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Background
We focus on methods for exhaustive search to find 
relationships in genomic data

These methods are highly computationally 
expensive: datasets are large, and algorithmic 
computational complexity is quadratic, cubic or 
higher

These are relatively new methods to HPC

Here we will describe a new approach to solving 
these problems on Titan and Summit that is an 
advance over current state of the art
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Vector similarity methods
Many of these methods can be represented as  

vector similarity calculations

Given a set of vectors, we seek pairs of vectors 

that are similar to each other

Example application: columns of matrix V 

represent nucleotide positions in a genome 

(SNPs), rows of V represent members of a 

population of individuals

Two columns are mathematically “similar” if a 

feature present in the two respective nucleotide 

positions for two vectors co-occurs in the same 

individuals in the population

V =
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Vector similarity
Many vector similarity measures have been proposed for various 
scientific uses
Perhaps most well-known: cosine similarity: d(u,v) = |(u,v)| / ||u|| ||v||, 
normalized vector inner product
Two methods of interest here:

1. Proportional Similarity (or Czekanowski) metric
2. Custom correlation coefficient

We define these methods and describe how they are mapped to GPUs
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Proportional Similarity metric
Assume a set of floating point vectors (single or double precision)
Given two vectors u and v, define the Proportional Similarity metric:

c2(u, v) = 2 � n2(u, v) / d2 (u, v)

denominator term:   d2 (u, v)  =  Σk (uk + vk)   =   Σk uk +   Σk vk

numerator term:       n2 (u, v) =  Σk min(uk , vk)

The full problem: let V = [v1 v2 v3 � � � vn ], (V is m X n),
Compute c2(vi, vj) for all n2 vector pairs
(Note: only half are unique, due to symmetry)
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Computing vector similarity
Simplistic approach: compute c2(vi, vj) individually for every pair – this is a 
memory bandwidth bound computation since two full vectors must be read 
from memory to compute a single result
However, the entire computation for n vectors of length m is O(mn2) 
operations on O(mn) data – suggesting a more computationally intensive 
approach may be possible
In fact, we already know how to solve problems of this type efficiently –
For example, the cosine similarity metric (inner products) for a set of vectors 
can be computed very efficiently with an optimized BLAS-3 DGEMM dense 
matrix-matrix product
For the Proportionality Similarity metric we can compute the numerator term 
n2 (�, �) by replacing the scalar multiply add c = c + a * b in the DGEMM with the 
operation c = c + min(a,b)
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Implementation

• Pre-existing highly optimized software for the xGEMM operation can 
be repurposed to compute the respective vector similarity metric

• Here we use the MAGMA library – well-tuned to the GPU (memory 
hierarchy, registers, threads, etc.) – modify the relevant xGEMM 
kernel in MAGMA to implement the specific similarity measure

• Added bonus: for the Proportional Similarity metric, one can use 
CUDA intrinsics fmin / fminf to take the minimum of two scalars, 
these map to hardware instructions on the GPU – to get very high 
fraction of GPU peak performance
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3-way Proportional Similarity metric
Some genomic features can only be found by comparing 3 vectors at a 
time (higher dimensional relationships)
Given vectors u, v, w, define the 3-way Proportional Similarity metric:

c3(u, v) = ( 3 / 2 ) � n3(u, v, w) / d3(u, v, w)

where d3(u, v, w)  =  Σk (uk + vk + wk) = Σk uk +  Σk vk +  Σk wk

and n3(u, v, w) = n2(u,v) + n2(u,w) + n2(v,w) - Σk min(uk, vk, wk)

The full problem: Compute c3(vi, vj, vk) for all n3 vector triples
(Note: only 1/6 are unique, due to symmetries)
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How to compute efficiently on the GPU?
• The numerator has three lower order terms: these can be computed using the 2-

way approach described earlier (lower complexity, O(mn2))

• The 3-way term Σk min(uk, vk, wk) is O(mn3) – a “BLAS-4-like” operation

• Strategy to solve this: convert the 3-way calculation into a series of 2-way 
problems:

• In particular, for matrix V, fix vector vj, let Xj be the elementwise minimum of 
column vj with all columns V

• Apply the 2-way computation method to the matrix pair [V, Xj], combine results 
to form 3-way term

• Exploit the optimized 2-way method performance on the GPU
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Custom Correlation Coefficient (CCC)
• CCC is used to compute the interactions between alleles in a 

genomic dataset
• Here each vector entry is an allele encoded as a pair of bits
• The method applied to two vectors gives a 2X2 tally table of 

results
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Custom Correlation Coefficient: illustration
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Consider a pair 
of vectors, each 

with one 
element 

composed of 2 
bits

Take all four 2-bit 
combinations of 
one bit from the 

first vector 
concatenated with 

one bit from the 
second vector

Tally the counts 
of number of 

occurrences of 
each of these 

possibilities into 
a 2x2 table
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How to compute efficiently on the GPU?
• This again has the same computational pattern as xGEMM
• Use the same approach, modifying the MAGMA to support this 

operation
• Requires special attention given to bit-manipulation operations
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Implementation
• Based on the double precision complex ZGEMM kernel from 

MAGMA

• Each vector entry has 2 doubles (128 bits)

• Input vector: pack 64 of these 2-bit values into each double-
complex MAGMA vector element

• Output result: the 4 values in the tally table are stored as 25-bit 
integers packed into the two 52-bit mantissas of the two double 
words

• Requires bitwise operations (mask, shift, etc.) on GPU
• Added bonus: can use the CUDA population count __popcll

intrinsic for fast counting of bits in hardware

• Very high computational intensity

• A variant of the method, CCC/sp is used for the case when the 
input data may have missing entries

00 10

01 11
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3-way Custom Correlation Coefficient
• As before, compares three vectors at a time
• Has analogous definition
• Mapped to GPU as before, by converting to a series of 2-way 

computations
• Each element requires “3” 2-way computations (instead of 1 for PS)
• Do not have the three 2-way terms in the formula – thus shorter GPU 

pipeline startup cost
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Strategy to map to thousands of GPUs
• Major challenge: the comparison metrics are symmetric: for example, 

c2(u, v) = c2(v, u), so only half of the values need be computed (1/6 for 
3-way case)

• Want to avoid 2X or 6X factor of wasted computations from 
symmetries

• The symmetry patterns are not amenable to easy load balancing
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Parallelism strategy: 2-way methods
Must perform an all-to-all comparison of all 
vectors against all vectors
The computed results form a 2-D square 
matrix M
We parallelize across three axes:
1. The set of vectors is partitioned into 

subsets assigned to different GPUs—
the matrix M is likewise divided into 
block rows assigned to GPUs

2. Each vector is subdivided into pieces 
assigned to different GPUs

3. Each block row of the matrix M is 
further subdivided into smaller pieces 
assigned to different GPUs

V

V

M



17 Presentation name

Eliminating redundancies
The upper triangular elements of the matrix M 
uniquely represent all the required values
Computing this triangle of entries would result in load 
imbalance – the block rows assigned to processors 
have different lengths
However, taking a block-circulant subset of the blocks 
will correctly capture every unique value and is also 
load balanced
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Parallelism strategy: 3-way methods
For the 3-way methods, now have a cube-
shaped (i,j,k) tensor of result values to 
compute

Deploy the same three axes of parallelism 
as before: (1) partition the set of vectors 
into subsets assigned to GPUs, (2) divide 
each vector into pieces assigned to GPUs, 
and (3) further parallelize each 2-D slab of 
results across GPUs

This results in a decomposition on the cube 
of results into blocks and slabs
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Eliminating redundancies
A tetrahedral region of the cube that represents all unique 
values

Have a potential 6X inefficiency due to redundancies

Computing this tetrahedron with this parallel 
decomposition is not load balanced

To solve this problem, for each block we select a special 
1/6-sized slice and compute the results only for this slice

Can see by a folding/reflection argument that all blocks in 
a single tetrahedral region are fully covered

The computation is load balanced since every block has 
the same amount of work
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Implementation details
• For high performance everything must be overlapped: GPU work, 

async communications, async GPU transfers, CPU work (uses 
OpenMP threading on CPU cores)

• The enormous size of the computed data requires dividing the 
computation into “phases” (2-way, 3-way) or “stages” (3-way) to 
reduce size of stored results

• For input, each MPI rank reads one part of a single file
• Output is typically thresholded by factor of 106 or more, and each 

rank writes to a single output file
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Results: timings for a sample run
2-way CCC/sp, realistic dataset, 28M vectors of length 44,100 elements,          
21 phases computed out of 200 total phases, on 6,000 Titan nodes
For large cases most of the time is spent in the core computation of the 
metrics

Operation 21 out of 200 
phases

200 phases 
(est)

%

core metrics comp 938.345 8936.615 89.54%
vectors init 0.025 0.025 0.00%
metrics init 11.741 111.817 1.12%

input 515.546 515.546 5.17%
output 416.034 416.034 4.17%
TOTAL 1,509.340 9,980.037 100.00%
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GPU kernel performance: Summit Volta V100

Measurements of GPU 
kernel only, for a large 
problem
Operation rate is > 75%
of the xGEMM operation 
rate
Volta still maintains very 
high performance after 
replacing fused-multiply-
add FMA with “+” and 
“fminf” for PS method
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Parallel performance: Summit weak scaling

Large problem, 
similar problem 
size per node
Near-perfect 
weak scaling for 
all cases
Expect near-
perfect scaling to 
4,608 nodes by 
using Summit fat 
tree topology and 
Adaptive Routing
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Summit weak scaling: comparisons per rank per second

3-way methods 
less efficient at 
small node 
counts
All methods are 
efficient at high 
node counts
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Summit performance at 1000 nodes, 4608 nodes

@ 1000 nodes of Summit: 
up to 22 quadrillion 
element comparisons (43 
PetaOps)

Per-GPU performance at 
1000 nodes is 59-87% of 
single GPU kernel 
performance

Projection to full Summit: 
100 quadrillion element 
comparisons (199 
PetaOps)
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Related work: 2-way methods

@ 1000 Summit nodes, 2-
way CCC is 1,464X faster 
than best competing result 
(512 nodes of Edison)
Full Summit: estimate 
6,747X faster
(Note: the GWISFI code 
shown here is already 
10,000 times faster than 
the commonly used 
PLINK code)
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Related work: 3-way methods

Few comparable 
methods in the literature
@ 1000 Summit nodes, 
2-way CCC is 18,493X
faster than best 
competing result
Full Summit: estimate 
85,429X faster
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Conclusions

• CoMet running on Summit represents 3 to 4 orders of magnitude 
improvement over current state of the art in comparative genomics 
metrics calculations

• The code achieves a high fraction of peak attainable performance on 
the GPU and gives near-perfect weak scaling on Summit

• This will enable analysis of very large datasets that could not be 
analyzed before, e.g., 10 million SNPs, 4 million population size
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