
IBM	Research
Cluster	Management

(a	journey)

R92	Cluster.
AKA	Minsky

Current	use	of	the	R92	cluster

• Testing	of	CORAL	workloads.
• Mellanox	and	Nvidia	performance	testing.
• Kernel	work.
• Advanced	testing	of:

• APEX	workloads.
• Machine	Learning.
• Spark

• Current	user	base	(about	80	researchers).
• Current	Administration.

• Software	and	configuration	(1)	(with	periodic	additional	help).
• hardware	(1).

Previous	Research	Clusters

• Tuletta	10	nodes
• Firestone	20+	nodes.

• Tuletta	And	firestone	nodes	also	used	to	explore	Ubuntu,	Open	Stack	
and	Containers	for	HPC.
• Also,	provided	valuable	experience	with	the	current	state	of	xCAT,	and	
LSF.			
• We	used	this	experience	to	influence	how	we	deployed	the	R92	cluster.

• Our	site	was	one	of	the	first	to	get	Tuletta	boxes	so,	we	were	on	the	
leading	edge	for	xCAT working	with	them.

Goals	of	the	R92	cluster.

• Provide	our	researchers	a	cluster	to	do	HPC	testing.
• Be	able	to	isolate	and	reconfigure	nodes	for	other	work	(i.e.	kernel	work	and	compiler	
work).

• Deploy	software	updates	rapidly.
• Add	new	software	(as	requested)	and	bring	on	line	rapidly	(often	within	hours	of	the	
request).

• Provide	a	HPC	model	that	is	close	to	what	the	CORAL	customers	are	using.
• Keep	disk-full	(login	and	friends)	nodes	and	disk-less	software	nodes	in	sync.
• Be	able	to	rapidly	reconfigure	hardware	(change	out	IB	cards,	add	nvme cards,	etc).
• Keep	track	of	xCAT and	other	configuration	changes.
• preemptive	notification	of	problems	and	failures	(prior	to	CSM	availability).
• Early	deployment	of	ESS	without	the	final	ESS	servers.

Learning	from	Experience

• Tuletta	and	Firestone	Clusters.
• “seat	of	the	pants”	administration.
• no	source	control	of	changes	(no	one	at	IBM	had	done	source	control	for	xCAT yet).
• Waiting	for	users	to	notify	us	of	a	problem	sometimes	resulted	in	chasing	after	a	
crash	or	lockup	2	days	old.

• Early	software	from	Nvidia	and	Mellanox	is	buggy.
• Experienced	IBM	Administrators	are	used	to:

• 1	admin	only	touching	a	cluster.
• applying	changes	directly	to	files	as	“root”.
• relying	on	memory	about	what	changed	and	when.

• Keeping	disk-full	and	disk-less	configurations	in	sync	can	be	a	lot	of	work.
• lots	of	files	doing	the	same	job	but	differently	duplicated	between	the	
configurations.

xCAT/LSF	and	Friends	Source	control.

• Source	control	is	usually	a	push	model	
• make	a	change	to	source	control	files.
• test.
• run	a	program	to	install	those	files.

• Current	admin	practice	(when	we	are	able	to	get	help)	is	to	modify	the	file	
in	place.
• Our	Spproach to	this	source	control	is:	

• to	mirror	the	in	their	homes	to	a	source	control	directory	(rsync)..
• run	a	program	every	day	that	checks	if	they	match	the	working	files,	
• send	out	“scold”	mail	to	anyone	that	has	privileges	to	modify	the	files	if	they	don’t	
match.

• Check	and	Mail	is	done	with	a	“python”	script	and	a	“yaml”	configuration	file	which	
informs	the	script	where	the	files	are	and	what	type	of	comparisons	are	needed.

xCAT/LSF	and	Friends	Source	control	(cont)

• Types	of	comparison.
• Entire	directories	with	exceptions.

• used	for	xcat	files	referenced	by	xcat	definitions.
• explicit	list	of	files	(management	fstab,	network	config files,	etc).
• find	all	files	matching	a	specific	search	pattern	(jenkins	test	configuration	files).
• xCat definition	files.

• xCat does	not	actually	store	definitions	in	files,	so	we	had	to	fabricate	them.
• “lsdef	–t	<object-type>	-z	–l”	produces	a	file	a	stanza	file	we	can	put	under	source	control	and	then	

later	use	to	recreate	the	definition.
• python	script	is	used	to	strip	out	“attributes”	that	are	transient	(like	status	time)	and	“attributes”	

that	actually	come	from	“group”	definitions.
• We	actually	found	xcat	errors	with	this		changes	in	the	definitions	that	no	user	actually	made,	
but	were	produced	by	bugs	in	xCat.

• This	allows	us	to	also	answer	the	question:
• “hey”	collective	performance	dropped	after	xyz	date.		What	changed?

disk-less,	disk-full	synchronization.

• We	are	using	the	same	model	for	program	installs	that	is	part	of	the	CORAL	“plan	
of	record”	
• install	“everything”	on	the	diskboot image.
• think	LLNL	is	using	this	model.

• The	Research	install:
• larger	than	the	CORAL	test	team’s	install	

• because	of	our	mission	is	larger	than	the	CORAL	test	groups	
• it	includes	additional	packages	(such	as	cuda-dnn,	IBM	advanced	tool	chain,	etc)...		

• We	are	up	to	a	4.5GB	download	and	a	16Gb	foot	print	so	far.
• We	are	looking	into	using	“modules”	and	ORNL	model	of	doing	at	least	some	of	the	packages	
as	network	installs	to	mitigate	this	growing	larger	in	the	future.

• Login/compile	nodes	need	to	match	the	software	of	the	compute	nodes.
• Solution,	postscripts	that	can	be	executed	both	as	part	of	the	“genimage”	process	to	do	a	
diskless	image	AND	a	executed	as	a	disk-full	install	as	well	as	a	live	“updatenode”	call.

disk-less,	disk-full	synchronization	(methodology)
• Use	a	common	set	of	postscripts	for	the	disk-less	install	and	the	disk-full	
install.
• problem:

• disk-less	install	builds	on	the	management	node
• disk-full	install	builds	on	the	target	node.

• Solution:
• xCAT disk-less	post-install	script	is	called	with	parameters	and	the	disk-full	postscript	
is	not

• we	can	use	this	to	distinguish	between	their	execution.
• A	common	function	to	all	installs	is	the	key.		It’s	basic	rule	is:

• if	we	have	a	root	directory	as	parameter	1,	
• execute	the	original	script	under	chroot.

disk-less,	disk-full	synchronization	(methodology)

• problems	encountered.
• some	postscript	installs	required	proc	and	dev	to	be	mounted

• these	MUST	be	unmounted	on	exit,	so	we	had	to	use	script	“traps”	to	make	sure	they	
were	unmounted.

• leaving	these	mounted	and	deleting	the	image	directory	resulted	in	needing	to	reboot	
the	management	node	before	‘genimage’	would	work	again.

• ctl-c	could	still	leave	some	mount	points,	needed	to	get	an	xcat	change	that	it	
checked	for	mount	points	prior	to	removing	the	directory	with	“rmimage”.

• Side-effect.
• compute	nodes	could	have	new	software	added,	without	having	to	reboot.	
This	gave	us	more	options	for	responding	to	our	users	update	requests.

post-install	directory.

• A	single	post	install	script	is	referenced	in	the	xCAT	osimage	object.
• That	postscripts	looks	in	the	common	postscripts.d	subdirectory.
• executes	all	executable	files	in	that	subdirectory.

• Then	it	looks	in	its	local	postscripts.d	subdirectory.
• executes	all	executable	files	in	that	subdirectory.

• This	allows	us	to	do	differences	between	login	and	compute	nodes,	
but	have	almost	all	of	the	installs	common.

post-scripts	directory
/install/postscripts/custom
|-- rh73_compute/
| |-- compute.postboot*
| |-- compute.postinstall*
| |-- postboot.d/
| `-- postinstall.d/
|-- rh73_login/
| |-- compute.postboot*
| |-- compute.postinstall*
| |-- postboot.d/
| `-- postinstall.d/
`-- rh7x_common/

|-- functions
|-- postboot.d/
`-- postinstall.d/

/install/postscripts/custom/rh7x_common/postinstall.d
|-- 000-install-yum-repos*
|-- 010-install-ldap*
|-- 020-install-nfsmounts*
|-- 030-config-lsf*
|-- config-libnuma*
|-- config-lsf*
|-- install-advtools*
|-- install-cuda8*
|-- install-gpfs*
|-- install-ibm-psdk*
|-- install-ibm-sdk*
|-- install-ibm-spectrummpi*
|-- install-ibm-xlc*
|-- install-ibm-xlf*
|-- install-ldap*
|-- install-mellanox*
|-- install-nfsmounts*
|-- install-nvidia-dcdiags*
|-- install-otherpkgs*
|-- install-pam-lsf*
|-- install-pgi*
|-- install-ppedev*
|-- install-pperte*
|-- install-x-essl*
|-- install-x-ibm-pessl*
|-- mellanox/
| |-- mlnxofed_ib_install*
| `-- mlnxofed_ib_install.v2
`-- update-limits*

Pre-CSM	RAS	system	alerts.
• Since	we	did	not	start	out	with	CSM	we	needed	a	way	to	alert	us	to	problems.

• crashed	nodes.
• zombie	tasks.
• unexpected	configuration	changes	

• (someone	installed	or	removed	an	ib card).
• ib cable	connected	or	disconnected.
• nvme card	moved.

• LSF	jobs	over	due	and	un-killable.
• Solution	(jenkins	CI),

• small,	self	contained	jenkins	tasks	that	check	things	at	intervals	(15	min,	60min,	and	24	hours).
• Jenkins	tasks	notify	the	Admin’s	via	e-mail	that	something	went	south.
• and	provide	a	dashboard	about	the	overall	health.

• When	CSM	diagnostics	are	available,	we	can	trigger	them	with	the	same	Jenkins	CI	framework,	
• This	also	provides	a	way	to	check	that	the	CSM	ras system	is	catching	things,	if	we	see	one	of	
these	tests	go	off	without	a	corresponding	CSM	ras event,	then	we	have	an	“escape...

PRE	CSM	node	status.

• To	run	the	Jenkins	tests	reliably	we	need	to	know	what	to	expect.	
• some	nodes	are	down	for	repair.
• some	nodes	have	1	ib card,	some	have	2.
• some	nodes	have	nvme cards,	others	don’t.
• Things	change	constantly.

• As	a	temporary	measure	(until	we	can	get	a	CSM	that	will	keep	its	underlying	DB	
around	between	updates).		
• use	the	xCAT “usercomment”	node	attribute	to	encode	this	information.

• lsdef c460c0[02,03] -c -i usercomment
• c460c002: usercomment=[online]
• c460c003: usercomment=[offline]
• c460c055: usercomment=[online,nvme,ib1_down]

• The	“[]”	allow	easy	parsing	by	the	test	scripts	and	they	also	allow	the	user	of	the	
field	for	general	comments.
• we	use	the	“offline”	status	also	to	remove	nodes	from	lsf with	a	“dynamic”	group	
script.

backup

jenkins	dashboard.

example	config.xml	for	source	control.
name: diff xcat/install/custom
 type: diff
 sysdir: /install/custom
 gitdir: ./xcat/install/custom
 exclude: [sw,".gitignore",".git"]
...
- name: diff lsf/conf
 type: diff
 sysdir: /shared/lsf/conf
 gitdir: ./lsf/conf
 # exclude files we don't want to expose
 exclude:
[".gitignore",".git","*.pem","pamauth.conf","server.pem","users.xml"]
- name: diff lsf/conf
 type: diff
 sysdir: /shared/lsf/10.1/misc/exec_scripts
 gitdir: ./lsf/shared/lsf/10.1/misc/exec_scripts
- name: diffsel /etc
 type: diffsel
 gitdir: ./system
 files:
 - /etc/sysconfig/jenkins
 - /etc/sysconfig/network-scripts/ifcfg-en*
 - /etc/fstab
 - /etc/yum.repos.d/*

- name: xcatdef
 type: xcatdef
 gitdir: ./xcat/defs
 tables:
 - site
 - osimage
 - node
 - group
 - network
 - route
 - policy

- name: findsel /jenkins
 type: findsel
 sysdir: /var/lib/jenkins
 gitdir: ./jenkins
	

