tpragma omp simd
for(int 1=0; 1<1000; 1++){
b[l] = sin(a) * c[1l];
}
}
}
}

9 January, 2017

Nested parallelism

+ The current CLANG/LLVM implementation makes use of
a code generation scheme which relies on function
outlining.

+ The master thread (actually the whole master warp)
executes separately from the worker threads.
Communication between master and worker threads
occurs via shared variables.

+ OpenMP often requires regions of code to be executed
by a single thread. Due to side effects, this code might
not be safe to execute in parallel (redundantly).

+ Data sharing occurs:
- data shared among teams - global data
- data shared between threads in a team

- data shared among the threads within a warp

l.evelO data sharin

Instances of A for kernel launched with 1 team

and 128 threads per team
¥ pragma omp target
{ 01234567 127
TNt A -
[/ update A ---e-eerererereieieiaees
pragma omp parallel for
for(...) {
[50 A v 5
}
}

l.evelO - team master to threads

warp 0 warp 1 warp 2
#pragma omp target
0 1 2 31 32 33 .. 63 64 65 .. 95

{

Coe A || 1] I

. kernel():
// S1 using A int a;
int *ptr A;
#pragma omp parallel if (_ _omp kernel initialization())
{

// S2 using A

}
// S3 using A

All the threads start executing
the kernel.

l.evelO - team master to threads

warp 0 warp 1 warp 2
‘ o 1 2 . 3 32 3 . 63 64 65 .. 9

#pragma omp target

ot A | 1] 1

kernel():

// S1 using A int 2
#pragma omp parallel Nt *ptr_A;

if (_ _omp kernel initialization())

// S2 using A kernel():

return

}
// S3 using A

A warp is reserved for the
master-only region.

31 of the threads in the master
warp return.

l.evelO - team master to threads

warp 0 warp 1 warp 2
#pragma omp target
{ 0 1 2 31 32 33 .. 63 64 65 95
Coe a | |1 I
. kernel():
// S1 using A int A;
int *ptr A;
#pragma omp parallel if (_ _omp kernel initialization())
{
. k 1():
// S2 using A eiZiui‘I)l
}
. data share begin(int **ptr A):
// S3 usling A S = data_share init(numBytes)
} *ptr A = &S->A
The master thread of the

master warp executes the
sequential region.

A data sharing region (stack) is
initialized.

A pointer to the shared
variable A is created.

l.evelO - team master to threads

warp 0 warp 1 warp 2

#pragma omp target
{ 0 1 2 31 32 33 .. 63 64 65 95

i || I I

. kernel():
// S1 using A int A;
int *ptr A;
#pragma omp parallel if (_ _omp kernel initialization())
{
. k 1():
// S2 using A ey
}
. data share begin(int **ptr A):

// S3 usling A S = data_share init(numBytes)

} *ptr A = &S->A
|
kernel():
. . S1l(ptr_A)

Execution of 51 by a single barrierl()
thread.

Every team executes this
region using a single thread.

Any reference in 51 to A is
replaced with ptr_A.

l.evelO - team master to threads

#pragma omp target
{
int A
// S1 using A
#pragma omp parallel

{
// S2 using A

}
// S3 using A

95

The worker threads execute an
outlined worker function.

Execution starts once the

barrier is reached by the master
thread.

warp 0 warp 1 warp 2
0 1 2 v 31 32 33 .. 63 64 65
kernel():
int A;
int *ptr A;
if (_ _omp kernel initialization())
kernel():
return

[X X J
/|data_share_begin(int **ptr A):
S = data_share init(numBytes)
*ptr A = &S->A

kernel workers():
// Select work
barrierl ()

kernel():
S1l(ptr_A)
barrierl ()

l.evelO - team master to threads

#pragma omp target
{
int A
// S1 using A
#pragma omp parallel

{
// S2 using A

}
// S3 using A

}

95

The master thread waits at
barrier2.

The worker threads execute the
outline worker function.

The worker function retrieves a
pointer to shared variable A

from the shared stack. S2
executes using ptr_A.

warp 0 warp 1 warp 2
0 1 2 v 31 32 33 .. 63 64 65
kernel():
int A;
int *ptr A;
if (_ _omp kernel initialization())
kernel():
return

o000
/'data_share_begin(int **ptr A):
S = data_share init(numBytes)
*ptr A = &S->A

kernel workers():
// Select work
barrierl ()

kernel():
S1l(ptr_A)
barrierl ()

outlined wrapper():
S = get S()
ptr A = &S->A
outlined() // executes S2(ptr_A)

kernel():
barrier2()
S3(ptr_A)

l.evelO - team master to threads

#pragma omp target
{
int A
// S1 using A
#pragma omp parallel

{
// S2 using A

}
// S3 using A

95

The workers hit barrier2 and
unlock the master thread.

The master thread executes S3
using ptr_A.

warp 0 warp 1 warp 2
0 1 2 v 31 32 33 .. 63 64 65
kernel():
int A;
int *ptr A;
if (_ _omp kernel initialization())
kernel():
return

data share begin(int **ptr A):
S = data_share init(numBytes)
*ptr A = &S->A

kernel workers():
// Select work
barrierl ()

kernel():
S1l(ptr_A)
barrierl ()

outlined wrapper():
S = get S()
ptr A = &S->A
outlined() // executes S2(ptr_A)

kernel workers():
barrier2()

kernel():
barrier2()
S3(ptr_A)

l.evelO - team master to threads

#pragma omp target
{
int A
// S1 using A
#pragma omp parallel

{
// S2 using A

}
// S3 using A

warp 0
o 1 2 . 3 32

warp 1

warp 2

33 .. 63 64 65

95

kernel():
int A;
int *ptr A;
if (_ _omp kernel initialization())

Clean-up any data sharing.

kernel():
return

data share begin(int **ptr A):
S = data_share init(numBytes)
*ptr A = &S->A

kernel workers():
// Select work
barrierl ()

kernel():
S1l(ptr_A)
barrierl ()

outlined wrapper():
S = get S()
ptr A = &S->A
outlined() // executes S2(ptr_A)

kernel workers():

barrier2()

kernel():
barrier2()
S3(ptr_A)

data_ share end():
free(S)

l.evelO - team master to threads

#pragma omp target
{
int A
// S1 using A
#pragma omp parallel

{
// S2 using A

}
// S3 using A

95

All threads return.

warp 0 warp 1 warp 2
0 1 2 v 31 32 33 .. 63 64 65
kernel():
int A;
int *ptr A;
if (_ _omp kernel initialization())
kernel():
return

/'data_share_begin(int **ptr A):
S = data_share init(numBytes)
*ptr A = &S->A

kernel workers():
// Select work
barrierl ()

kernel():
S1l(ptr_A)
barrierl ()

outlined wrapper():
S = get S()
ptr A = &S->A
outlined() // executes S2(ptr_A)

kernel workers(): kernel():
barrier2() barrier2()
S3(ptr_A)
]
Do soeo data_ share end():
free(S)
I
kernel(): kernel():

return return

l.evelO data sharin

Instances of A for kernel launched with 1 team

and 128 threads per team
#pragma omp target
{ 01234567 127
TNt A -
[/ update A ---e-eerererereieieiaees
#pragma omp parallel for
for(...) {
[50 A o 535555555 5 S S
}
}

There is one shared value of A updated by the team master.
The rest of the threads in the team have a pointer to the shared value of A.

l.evell data sharin

+ Qccurs between threads within a warp.

+ This type of sharing occurs in OpenMP

nested parallel regions. fpragma omp target
. {
=+ Region S2 must be executed by all int A;
threads in order to achieve performance. fpragma omp parallel
] u L {
+ Region S1 may benefit from being int B;
executed by all threads. // S1 using A, B
#pragma omp parallel
+ Regions executed by all threads must {
ensure coalesced memory accesses. } // §2 using B
+ To avoid synchronization overhead incurred }
by barriers, the sharing is contained J

within each warp executing the nested
parallel region. Memory fences - which incur
less overhead - are enough to ensure
correct data updates.

+ All 32 threads in a warp execute region
S1 and hit the inner parallel construct.

“ There are several ways in which the *:Pragma omp target
execution can happen next: int A;
#pragma omp parallel
- each thread executes the parallel {
region sequentially - no way of int B;

// S1 using A, B

achieving coalescing, each thread #pragma omp parallel
executes all the innermost iterations. {
// S2 using B
- all the threads in the warp execute } }
the inner parallel encountered by)

thread O in the warp. Then all threads
In the warp execute the inner parallel
hit by thread 1 in the warp and so on.
Coalescing is how guaranteed.

l.evelO - team master to threads

#pragma omp target

{
int A
#pragma omp parallel

{
// using A

95

warp 0 warp 1 warp 2
0 1 2 v 31 32 33 .. 63 64 65
kernel():
int A;
int *ptr A;
if (_ _omp kernel initialization())
kernel():
return

/'data_share_begin(int **ptr A):

S = data_share init(numBytes)
*ptr A = &S->A

kernel workers():
// Select work
barrierl ()

kernel():
S1l(ptr_A)
barrierl ()

outlined wrapper():
S = get S()
ptr A = &S->A
outlined() // executes S2(ptr_A)

kernel workers():
barrier2()

kernel():
barrier2()
S3(ptr_A)

data_ share end():
free(S)

kernel():
return

kernel():
return

l.evell - warp threads

warp 0 warp 1 warp 2
#pragma omp target
{ 0 1 2 31 32 33 .. 63 64 65 .. 95
int A; | | | | | | |
kernel():
#pragma omp parallel v
{ int *ptr A;
int B: if (_ _omp kernel initialization())
’
// S1 using A, B kernel():
#pragma omp parallel return
{ e e data share begin(int **ptr A):
// S2 us ing B (S = data_share init(numBytes)
*ptr A = &S->A
} |
} kernel():
} S1l(ptr_A)
barrierl ()
Sharing of A is the same. e
barrier2()
S3(ptr_A)
Only focus on 1 warp. '
soeo soeo data_ share end():
free(S)
I
kernel(): kernel():
return return

l.evell data sharin

Instances of B for kernel launched with 1 team

and 128 threads per team
¥ pragma omp target
{ Instances of B for 1 warp
pragma omp parallel for
for(...) { 01234567 31
INtB;, oo
/ST update B v OERCERRCOERCOER0N
pragma omp parallel for
for(...){ 3
[/ S2useB ..
} 0 0 0
} - | IIDDDEEEEEEEEEEEEN
| | N e v v
[T T A T

l.evell data sharing - all warps

Assuming that there are more than 128 iterations in the loop all 4 warps will run in parallel

Team 0

I I
Warp 0 Warp 1 Warp 2 Warp 3

01234567 31 01234567 3101234567 3101234567

31
OO00O00000000000000 OoooOOoooOOCCoOooOn OOOoOCooOOosEOneon OoooOoosoOeoooee e
SIOOEROOERCOCOERDOOORCOD DOERCOERCOEROOEECOO DOENDOEROOERCOOERDE JOOEOOERCOER OO =EmOE

COOOO0O0000000000000 OO0oOOCCCC0CnCOoce] OoooOooOOooOOoooee] OooOoooooaoeooeoon
OOOO0O0O00OO0O00000000 BE8000EEAEAAAAAEAEE CoOOCoCCCCOnnCnnsn COCooCCoCO O e oesoee
oS | 5 5 e o

EEEEEEEEEEEEEEENEN EEEEEEEEEEEEEEEEEE SN NN

l.evell - warp threads

#pragma omp target 0 ; 31
{
. . kernel workers():
int Aj; barrierl ()
#pragma omp parallel if (work == 1)
outlined wrapperl() // for S1
{ if (work == 2)
int B; outlined wrapper2() // for S2
. b ier2
// S1 using A, B arrerel)
#pragma omp parallel
{
// S2 using B
}
}
}

Select work posted by the
master - the master changes
what work points to.

l.evell - warp threads

#pragma omp target
{
int A;
#pragma omp parallel

{
int B;
// S1 using A, B
#pragma omp parallel

{
// S2 using B

31

kernel workers():
barrierl()
if (work == 1)
outlined wrapperl() // for S1
if (work == 2)
outlined wrapper2() // for S2
barrier2()

outlined wrapperl():
LevelO0 *S = call to runtime to get S();
ptr A = &S->A;
outlinedl(ptr A)

Select work posted by the
master - the master changes
what work points to.

l.evell - warp threads

0 1 31
#pragma omp target |
. . kernel workers():
int A’ barrierl()
#pragma omp parallel if (work == 1)
outlined wrapperl() // for S1
{ if (work == 2)
int B; outlined wrapper2() // for S2
. barrier2
// S1 using A, B D
#pragma omp parallel outlined_wrapperl(): .
LevelO *S = call to runtime to get S();
{ ptr A = &S->A;
// g2 using B outlinedl(ptr A)
} outlinedl(ptr A):
} int B;
int *ptr_ B;
} data share begin(..,ptr B, B)
S1 // Use ptr A, ptr B
outlined wrapper2()
. . . data share end()
51 is executing using ptr_A to
data_share begin(..., ptr B, B):
Shared Value Of A S = data_share init(numBytes*32)
*ptr B = &S->B[threadIDInTheWarp]

Each thread in the warp
manages its own value of B.
Accesses through ptr_B are
coalesced.

l.evell - warp threads

#pragma omp target
{
int A;
#pragma omp parallel

{
int B;
// S1 using A, B
#pragma omp parallel

{
// S2 using B

31

kernel workers():
barrierl()
if (work == 1)
outlined wrapperl() // for S1
if (work == 2)
outlined wrapper2() // for S2
barrier2()

outlined wrapperl():
LevelO0 *S = call to runtime to get S();
ptr A = &S->A;
outlinedl(ptr A)

The work is shared between
the active threads in the warp.

outlinedl(ptr A):
int B;
int *ptr_ B;
data share begin(..,ptr B, B)
S1 // Use ptr A, ptr B
outlined wrapper2()
data share end()

data share begin(..., ptr B, B):
S = data_share init(numBytes*32)
*ptr B = &S->B[threadIDInTheWarp]

outline wrapper2():
S = get S()
for (1 in convergent threads):
ptr B = &S->B[i]
outlined2(ptr B);

outlined2(..., ptr B):
S2 // using ptr B

l.evell data sharin

Instances of B for kernel launched with 1 team

and 128 threads per team
¥ pragma omp target
{ Instances of B for 1 warp
pragma omp parallel for
for(...) { 01234567 31
INtB;, oo
/ST update B v OERCERRCOERCOER0N
pragma omp parallel for
for(...){ 3
[/ S2useB ..
} 0 0 0
} - | IIDDDEEEEEEEEEEEEN
| | N e v v
[T T A T

Total data sharine volumes

int A;

+ Kernel is launched with 512 teams and 1024 threads per team (32 warps per
team).

+ Depending on how A is shared we can compute the total memory size required for
all instances of A:

- A'is a global value shared amongst all teams: 4 B

- A is a value shared from the team master to the rest of the threads in a team: 4 x
512 =2048 B =2 KB

- Ais a global value shared among all threads within a warp: 4 x 512 x 32 = 64 KB

Data sharine on a GPU SM

int A;

+ Kernel is launched with 512 teams and 1024 threads per team (32 warps per
team).

+ Only some of the teams are running at a given time. There is a maximum of 2048
threads per SM when only 32 registers per thread are used. This means 2 teams
can fit on an SM at a given time.

+ The K40 has 14 SMs.

+ The volume per GPU SM is given by:
- Ais a global value shared amongst all teams: 4 B

- A is shared from the team master to the rest of the threads inateam: 4 x2 =8 B

- Ais a global value shared among all threads within a warp: 4 x 2 x 32 = 256 B

Using LevelO and Level 1 data sharing .

int A;

+ Kernel is launched with 512 teams and 1024 threads per team (32 warps per team).

=+ Only some of the teams are running at a given time. There is a maximum of 2048 threads per
SM when only 32 registers per thread are used. This means 2 teams can fit on an SM at a
given time.

+ The K40 has 14 SMs.

+ The shared data volume per SM is given by:
- Ais a global value shared amongst all teams: 4 B
- LevelO: A is shared from the team master to the rest of the threadsinateam: 4x2 =8B

- Levell: A is a global value shared among all threads within a warp. Since we are
executing the region belonging to LevelO with all threads in the warp, we have a distinct
value for A for each thread. The total volume per warp in this case is: 4 x 32 = 128 B.
Since we have 32 warps per team and 2 teams the volume of the shared instances of A
IS: 128 x 2 x 32 =8192 B = 8 KB.

