
ORNL is managed by UT-Battelle
for the US Department of Energy

CoMet:
An HPC application for
comparative genomics

calculations

Wayne Joubert
Scientific Computing Group

Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

2 Presentation name

Background
We focus on methods for exhaustive search to find
relationships in genomic data

These methods are highly computationally
expensive: datasets are large, and algorithmic
computational complexity is quadratic, cubic or
higher

These are relatively new methods to HPC

Here we will describe a new approach to solving
these problems on Titan and Summit that is an
advance over current state of the art

•
ht

tp
s:

//c
om

m
on

s.
w

ik
im

ed
ia

.o
rg

/w
ik

i/F
ile

:D
N

A_
co

m
_G

G
N

.jp
g

3 Presentation name

Vector similarity methods
Many of these methods can be represented as

vector similarity calculations

Given a set of vectors, we seek pairs of vectors

that are similar to each other

Example application: columns of matrix V

represent nucleotide positions in a genome

(SNPs), rows of V represent members of a

population of individuals

Two columns are mathematically “similar” if a

feature present in the two respective nucleotide

positions for two vectors co-occurs in the same

individuals in the population

V =

4 Presentation name

Vector similarity
Many vector similarity measures have been proposed for various
scientific uses
Perhaps most well-known: cosine similarity: d(u,v) = |(u,v)| / ||u|| ||v||,
normalized vector inner product
Two methods of interest here:

1. Proportional Similarity (or Czekanowski) metric
2. Custom correlation coefficient

We define these methods and describe how they are mapped to GPUs

5 Presentation name

Proportional Similarity metric
Assume a set of floating point vectors (single or double precision)
Given two vectors u and v, define the Proportional Similarity metric:

c2(u, v) = 2 � n2(u, v) / d2 (u, v)

denominator term: d2 (u, v) = Σk (uk + vk) = Σk uk + Σk vk

numerator term: n2 (u, v) = Σk min(uk , vk)

The full problem: let V = [v1 v2 v3 � � � vn], (V is m X n),
Compute c2(vi, vj) for all n2 vector pairs
(Note: only half are unique, due to symmetry)

6 Presentation name

Computing vector similarity
Simplistic approach: compute c2(vi, vj) individually for every pair – this is a
memory bandwidth bound computation since two full vectors must be read
from memory to compute a single result
However, the entire computation for n vectors of length m is O(mn2)
operations on O(mn) data – suggesting a more computationally intensive
approach may be possible
In fact, we already know how to solve problems of this type efficiently –
For example, the cosine similarity metric (inner products) for a set of vectors
can be computed very efficiently with an optimized BLAS-3 DGEMM dense
matrix-matrix product
For the Proportionality Similarity metric we can compute the numerator term
n2 (�, �) by replacing the scalar multiply add c = c + a * b in the DGEMM with the
operation c = c + min(a,b)

7 Presentation name

Implementation

• Pre-existing highly optimized software for the xGEMM operation can
be repurposed to compute the respective vector similarity metric

• Here we use the MAGMA library – well-tuned to the GPU (memory
hierarchy, registers, threads, etc.) – modify the relevant xGEMM
kernel in MAGMA to implement the specific similarity measure

• Added bonus: for the Proportional Similarity metric, one can use
CUDA intrinsics fmin / fminf to take the minimum of two scalars,
these map to hardware instructions on the GPU – to get very high
fraction of GPU peak performance

8 Presentation name

3-way Proportional Similarity metric
Some genomic features can only be found by comparing 3 vectors at a
time (higher dimensional relationships)
Given vectors u, v, w, define the 3-way Proportional Similarity metric:

c3(u, v) = (3 / 2) � n3(u, v, w) / d3(u, v, w)

where d3(u, v, w) = Σk (uk + vk + wk) = Σk uk + Σk vk + Σk wk

and n3(u, v, w) = n2(u,v) + n2(u,w) + n2(v,w) - Σk min(uk, vk, wk)

The full problem: Compute c3(vi, vj, vk) for all n3 vector triples
(Note: only 1/6 are unique, due to symmetries)

9 Presentation name

How to compute efficiently on the GPU?
• The numerator has three lower order terms: these can be computed using the 2-

way approach described earlier (lower complexity, O(mn2))

• The 3-way term Σk min(uk, vk, wk) is O(mn3) – a “BLAS-4-like” operation

• Strategy to solve this: convert the 3-way calculation into a series of 2-way
problems:

• In particular, for matrix V, fix vector vj, let Xj be the elementwise minimum of
column vj with all columns V

• Apply the 2-way computation method to the matrix pair [V, Xj], combine results
to form 3-way term

• Exploit the optimized 2-way method performance on the GPU

10 Presentation name

Custom Correlation Coefficient (CCC)
• CCC is used to compute the interactions between alleles in a

genomic dataset
• Here each vector entry is an allele encoded as a pair of bits
• The method applied to two vectors gives a 2X2 tally table of

results

11 Presentation name

Custom Correlation Coefficient: illustration

v1 v2

0 0
2 2

0
1

1
1

1 1

0 1

1 1

0 1

00 10

01 11

Consider a pair
of vectors, each

with one
element

composed of 2
bits

Take all four 2-bit
combinations of
one bit from the

first vector
concatenated with

one bit from the
second vector

Tally the counts
of number of

occurrences of
each of these

possibilities into
a 2x2 table

12 Presentation name

How to compute efficiently on the GPU?
• This again has the same computational pattern as xGEMM
• Use the same approach, modifying the MAGMA to support this

operation
• Requires special attention given to bit-manipulation operations

13 Presentation name

Implementation
• Based on the double precision complex ZGEMM kernel from

MAGMA

• Each vector entry has 2 doubles (128 bits)

• Input vector: pack 64 of these 2-bit values into each double-
complex MAGMA vector element

• Output result: the 4 values in the tally table are stored as 25-bit
integers packed into the two 52-bit mantissas of the two double
words

• Requires bitwise operations (mask, shift, etc.) on GPU
• Added bonus: can use the CUDA population count __popcll

intrinsic for fast counting of bits in hardware

• Very high computational intensity

• A variant of the method, CCC/sp is used for the case when the
input data may have missing entries

00 10

01 11

14 Presentation name

3-way Custom Correlation Coefficient
• As before, compares three vectors at a time
• Has analogous definition
• Mapped to GPU as before, by converting to a series of 2-way

computations
• Each element requires “3” 2-way computations (instead of 1 for PS)
• Do not have the three 2-way terms in the formula – thus shorter GPU

pipeline startup cost

15 Presentation name

Strategy to map to thousands of GPUs
• Major challenge: the comparison metrics are symmetric: for example,

c2(u, v) = c2(v, u), so only half of the values need be computed (1/6 for
3-way case)

• Want to avoid 2X or 6X factor of wasted computations from
symmetries

• The symmetry patterns are not amenable to easy load balancing

16 Presentation name

Parallelism strategy: 2-way methods
Must perform an all-to-all comparison of all
vectors against all vectors
The computed results form a 2-D square
matrix M
We parallelize across three axes:
1. The set of vectors is partitioned into

subsets assigned to different GPUs—
the matrix M is likewise divided into
block rows assigned to GPUs

2. Each vector is subdivided into pieces
assigned to different GPUs

3. Each block row of the matrix M is
further subdivided into smaller pieces
assigned to different GPUs

V

V

M

17 Presentation name

Eliminating redundancies
The upper triangular elements of the matrix M
uniquely represent all the required values
Computing this triangle of entries would result in load
imbalance – the block rows assigned to processors
have different lengths
However, taking a block-circulant subset of the blocks
will correctly capture every unique value and is also
load balanced

18 Presentation name

Parallelism strategy: 3-way methods
For the 3-way methods, now have a cube-
shaped (i,j,k) tensor of result values to
compute

Deploy the same three axes of parallelism
as before: (1) partition the set of vectors
into subsets assigned to GPUs, (2) divide
each vector into pieces assigned to GPUs,
and (3) further parallelize each 2-D slab of
results across GPUs

This results in a decomposition on the cube
of results into blocks and slabs

19 Presentation name

Eliminating redundancies
A tetrahedral region of the cube that represents all unique
values

Have a potential 6X inefficiency due to redundancies

Computing this tetrahedron with this parallel
decomposition is not load balanced

To solve this problem, for each block we select a special
1/6-sized slice and compute the results only for this slice

Can see by a folding/reflection argument that all blocks in
a single tetrahedral region are fully covered

The computation is load balanced since every block has
the same amount of work

20 Presentation name

Implementation details
• For high performance everything must be overlapped: GPU work,

async communications, async GPU transfers, CPU work (uses
OpenMP threading on CPU cores)

• The enormous size of the computed data requires dividing the
computation into “phases” (2-way, 3-way) or “stages” (3-way) to
reduce size of stored results

• For input, each MPI rank reads one part of a single file
• Output is typically thresholded by factor of 106 or more, and each

rank writes to a single output file

21 Presentation name

Results: timings for a sample run
2-way CCC/sp, realistic dataset, 28M vectors of length 44,100 elements,
21 phases computed out of 200 total phases, on 6,000 Titan nodes
For large cases most of the time is spent in the core computation of the
metrics

Operation 21 out of 200
phases

200 phases
(est)

%

core metrics comp 938.345 8936.615 89.54%
vectors init 0.025 0.025 0.00%
metrics init 11.741 111.817 1.12%

input 515.546 515.546 5.17%
output 416.034 416.034 4.17%
TOTAL 1,509.340 9,980.037 100.00%

22 Presentation name

GPU kernel performance: Summit Volta V100

Measurements of GPU
kernel only, for a large
problem
Operation rate is > 75%
of the xGEMM operation
rate
Volta still maintains very
high performance after
replacing fused-multiply-
add FMA with “+” and
“fminf” for PS method

23 Presentation name

Parallel performance: Summit weak scaling

Large problem,
similar problem
size per node
Near-perfect
weak scaling for
all cases
Expect near-
perfect scaling to
4,608 nodes by
using Summit fat
tree topology and
Adaptive Routing

24 Presentation name

Summit weak scaling: comparisons per rank per second

3-way methods
less efficient at
small node
counts
All methods are
efficient at high
node counts

25 Presentation name

Summit performance at 1000 nodes, 4608 nodes

@ 1000 nodes of Summit:
up to 22 quadrillion
element comparisons (43
PetaOps)

Per-GPU performance at
1000 nodes is 59-87% of
single GPU kernel
performance

Projection to full Summit:
100 quadrillion element
comparisons (199
PetaOps)

26 Presentation name

Related work: 2-way methods

@ 1000 Summit nodes, 2-
way CCC is 1,464X faster
than best competing result
(512 nodes of Edison)
Full Summit: estimate
6,747X faster
(Note: the GWISFI code
shown here is already
10,000 times faster than
the commonly used
PLINK code)

27 Presentation name

Related work: 3-way methods

Few comparable
methods in the literature
@ 1000 Summit nodes,
2-way CCC is 18,493X
faster than best
competing result
Full Summit: estimate
85,429X faster

28 Presentation name

Conclusions

• CoMet running on Summit represents 3 to 4 orders of magnitude
improvement over current state of the art in comparative genomics
metrics calculations

• The code achieves a high fraction of peak attainable performance on
the GPU and gives near-perfect weak scaling on Summit

• This will enable analysis of very large datasets that could not be
analyzed before, e.g., 10 million SNPs, 4 million population size

29 Presentation name

References

• W. Joubert, J. Nance, D. Weighill, D. Jacobson, “Parallel Accelerated
Vector Similarity Calculations for Genomics Applications,” arxiv
1705.08210 [cs], Parallel Computing, 2018.

• W. Joubert, J. Nance, S. Climer, D. Weighill, D. Jacobson, “Parallel
Accelerated Custom Correlation Coefficient Calculations for
Genomics Applications,” arxiv 1705.08213 [cs], Parallel Computing, in
review.

30 Presentation name

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC05-00OR22725.

Questions?
Wayne Joubert
joubert@ornl.gov

