
CAASCADE: Understanding HPC Applications

for Evidence-based Co-design

Understanding the DOE HPC application landscape is important for 
effective integration of heterogeneous computational architectures 
and exploration of future computing technologies. 

There is a paucity of quantitative data on critical application 
characteristics, and absence of tools to obtain and manage this 
data.

Examples:
• Which programming models are being used?
• Which programming model features are critical?
• How important is Fortran to the DOE?

Unanswered questions from CORAL Co-design:
• How should OpenACC support deep copy?
✓ provide data structure shapes and layouts

• Which OpenMP features should be prioritized?
✓ identify OpenMP constructs in use

• What kind of internode communications need enhanced hardware 
support?
✓ identify prevalent MPI library calls and payload characteristics

What’s the problem?

Jack C. Wells

Director of Science 

NCCS

The community most often relies on single-use, labor-intensive efforts, “institutional knowledge”, or written 
survey responses and anecdotal input from developers in an attempt to gain insight into diverse and expanding HPC 
applications.

What are we doing now?

Application C C++ F90 OpenMP MPI OpenACC CUDA CUDAF Other Libraries Algorithms

DIRAC x x x x x BLAS, LAPACK, MKL, ALPS, HDF5 CCSD, tensor contraction

FLASH x x x x x? x BLAS, LAPACK, HDF5, mesa finite volume, stiff ODE solver, AMR

GTC x x x x PETSc, Hypre, Adios particle-in-cell

LSDALTON x x x x BLAS, LAPACK DEC Scheme, CCSD, RIMP2

NAMD x x CHARM++ FFTW MD, PME

NUCCOR x x x BLAS, LAPACK CCSD, Hartree-Fock

QMCPACK x x x x BLAS, LAPACK, FFTW, HDF5/Adios, libxml2 Monte Carlo

RAPTOR x x x kokkos, gampi (global arrays for mpi) kokkos, HDF5 LES, finite volume, AMR

SPECFEM x x x x OpenCL Boast Spectral Elements

ACME x x x x x x trilinos, MOAB, PIO (NetCDF)
Spectral Elements, Voronoi tesselation, 

FCT

HACC x x x x OpenCL, MPI-IO (custom) FFTW, Thurst
P3M (particle-particle, particle-mesh) Tree 

PM

NWCHEM x x Global Arrays (ARMCI) PelGS, ScaLAPACK CCSD

XGC1 x x x x x
PETSc, LAPACK, PSPLINE, SuperLU, ParMETIS, 

CUDA Thrust
particle-in-cell

CHROMA

XGC

NAMD

LAMMPS

CASINO

LSMS

QCD-Liu

QCD-
Mukherghee

SPECFEM

S3D

CyberShake

QMCPACK

LS-DaltonHACCACME

PIConGPU

Other
applications

Applications on Titan in 2015

Automate the collection of application program 
characteristics from a variety of tools.

Create a database to provide access to this 
information, enabling data analytics and knowledge 
discovery techniques to inform ongoing HPC 
research.

Ideal:
• Gather data in a repeatable, normalized (non-

human) way
• Compilers and linkers know “everything” about 

source code 

→convert compiler internal representations to 
human knowledge

→understand which application characteristics 
(e.g language features, computational motifs) 
are contributing flops on Leadership systems

What should we be doing?

→ Enabled through CAASCADE

M. Graham Lopez

Computer Scientist 

Future Technologies (CSMD)

Oscar Hernandez

Computer Scientist 

Computer Science Research (CSMD)

Source code
characteristics

Runtime 
performance

System
monitoring

XALT

• Automated

• Transparent to 

the user

• Automated

• On-demand

(Currently)

• Labor intensive

• Prohibitive

✓ ✓

code 
metadata

HPC
co-design
database

• Programming model 

usage

• Library usage

• Data structures

• Memory usage

• etc.

data

schema
application
*.c, *.cpp, 
*.h, *.f90

internal 

representations

Currently available information about HPC application 

and system interactions affecting performance

Reuben Budiardja

Computational Scientist 

Scientific Computing (NCCS)

Jisheng Zhao

Computer Scientist 

Georgia Tech University

Vivek Sarkar

Professor

Georgia Tech University

(data analysis)

!

Results

source
code

GCC front ends: 
language-specific code

(follow language specifications)

parser

genericizer gimplifier

optimizer 1 optimizer 2 optimizer N

RTL 
generator

code 
generator

...

executable
binary

GCC middle end: 
language and machine 

independent code

GCC back ends: 
machine-dependent code

(from architecture descriptions)

plugin callback

application data
path

GCC components

app
metadata
database

gcc
plugins

pre-
processor

GCC Reference Implementation

Passive metadata collection can 
accommodate production usage

• Developer may use any 
compiler flags

• Final executable is 
unmodified

Left

High-level information such 
as Fortran language 
standard (top left), the type 
of variables (top right), 
OpenMP and MPI 
parallelization methods by 
the number of statements 
(bottom left), and 
subroutines with OpenMP 
pragmas (bottom right) in 
E3SM as collected by 
CAASCADE.

Below

The distribution of data type characteristics from QMCPACK from the 
CAASCADE static analysis only (left) and the same data when re-weighted 
by using dynamic runtime information from CrayPAT (right). The static only 
information indicates how the application is being developed and importance 
for programming strategies being used, while the dynamically-weighted 
information provides insights for performance considerations.

Above

Summary information about OpenMP usage in the E3SM application. The usage of specific OpenMP statements is 
shown (left), and the proportion of code covered within OpenMP lexical extents is shown per subroutine (right). Only the 
top fifteen are shown for clarity.

Below

MPI routines used in the E3SM application. The frequency of calls for each MPI routine is shown. Only the fifteen most 
called routines are shown for clarity.

Below

Libraries and their number of call sites detected with 
XALT and CAASCADE in NUCCOR. Libraries depicted 
in red belong to LAPACK and in blue belong to HDF5.


