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The DEC scheme can be applied to evaluate molecular energy and properties in a linear-scaling and embarrassingly parallel manner using a set of local Hartree-Fock molecular orbitals. The
essence of the method lies in the fact that all manipulations with the intermediate four-dimensional quantities are carried out independently within small local orbital fragment spaces. The sizes of
the orbital fragment spaces are determined in a black-box manner to ensure that the error in the DEC implementation is proportional to a single input threshold, denoted as the fragment
optimization threshold (FOT). The scaling behavior, performance and benchmark studies as well as series of showcase calculations prove the DEC method to be a highly effective tool for
approaching large molecular systems.
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