Managing Python on
OLCF Resources

Tips for managing your own
third-party Python packages,
distributions, and environments
on OLCF resources.

ORNL is managed by UT-Battelle
for the US Department of Energy

¥

OAK RIDGE

National Laboratory

Using Python the standard way

» Load the center provided Tcl environment modules™:
— module avail “python ”
module load python python numpy/1.9.2
* This works great...

— We do the work
— Packages optimized when possible for the target environment

« ...except when it doesn’t
— Innumerable reasons this can’t work for everyone

*Nomenclature Disambiguation

Envmod Tcl Environment Module
Pymod Python Module (i.e. any *.py file)
Python Package A collection of pymods denoted by a file ‘package/__init__.py’

#,OAK RIDGE

- National Laboratory

Ways to manage your own Python stack

* Install packages to your user site-packages directory

— Easy; Useful when package is: pure-python; not shared among
project; not used on Cray compute nodes

* |Install packages to an arbitrary alternate prefix

* Install custom Python stack snapshots with virtualenv
— Flexible and relatively easy

» Deploy custom python root install
— Need Python 2 and 3 simultaneously? Install from source.
— Or Anaconda; promises to be easier but isn’'t always so

g,QAK RIDGE

- National Laboratory

General Recommendations

« Use a consistent PrgEnv for all packages that will be used
together

—Many utility packages (pure Python) have no compiler concerns

» Use system compiler when possible on Crays so binaries
compatible with both front- and back-end node architectures

* Precautions must be taken to avoid envmod conflicts

— Always load dependency environment modules before altering PATH,
PYTHONPATH, LD _LIBRARY_PATH, etc. yourself

— Environment modules can interfere with manual changes you make

— Alternative: work WITH environment modules and write your own
modulefile (see backup slide)

%QAK RIDGE

- National Laboratory

Filesystem considerations:
Where should custom packages be installed?

* Project NFS space "/ccs/proj/{PROJECT ID}"
— Generally recommended
— Project-shared by default
— Not purged; available on Cray compute nodes

 Home NFS space ($HOME™, “site.USER SITE)
— Convenient for personal packages; not purged
— Not mounted on Cray compute nodes, OK on Rhea
— USER_SITE packages may conflict between resources/interpreters
— Not shared with collaborators without effort

 Paths on Atlas/Lustre are not recommended

— Generally avoid $PROJWORK, $MEMBERWORK, $WORLDWORK for project
executables.

%OAK RIDGE

National Laboratory

User Site-Packages

* Located at $HOME/.local/lib/pythonX.Y/site-packages"
— Python searches this path for packages automatically

— Scripts and binaries installed to "$HOME/ .local/bin”

* Append to your $PATH early in your Shell's initialization
(~/.profile || ~/.bash_profile || ~/.zshenv):
export PATH=$PATH:$HOME/.local/bin # or equivalent

— Reserve for simple packages; may conflict with other extension
methods
» Use with center-provided Python distribution

— module load python/x.y.z python pip
pip install --user $PKGNAME

— module load python python_ setuptools
python setup.py install --user

#,OAK RIDGE

- National Laboratory

Installing to an arbitrary prefix

 Prefer architecture-specific prefixes
— Clearly separates machine-specific packages
— Install all packages for each system in each prefix

* Install with pip:
— pip install --no-binary :all: \
--prefix=/ccs/proj/{PROJID}/local/titan \
PKGNAME
* Optimize for target
— --no-binary :all: compiles all binaries when able.
— Not necessarily as optimized as center-provided envmods
— Load all desired dependency envmods prior to install and at runtime.

%QAK RIDGE

- National Laboratory

Virtualenv: Isolated python deployments

* Virtualenv allows many independent user-managed python
environments to co-exist on a single system.

* All your eggs in one basket:
— a single site-packages
— All package binaries, scripts, libs installed under one tree

* Bootstrap with:

— $ module load python/x.y.z python_virtualenv

$ virtualenv /ccs/proj/{PROJECT ID}/venvs/titan-app
$ module unload python_virtualenv

* python_virtualenv envmod only needed to create the
virtualenv

%QAK RIDGE

- National Laboratory

Virtualenv: Isolated python deployments

* Private python binary links against parent 1ibpython
— Must always have original interpreter envmod loaded

 Activated and deactivated dynamically

— via shell scripts/functions to modify a shell environment
$. /ccs/proj/{PROJECT ID}/venvs/app/bin/activate
(app)$ which python; which pip; pip --version
(app)$ pip --trusted-host pypi.python.org install -U pip
(app)$ pip install --no-binary :all: numpy nose ipython

(app)$ python -c "import numpy as np; np.lib.test('full');"
$ deactivate

%OAK RIDGE

- National Laboratory

Virtualenv + Environment Modules

* Original interpreter version and all non-python dependencies
need be loaded prior to activation

— $ module load python hdf5... # pip and virtualenv not needed!
$. /path/to/venv/bin/activate

* Environment modules and virtualenv both alter PATH with
utter disregard for each other

— Running ‘module load’, swap or unload while a virtualenv is
active will always leave the environment in a broken state

— Always deactivate venvs before changing environment modules

#,OAK RIDGE

. National Laboratory

Virtualenv + provided packages

* Install all the packages you need into your own venv

* For most simple packages, installing from the Python
Package index with pip works fine.

Not recommended
to mix, copy, or symlink
packages provided by envmods into a venv!

%OAK RIDGE

al Labor:

Build your own root install

* Build from source
— Allows concurrent install of Python 2 and 3
— Example build script: "https://code.ornl.gov/snippets/11

— Best left to the fearless

» Best performance when using complex packages but challenging to
manage dependencies compared to Anaconda

* Less convenient than virtualenvs if using simple packages

* Anaconda
— Easier than above; complete scientific python distribution
— Base installation uses pre-compiled binaries
* may cause problems between frontend-backend Cray nodes
« Use anaconda's pip to force upgrade and re-build binaries
* .../anaconda/bin/pip install -U --force $PKG

%OAK RIDGE

- National Laboratory

Anaconda

» Best to have separate install for each resource

— wget https://repo.continuum.io/archive/Anaconda2-4.1.1-Linux-x86_64.sh
bash ./Anaconda2-4.1.1-Linux-x86_64.sh -p /ccs/proj/.../anaconda/titan

— Do not let it modify *PATHSs in your login scripts!
* Your init scripts must work on multiple resources.
 Activating your install at login is fine, but should be managed carefully

« Some packages must be (re)built specially for Crays
— Use Anaconda-installed pip binary as shown in a moment
— Wheels work well on Rhea.

%OAK RIDGE

- National Laboratory

Activating personal extensions

« Always load dependency envmods first (have | said this enough?)
* usersite is always searched when reachable.

* Alternate Prefixes (each):

— export PYTHONPATH="$PREFIX/lib/pythonX.Y/site-packages:$PYTHONPATH"
and if needed:
export PATH="$PREFIX/bin:$PATH"
export LD_LIBRARY_PATH="$PREFIX/lib:$LD LIBRARY_PATH'
* Virtualenvs:

— . /path/to/venv/bin/activate

* Full install from source:
— export PATH="/path/to/titan/root/bin:$PATH"
export LD _LIBRARY_ PATH="/path/to/titan/root/lib:$LD LIBRARY_PATH"
* Anaconda:
— export PATH="/path/to/titan/root/bin:$PATH"

» Good practice to script these tasks along with any dependency envmods
or write custom modulefiles (see backup slide)

%OAK RIDGE

- National Laboratory

Batch Job and aprun Considerations

* Activating extensions from shell init scripts may not apply

— Good idea to verify loaded modules and *PATHSs are correct:
module -t list
(echo "Loaded PATH is\n$PATH:--" | tr ":' "\n' 1>&2)

» Cray ALPS transfer of binaries to compute nodes can
interfere with paths needed by some pymods
— Use "aprun -b" to bypass transfer
 slower execution
« all binaries and libs must be on Lustre or project NFS filesystem

— Or explicitly set environment variables on the compute nodes with
“aprun -e PYTHONPATH=$PYTHONPATH ...’

;,QAK RIDGE

- National Laboratory

Complex Packages for Cray Compute Nodes

« Some builds require Cray cross-compile wrappers:

— $ module swap PrgEnv-pgi PrgEnv-gnu
$. /path/to/venv/bin/activate
(venv)$ env CRAYPE LINK TYPE=dynamic MPICC=cc MPICXX=CC \
pip -v install --no-binary :all: mpidpy

— Binaries built with Cray wrappers unlikely to execute on login nodes!

#,OAK RIDGE

- National Laboratory

Complex Packages for Cray Compute Nodes

 Others will configure linked-dependencies themselves:
— $ module swap PrgEnv-pgi PrgEnv-gnu
$ module load cray-hdf5
$. /path/to/venv/bin/activate
(venv)$ pip -v install --no-binary :all: h5py
» Packages build with system gcc normally
— Will run on login nodes if linked libraries use reduced instruction set

— Linked dependencies envmods must be loaded prior to import

« Use the "pip -v flag to see cause of build failures.

#,OAK RIDGE

- National Laboratory

Final thoughts

- Managing your own Python stacks and extensions is a
practical way to tailor Python to your needs be it through

— User site-packages,
— Alternate prefix installs,

— Virtualenvs,
— An interpreter source install or Anaconda

* We are working to improve the Python user experience

— We welcome your thoughts, concerns, and feedback and would
appreciate if you shared these with us through our User Survey.

%QAK RIDGE

- National Laboratory

And now for something
completely different
(Backup)

%OAK RIDGE

National Laboratory

Provided Environment Modules:
Why so complicated?

- Library dependencies provided by other envmods
— HDF5, MPI, BLAS/LAPACK, PrgEnv-gnu, other pymods, etc

— ABI compatibility issues for compiled components
* Only pure python works everywhere under one installation
« Compiled binaries typically require separate build for each arch/compiler

* Must support specific versions site-packages
— Each project has different package/version needs
— 'pkg_resources approach infeasible for user projects

* Provided packages are limited or versions are outdated
— Complex dependency graph; pollution of PYTHONPATH
— Python 2 and 3 do not currently co-exist

It is impractical to provide+maintain envmods for all
packages/versions/targets % OAK RIDGE

- National Laboratory

How Python modules are imported

« SPYTHONPATH (sys.path) searched in-order for pymods/
packages:

— current working directory
— site.prefix/lib/pythonX.Y
— site.prefix/usr/lib/pythonX.Y/site-packages
— site.prefix/usr/lib/pythonX.Y/site-packages/*.pth
— site.USER_ SITE (if site. ENABLED USER_SITE):
$SHOME/.local/lib/pythonX.Y/site-packages
* Pure Python packages are trivially re-locatable
* Encountered .pth files do complex things to sys and site.

 Namespaces are searched upwards until first module match

%OAK RIDGE

- National Laboratory

The problem with PYTHONPATH complexity

« Complex PYTHONPATHs can lead to runtime module conflicts

» Suppose PYTHONPATH="$F00: $BAR":

— Path $BAR contains a poorly-packaged module “bar™ which imports
module foo’, needing version 3 or greater. foo version 3.2 is co-
installed in $BAR

— Path $FOO contains a crufty "foo™ version 0.1a1
— On first import of ‘foo’, the search in sys.path yields crufty foo

— imports happen only once and the global namespace is now
polluted with a "foo" that will cause runtime errors in "bar.

%OAK RIDGE

- National Laboratory

Pip SSL Errors

Older versions of pip may not be able to verify newer SSL/TLS
certificates at https://pypi.python.org.

If you cannot install a package using the latest available
version of pip, a host can be explicitly trusted using:

pip --trusted-host pypi.python.org \
install --user $PKGNAME

Don't get man-in-the-middled! Only bypass this check if you
verify the remote host is valid!

Otherwise, manually install the package from source.

#,OAK RIDGE

al Labor:

Your very own pip

* The following should be exercised with extreme caution.

* Install latest version of pip to your userbase:
— Securely obtain “https://bootstrap.pypa.io/get-pip.py
— Run:
— module load python/x.y.z
python get-pip.py -v -U --user

* This work-around for the impatient is unsupported, but
relatively safe for non-ccsstaff users.

» Users with write access to /sw/*/python’ installations
must absolutely not do this: mistakes can leave the python
installation in an inconsistent state.

%OAK RIDGE

- National Laboratory

Alternate Virtualenv Activation

* Venvs can also be activated within a python script run by
the parent interpreter

— venv_path = '/path/to/venv/bin/activate_ this.py'
execfile(venv_path, dict(_file =venv _path))

%OAK RIDGE

al Labor:

Cray Libsci vs Lapack Lite vs Anaconada?

 Cray libsci install:

module swap PrgEnv-pgi PrgEng-gnu

module load fftw

. /path/to/venv/bin/activate

mkdir -p /tmp/$USER; cd $_

wget https://github.com/numpy/numpy/archive/v1.11.1.tar.gz
tar xf $_

cd numpy-1.11.1

edit site.cfg - see backup slide

python setup.py build

python setup.py install

cd $HOME;

python -c "import numpy as np; np.test()"

Ran 6151 tests in 111.088s
OK (KNOWNFAIL=6, SKIP=3)

%OAK RIDGE

- National Laboratory

Cray Libsci vs Lapack Lite vs Anaconada?

* Anaconda
module swap PrgEnv-pgi PrgEnv-gnu
export PATH=$PREFIX/bin:$PATH"
python -c "import numpy as np; np.test()"

Ran 6151 tests in 123.582s
OK (KNOWNFAIL=6, SKIP=3)

« Lapack Lite install:

module swap PrgEnv-pgi PrgEng-gnu

. /path/to/venv/bin/activate

pip install --no-binaries :all: numpy
python -c "import numpy as np; np.test()"

Ran 6151 tests in 109.440s similar performance for locally compiled numpy:
OK (KNOWNFAIL=6, SKIP=3) better optimized than pre-compiled binaries.
Is the effort building against libsci justified?

%OAK RIDGE

- National Laboratory

Numpy site.cfg using PrgEnv-gnu, cray-libsci

[blas]

blas_libs = sci_gnu,sci_gnu_mp

library dirs = $CRAY_LIBSCI_PREFIX_DIR/lib
rpath = $CRAY_LIBSCI _PREFIX_DIR/lib

[lapack]

language = {77

lapack_libs = sci_gnu,sci_gnu_mp

library dirs = $CRAY_LIBSCI_PREFIX_DIR/lib
include_dirs = $CRAY_LIBSCI_PREFIX_DIR/include
rpath = $CRAY _LIBSCI _PREFIX_DIR/lib

[fftw]

libraries = fftw3

library dirs = $FFTW _LIB
include_dirs = $FFTW _INC

$ENVARS must be fully expanded in practice

%OAK RIDGE

- National Laboratory

Matplotlib

« GTk rendering backends are not usually available
* Work-around by configuring the use of TkAgg

* |In file "$HOME/ .matplotlib/matplotlibrc set:
— backend: TkAgg

g,OAK RIDGE

al Labor:

Play Nice with Environment Modules

Example: Personal anaconda
* |nstall Anaconda to /ccs/proj/abc123/anaconda/titan
export MODULEPATH="$HOME/.modulefiles:$MODULEPATH"

In "$HOME/ .modulefiles/my-anaconda/titan’:

— #%Module
module-whatis "My Anaconda on Titan"
prereq Prgknv-gnu
conflict python python_anaconda my-anaconda
set PREFIX /ccs/proj/abcl23/anaconda/titan
prepend-path PATH $PREFIX/bin

Now you can module load my-anaconda/titan

See man modulefile for full set of directives

g,QAK RIDGE

- National Laboratory

Activating Extensions at Login

function _source_env () {
[-f "$HOME/.envs/$1" -a -z "$ NOSOURCEMYENV"] && . "$HOME/.envs/$1";
}

case "$HOSTNAME" in
titan*) _source env(titan.sh) ;;
rhea*) _source_env(rhea.sh) ;;
eos*) _source_env(eos.sh) ;;
*) s

esac

export _NOSOURCEMYENV=1

Make envmod changes from clean state to desired state with all python
package dependencies. Only source in a clean environment!

module swap PrgEnv-pgi PrgEnv-gnu

module load cray-hdf5

export PATH="/path/to/my/anaconda/bin:$PATH"

Or add alternate prefix PYTHONPATHS, etc...

%OAK RIDGE

- National Laboratory

