
Redbooks

Front cover

Performance Optimization and Tuning
Techniques for IBM Power Systems
Processors Including IBM POWER8

Peter Bergner

Brian Hall

Alon Shalev Housfater

Madhusudanan Kandasamy

Tulio Magno

Alex Mericas

Steve Munroe

Mauricio Oliveira

Bill Schmidt

Will Schmidt

Bernard King Smith

Julian Wang

Suresh Warrier

David Wendt

International Technical Support Organization

Performance Optimization and Tuning Techniques for
IBM Power Systems Processors Including IBM
POWER8

August 2015

SG24-8171-01

© Copyright International Business Machines Corporation 2014, 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Second Edition (August 2015)

This edition pertains to IBM Power Systems servers based on IBM Power Systems processor-based
technology, including but not limited to IBM POWER8 processor-based systems. Specific software levels and
firmware levels that are used are noted throughout the text.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

IBM Redbooks promotions . xi

Preface . xiii
Authors. xiii
Now you can become a published author, too! . xvii
Comments welcome. xvii
Stay connected to IBM Redbooks . xvii

Summary of changes . xix
August 2015, Second Edition. xix

Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 1
1.1 Introduction . 2
1.2 Outline of this guide . 2
1.3 Conventions that are used in this guide . 5
1.4 Background . 5
1.5 Optimizing performance on POWER8 processor-based systems. 6

1.5.1 Lightweight tuning and optimization guidelines. 7
1.5.2 Deployment guidelines . 15
1.5.3 Deep performance optimization guidelines . 21

Chapter 2. The IBM POWER8 processor . 25
2.1 Introduction to the POWER8 processor . 26
2.2 Using POWER8 features . 28

2.2.1 Multi-core and multi-thread . 28
2.2.2 Multipage size support (page sizes (4 KB, 64 KB, 16 MB, and 16 GB)) 32
2.2.3 Efficient use of cache and memory. 33
2.2.4 Transactional memory. 42
2.2.5 Vector Scalar eXtension . 45
2.2.6 Decimal floating point . 47
2.2.7 In-core cryptography and integrity enhancements . 47
2.2.8 On-chip accelerators . 48
2.2.9 Storage synchronization (sync, lwsync, lwarx, stwcx., and eieio) 49
2.2.10 Fixed-point load and store quadword instructions. 51
2.2.11 Instruction fusion. 51
2.2.12 Event-based branches (or user-level fast interrupts) . 52
2.2.13 Power management and system performance . 52
2.2.14 Coherent Accelerator Processor Interface . 53

2.3 I/O adapter affinity . 55
2.4 Related publications . 55

Chapter 3. The IBM POWER Hypervisor . 57
3.1 Introduction to PowerVM. 58
3.2 Power Systems virtualization with PowerVM . 59

3.2.1 Virtual processors . 59
3.2.2 Page table sizes for LPARs . 63
© Copyright IBM Corp. 2014, 2015. All rights reserved. iii

3.2.3 Placing LPAR resources to attain higher memory affinity 63
3.2.4 Active memory expansion . 66
3.2.5 Optimizing resource placement: Dynamic Platform Optimizer 67
3.2.6 Partition compatibility mode . 67

3.3 Introduction to KVM Virtualization . 67
3.4 Related publications . 68

Chapter 4. IBM AIX . 71
4.1 Introduction . 72
4.2 Using Power Architecture features with AIX . 72

4.2.1 Multi-core and multi-thread . 72
4.2.2 Multipage size support on AIX . 83
4.2.3 Efficient use of cache . 86
4.2.4 Transactional memory. 89
4.2.5 Vector Scalar eXtension . 91
4.2.6 Decimal floating point . 92
4.2.7 On-chip encryption accelerator . 94

4.3 AIX operating system-specific optimizations. 95
4.3.1 Malloc . 95
4.3.2 Pthread tunables. 97
4.3.3 pollset . 98
4.3.4 File system performance benefits . 98
4.3.5 Direct I/O. 98
4.3.6 Concurrent I/O . 99
4.3.7 Asynchronous I/O . 99
4.3.8 I/O completion ports . 100
4.3.9 shmat versus mmap . 100
4.3.10 Large segment tunable aliasing (LSA) . 101
4.3.11 64-bit versus 32-bit ABIs . 101
4.3.12 Sleep and wake-up primitives (thread_wait and thread_post) 102
4.3.13 Shared versus private loads . 103
4.3.14 Workload partition shared licensed program installations. 104

4.4 AIX preferred practices . 105
4.4.1 AIX preferred practices that are applicable to all Power Systems generations. . 105
4.4.2 AIX preferred practices that are applicable to POWER7 and POWER8

processor-based systems. 106
4.5 Related publications . 107

Chapter 5. IBM i . 111
5.1 Introduction . 112
5.2 Using Power features with IBM i . 112

5.2.1 Multi-core and multi-thread . 112
5.2.2 Multipage size support on IBM i . 113
5.2.3 Vector Scalar eXtension . 113
5.2.4 Decimal floating point . 113

5.3 IBM i operating system-specific optimizations. 114
5.3.1 IBM i advanced optimization techniques. 114
5.3.2 Performance management on IBM i . 115

5.4 Related publications . 116

Chapter 6. Linux . 117
6.1 Introduction . 118
6.2 Using Power features with Linux. 118

6.2.1 Multi-core and multi-thread . 119
iv Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

6.2.2 Multipage size support on Linux . 123
6.2.3 Efficient use of cache . 123
6.2.4 Transactional memory. 124
6.2.5 Vector Scalar eXtension . 125
6.2.6 Decimal floating point . 126
6.2.7 Event-based branches . 128

6.3 Linux operating system-specific optimizations . 129
6.3.1 GCC, toolchain, and IBM Advance Toolchain. 129
6.3.2 Tuning and optimizing malloc . 133
6.3.3 Large TOC -mcmodel=medium optimization . 137
6.3.4 POWER7 based distro considerations . 137
6.3.5 Microthreading considerations . 137

6.4 Little Endian . 138
6.4.1 Application binary interface. 139

6.5 Related publications . 139

Chapter 7. Compilers and optimization tools for C, C++, and Fortran. 141
7.1 Compiler versions and optimization levels . 142
7.2 Advanced compiler optimization techniques . 143

7.2.1 Common prerequisites . 143
7.2.2 XL compiler family. 144
7.2.3 GCC compiler family . 146

7.3 Capitalizing on POWER8 features with the XL and GCC compilers 148
7.3.1 In-core cryptography . 148
7.3.2 Compiler support for Vector Scalar eXtension . 151
7.3.3 Built-in functions for storage synchronization . 154
7.3.4 Data Streams Control Register controls . 154
7.3.5 Transactional memory. 156

7.4 IBM Feedback Directed Program Restructuring . 160
7.4.1 Introduction . 160
7.4.2 Feedback Directed Program Restructuring supported environments 162
7.4.3 Acceptable input formats . 162
7.4.4 General operation . 162
7.4.5 Instrumentation and profiling. 164
7.4.6 Optimization . 165

7.5 Using the Advance Toolchain with IBM XLC and XLF . 169
7.6 Using GPU accelerators with C/C++. 169
7.7 Related publications . 171

Chapter 8. Java . 173
8.1 Java levels . 174
8.2 32-bit versus 64-bit Java . 174

8.2.1 Little Endian support . 175
8.3 Memory and page size considerations . 175

8.3.1 Medium and large pages for Java heap and code cache 175
8.3.2 Configuring large pages for Java heap and code cache. 176
8.3.3 Prefetching . 176
8.3.4 Compressed references . 177
8.3.5 JIT code cache . 180
8.3.6 Shared classes . 181

8.4 Capitalizing on POWER8 features with IBM Java. 181
8.4.1 In-core Advanced Encryption Standard and Secure Hash Algorithm acceleration and

instructions . 181
 Contents v

8.4.2 Transactional memory. 182
8.4.3 Runtime instrumentation . 183

8.5 Java garbage collection tuning . 183
8.5.1 GC strategy: Optthruput . 183
8.5.2 GC strategy: Optavgpause . 184
8.5.3 GC strategy: Gencon . 184
8.5.4 GC strategy: Balanced . 184
8.5.5 Optimal heap size . 185

8.6 Application scaling . 186
8.6.1 Choosing the correct simultaneous multithreading mode 186
8.6.2 Using resource sets . 187
8.6.3 Java lock reservation . 189
8.6.4 Java GC threads . 189
8.6.5 Java concurrent marking. 189

8.7 Using GPU accelerators with IBM Java . 190
8.7.1 Automatic GPU compilation . 190
8.7.2 Accessing the GPU through the CUDA4J application programming interface . . 191
8.7.3 The com.ibm.gpu application programming interface . 191
8.7.4 NVIDIA Compute Unified Device Architecture: Java Native interface. 191

8.8 Related publications . 192

Chapter 9. IBM DB2 . 193
9.1 DB2 and the POWER processor . 194
9.2 Taking advantage of the POWER processor . 194

9.2.1 Affinitization. 194
9.2.2 Page sizes . 195
9.2.3 Decimal arithmetic. 196
9.2.4 Using simultaneous multithreading priorities for internal lock implementation . . 196
9.2.5 Single Instruction Multiple Data. 196

9.3 Capitalizing on the compilers and optimization tools for POWER. 197
9.3.1 Whole-program analysis and profile-based optimizations. 198
9.3.2 IBM Feedback Directed Program Restructuring . 198

9.4 Capitalizing on POWER virtualization . 198
9.4.1 DB2 virtualization . 198
9.4.2 DB2 in an AIX workload partition . 199

9.5 Capitalizing on the AIX system libraries . 199
9.5.1 Using the thread_post_many API . 199
9.5.2 File systems . 200

9.6 Capitalizing on performance tools . 201
9.6.1 High-level investigation . 201
9.6.2 Low-level investigation . 201

9.7 Conclusion . 202
9.8 Related publications . 202

Chapter 10. IBM WebSphere Application Server . 205
10.1 IBM WebSphere . 206

10.1.1 Installation. 206
10.1.2 Deployment . 206
10.1.3 Performance . 207
10.1.4 Performance analysis, problem determination, and diagnostic tests 209

Appendix A. Analyzing malloc usage under IBM AIX . 211
Introduction . 212
How to collect malloc usage information . 212
vi Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Appendix B. Performance tools and empirical performance analysis 215
Introduction . 216
Performance advisors . 216

Expert system advisors . 216
IBM Rational Performance Advisor . 221

IBM Power Virtualization Performance . 223
AIX . 223

CPU profiling. 224
AIX trace-based analysis tools . 226
Finding emulation issues . 232
hpmstat, hpmcount, and tprof -E. 232

Linux. 233
Empirical performance analysis by using the IBM Software Development Kit for Linux on

Power . 233
Using the IBM SDK for Linux on Power Trace Analyzer . 235
High library usage . 235
Deeper empirical analysis . 236

Java (either AIX or Linux). 239
32-bit or 64-bit JDK . 240
Java heap size, and garbage collection policies and parameters. 240
Hot method or routine analysis . 241
Locking analysis . 246
Thread state analysis . 246
 Contents vii

viii Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014, 2015. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Active Memory™
AIX®
AIX 5L™
Blue Gene/L®
DB2®
FDPR®
IBM®
IBM Watson™
Micro-Partitioning®
POWER®

Power Architecture®
POWER Hypervisor™
Power Systems™
Power Systems Software™
POWER6®
POWER6+™
POWER7®
POWER7+™
POWER8®
PowerLinux™

PowerPC®
PowerVM®
PowerVP™
Rational®
Redbooks®
Redbooks (logo) ®
System z®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

LTO, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other
countries.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Find and read thousands of
IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
Now

Get the latest version of the Redbooks Mobile App

iO
S

Android

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Promote your business
in an IBM Redbooks
publication

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

http://bit.ly/redbooksapp
http://bit.ly/1bvYuMM
http://bit.ly/1lCxuBG
http://ibm.co/1maZVrw

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication focuses on gathering the correct technical information,
and laying out simple guidance for optimizing code performance on IBM POWER8®
processor-based systems that run the IBM AIX®, IBM i, or Linux operating systems. There is
straightforward performance optimization that can be performed with a minimum of effort and
without extensive previous experience or in-depth knowledge.

The POWER8 processor contains many new and important performance features, such as
support for eight hardware threads in each core and support for transactional memory. The
POWER8 processor is a strict superset of the IBM POWER7+™ processor, and so all of the
performance features of the POWER7+ processor, such as multiple page sizes, also appear
in the POWER8 processor. Much of the technical information and guidance for optimizing
performance on POWER8 processors that is presented in this guide also applies to
POWER7+ and earlier processors, except where the guide explicitly indicates that a feature is
new in the POWER8 processor.

This guide strives to focus on optimizations that tend to be positive across a broad set of
IBM POWER® processor chips and systems. Specific guidance is given for the POWER8
processor; however, the general guidance is applicable to the IBM POWER7+,
IBM POWER7®, IBM POWER6®, IBM POWER5, and even to earlier processors.

This guide is directed at personnel who are responsible for performing migration and
implementation activities on POWER8 processor-based systems. This includes system
administrators, system architects, network administrators, information architects, and
database administrators (DBAs).

Authors

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Peter Bergner is the GCC Compiler Team Lead within the
Linux on Power Toolchain department. Since joining IBM in
1996, Peter has worked in various areas, including compiler
optimizer development for the IBM i platform, as a core
member of the teams that ported Linux and GLIBC to 64-bit
POWER, and as a team lead for the IBM Blue Gene/L®
compiler and runtime library development team. He obtained a
PhD in Electrical Engineering from the University of Minnesota.

Brian Hall is the lead analyst for performance improvement efforts with the IBM Cloud
Innovation Laboratory team. He works with many IBM software products to capitalize on
the IBM Power Architecture® and develop performance preferred practices for software
development and deployment. After joining IBM in 1987, Brian originally worked on the
IBM XL C/C++/Fortran compilers and on the just-in-time compiler for IBM Java on Power.
He has a Bachelor's degree in Computer Science from Queen's University at Kingston and
a Master's degree in Computer Science from the University of Toronto.
© Copyright IBM Corp. 2014, 2015. All rights reserved. xiii

Alon Shalev Housfater is software engineering professional at the IBM Runtime
Technology Center at the IBM Toronto Lab. Alon's role involves deep system performance
analysis and the exploitation of computational accelerators by Java's Just-in-Time
compiler. He holds a PhD degree in Electrical Engineering from the University of Toronto.

Madhusudanan Kandasamy is an IBM Master Inventor and
Technical Chief Engineering Manager (TCEM) for AIX
Performance, Scalability, and DSO. He has more than a
decade of experience in AIX development. He holds a Master's
degree in Software Systems from Birla Institute of Technology,
Pilani-India.

Tulio Magno is a Staff Software Engineer at the Linux
Technology Center. He holds a Bachelor’s degree in Electrical
Engineering from Federal University of Minas Gerais and has
been working on the Linux Toolchain for the last four years
developing core libraries and the Advanced Toolchain.

Alex Mericas is a member of the IBM Systems and Technology Group in Austin, Texas. He
is a Senior Technical Staff Member and is the Performance Architect for the POWER8
processor. He designed the performance monitoring unit on POWER4, POWER5,
POWER6, POWER7, and IBM PowerPC® 970 processor-based systems. Alex is an IBM
Master Inventor with 47 US patent applications and 22 issued patents covering
microprocessor design and hardware performance monitors.

Steve Munroe is a Senior Technical Staff Member at the
Rochester, Minnesota Lab in IBM US. He has 38 years of
experience in the software development field. He holds a
Bachelor’s degree in Computer Science from Washington State
University (1974). His areas of expertise include PowerISA,
compilers, POSIX run times, and performance analysis. He has
written extensively about IBM POWER performance and Java
performance.

Mauricio Oliveira is a Staff Software Engineer at the Linux Technology Center at IBM
Brazil. His areas of expertise include Linux performance and Debian and Ubuntu
distributions on IBM Power Systems™. He also worked with official benchmark
publications for Linux on IBM Power Systems and early development (bootstrap) of Debian
on Little Endian 64-bit PowerPC. Mauricio holds a Master of Computer Science and
Technology degree and a Bachelor of Engineering degree in Computer Engineering from
Federal University of Itajubá, Brazil.
xiv Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Bill Schmidt is a Senior Software Engineer with IBM in
Rochester, Minnesota. He has 22 years of experience with
design and implementation of compilers for the Power
architecture, specializing in optimization technology. He
contributes to the GCC and LLVM open source compilers. Bill
is an IBM Master Inventor with over 50 issued US patents, and
holds a PhD from Iowa State University.

Will Schmidt is an Advisory Software Engineer in Rochester,
Minnesota. Since joining IBM in 1997, he has worked in various
areas, most recently including Linux Toolchain and
performance tools development. He obtained a BS in
Mathematics and a BS in Computer Science from Bemidji
State University.

Bernard King Smith is a Senior Software Engineer in the
Power Systems Performance Department. He joined IBM in
1989 and has spent over 28 years in network performance of
High Performance Computing (HPC) and clustered commercial
systems. His primary work has been in TCP/IP and RDMA
performance of high-speed networks. He was involved in the
tuning and design of internal networks for both the IBM Deep
Blue Chess Machine and the Jeopardy! Watson System. He is
also the leading performance expert of InfiniBand network
performance on Power Systems. He is an author or co-author
of two patents and one Internet Engineering Task Force (IETF)
standard. He is the team lead for networking performance for
IBM Power Systems.

Julian Wang is the technical lead of JIT compiler and Java
performance on Power Systems, and has been developing
compiler and runtime products for the past 20 years. He has a
passion for making the POWER architecture perform Java
better and acute interests in parallel computing, operating
system, performance analysis, and bit-twiddling.
 Preface xv

Thanks to the following people for their contributions to this project:

� For technical reviews:

– Clark Anderson, IBM Power Systems Storage I/O Subsystem Performance, Rochester,
Minnesota

– Yaoqing Gao, Senior Technical Staff Member, XL C/C++ and Fortran compilers,
Ontario, Canada

– Jenifer Hopper, Software Engineer - Linux Performance Analyst, Austin, Texas

– Yan Luo, JIT Compiler POWER Optimization, Ontario, Canada

– Younes Manton, JIT Compiler POWER Optimization, Ontario, Canada

– Bruce Mealy, AIX Kernel Development, Austin, Texas

– Greg Mewhinney, Power Systems Performance, Austin, Texas

– Steve Munroe, Linux Toolchain Architect and TCEM, Rochester, Minnesota

– David Tam, Ph.D., Staff Software Developer, Ontario, Canada

� For overall contributions to this project:

– International Technical Support Organization, Poughkeepsie Center

– Deana Coble, IBM Redbooks Technical Writer, RTP, North Carolina

Suresh Warrier is a Senior Technical Staff Member in IBM
Power Systems Software™, specializing in KVM and Linux on
Power architecture. Suresh has over 25 years of experience in
systems software, including over 15 years leading AIX
exploitation of POWER hardware technology. He has a
Bachelor's degree in Electrical Engineering from the Indian
Institute of Technology, Madras, India, and a Master’s Degree
in Computer Science from the University of Texas, Austin.

David Wendt is a Senior Staff Member of the IBM Watson™
Performance team in Research Triangle Park, NC. He has a
Master’s degree in Electrical Engineering from Johns Hopkins
University. He is also an IBM Master Inventor with 12 granted
US patents in software development.
xvi Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Thanks to the authors of the previous versions of this book:

Ryan Arnold, Peter Bergner, Wainer dos Santos Moschetta, Robert Enenkel, Pat Haugen,
Michael R. Meissner, Alex Mericas, Bernie Schiefer, Suresh Warrier, Daniel Zabawa,
Adhemerval Zanella

Brian Hall, Mala Anand, Bill Buros, Miso Cilimdzic, Hong Hua, Judy Liu, John MacMillan,
Sudhir Maddali, K Madhusudanan, Bruce Mealey, Steve Munroe, Francis P O’Connell, Sergio
Reyes, Raul Silvera, Randy Swanberg, Brian Twichell, Brian F Veale, Julian Wang, Yaakov
Yaari

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xviii Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Summary of changes

This section describes the technical changes that are made in this edition of the book and in
previous editions. This edition might also include minor corrections and editorial changes that
are not identified.

Summary of Changes for SG24-8171-01 for Performance Optimization and Tuning
Techniques for IBM Power Systems Processors Including IBM POWER8 as created or
updated on August 28, 2015.

August 2015, Second Edition

The second edition of this guide contains numerous minor updates and extensions across
many topics, plus coverage of some new topics. Many of the updates are concentrated in
Chapter 6, “Linux” on page 117, and are related to new developments in Linux for the
POWER8 processor, such as Ubuntu for Power. Chapter 8, “Java” on page 173 contains
updates covering the release of Java 8.

Coverage has been added for the following new topics:

� SMT modes as a deployment option (see “SMT mode” on page 19)

� Power management modes as a deployment option (see “Power management mode” on
page 21)

� Coherent Accelerator Processor Interface (CAPI) (see 2.2.14, “Coherent Accelerator
Processor Interface” on page 53)

� I/O adapter affinity performance considerations (see 2.3, “I/O adapter affinity” on page 55)

� PowerKVM (see 3.3, “Introduction to KVM Virtualization” on page 67)

� Little Endian (see 6.4, “Little Endian” on page 138)

� GPU acceleration for C/C++ (7.6, “Using GPU accelerators with C/C++” on page 169)

� GPU acceleration for Java (8.7, “Using GPU accelerators with IBM Java” on page 190)
© Copyright IBM Corp. 2014, 2015. All rights reserved. xix

xx Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Chapter 1. Optimization and tuning on IBM
POWER8 processor-based
systems

This chapter describes the optimization and tuning of IBM POWER8 processor-based
systems. It covers the following topics:

� 1.1, “Introduction” on page 2
� 1.2, “Outline of this guide” on page 2
� 1.3, “Conventions that are used in this guide” on page 5
� 1.4, “Background” on page 5
� 1.5, “Optimizing performance on POWER8 processor-based systems” on page 6

1

© Copyright IBM Corp. 2014, 2015. All rights reserved. 1

1.1 Introduction

This guide gathers the correct technical information and lays out simple guidance for
optimizing code performance on IBM Power Systems that run the AIX, IBM i, or Linux
operating systems.

This guide focuses on optimizations that tend to be positive across a broad set of IBM
POWER processor chips and systems. Much of the technical information and guidance for
optimizing performance on the POWER8 processor that is presented in this guide also
applies to POWER7+ and earlier processors, except where the guide explicitly indicates that
a feature is new in the POWER8 processor.

Straightforward performance optimization can be performed with a minimum of effort and
without extensive previous experience or in-depth knowledge. This optimization work can
accomplish the following goals:

� Substantially improve the performance of the application that is being optimized for the
POWER8 processor (the focus of this guide).

� Typically, carry over improvements to systems that are based on related processor chips,
such as the IBM POWER7+, IBM POWER7, and IBM POWER6 processor chips.

� Improve performance on other platforms.

The POWER8 processor contains many new and important performance features, such as
support for eight hardware threads in each core and support for transactional memory. The
POWER8 processor is a strict superset of the POWER7+ processor, and so all of the
performance features of the POWER7+ processor, such as multiple page sizes, also appear
in the POWER8 processor.

This guide is directed at personnel who are responsible for performing migration and
implementation activities on POWER8 processor-based systems, including systems
administrators, system architects, network administrators, information architects, program
product developers, software architects, database administrators (DBAs), and compiler
writers.

1.2 Outline of this guide

This chapter lays out simple strategies for optimizing performance and covers the
opportunities that have been found to be the most universally applicable and valuable in past
performance efforts (see 1.5, “Optimizing performance on POWER8 processor-based
systems” on page 6). This chapter is not an exhaustive guide to Power Systems performance,
but it presents a concise overview of typical methodology and areas to focus on in a
performance improvement effort. There are references to later chapters in the guide that
present a complete technical description of these areas. Later chapters also contain a
complete list of opportunities and techniques to optimize performance that might be valuable
in particular cases.

Section 1.5.1, “Lightweight tuning and optimization guidelines” on page 7 describes a set of
straightforward steps to set up the environment for performance tuning and optimization,
followed by an explanation about how to perform a set of straightforward and easy
investigative steps. These steps are the most valuable to focus on for a short performance
effort. These steps do not require a deep level of knowledge of the application being
optimized, and (with one minor exception) do not involve changing application source code.
2 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Section 1.5.2, “Deployment guidelines” on page 15 describes deployment choices, that is,
system setup and configuration choices, so you can tune these designed-for-performance
IBM Power Systems for your environment. Together with 1.5.1, “Lightweight tuning and
optimization guidelines” on page 7, these simple optimization strategies and deployment
guidance satisfy the requirements for most environments and can deliver substantial
improvements.

Finally, 1.5.3, “Deep performance optimization guidelines” on page 21 describes some of the
more advanced investigative techniques that can be used to identify performance bottlenecks
in an application. It is here that optimization efforts move into the application code, and
improvements are typically made by modifying source code. Coverage in this last area is fairly
rudimentary, focusing on general areas of investigation and the tools that you can use.

Most of the remaining material in this guide is technical information that was developed by
domain experts at IBM:

� This guide provides hardware information about the POWER8 processor (see Chapter 2,
“The IBM POWER8 processor” on page 25), highlighting the important features from a
performance perspective and laying out the basic information that is drawn upon by the
material that follows.

� This guide describes the system software stack, examining the IBM POWER Hypervisor™
(see Chapter 3, “The IBM POWER Hypervisor” on page 57), the AIX, IBM i, and Linux
operating systems and system libraries (see Chapter 4, “IBM AIX” on page 71, Chapter 5,
“IBM i” on page 111, and Chapter 6, “Linux” on page 117), and the compilers (see
Chapter 7, “Compilers and optimization tools for C, C++, and Fortran” on page 141). Java
(see Chapter 8, “Java” on page 173) also receives extensive coverage.

� Chapter 4, “IBM AIX” on page 71 highlights some of the areas in which AIX exposes some
new features of the POWER8 processor. Then, this chapter examines a set of operating
system-specific optimization opportunities. The chapter concludes with a short description
of AIX preferred practices regarding system setup and maintenance.

� Chapter 5, “IBM i” on page 111 describes IBM i support for a number of features in
POWER8 processors (including features that are available in previous generations of
POWER processors). The chapter describes how this operating system can be effective in
automatically capitalizing on many new POWER architecture features without changes to
existing programs. The chapter also provides information about IBM Portable Application
Solutions Environment for i (PASE for i), a part of IBM i that allows some AIX application
binary files to run on IBM i with little or no changes.

� Chapter 6, “Linux” on page 117 describes the primary Linux operating systems that are
used on POWER8 processor-based systems. The chapter covers using features of the
POWER architecture, and operating system-specific optimization opportunities.

Linux is based on community efforts that are focused not only on the Linux kernel, but also
all of the complementary packages, tools, toolchains, and GNU Compiler Collection
(GCC) compilers that are needed to use effectively POWER8 processor-based systems.
IBM provides the expertise for Power Systems by developing, optimizing, and pushing
open source changes to the Linux communities.

� Chapter 7, “Compilers and optimization tools for C, C++, and Fortran” on page 141
describes current compiler versions and optimization levels and how, for projects with
increased focus on runtime performance, you can take advantage of the more advanced
compiler optimization techniques. It describes XL compiler static analysis and runtime
checking to validate the correctness of the program.

� Chapter 8, “Java” on page 173 describes the optimization and tuning of Java based
applications that are running in a POWER environment.
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 3

� Finally, this book covers important information about IBM middleware, DB2® (see
Chapter 9, “IBM DB2” on page 193) and IBM WebSphere® Application Server (see
Chapter 10, “IBM WebSphere Application Server” on page 205). Various applications use
middleware, and it is critical that the middleware is tuned correctly and performs well. The
middleware chapters cover how these products are optimized for POWER8
processor-based systems, including select preferred practices for tuning and deploying
these products.

The following appendixes are included:

� Appendix A, “Analyzing malloc usage under IBM AIX” on page 211 explains some simple
techniques for analyzing how an application is using the system memory allocation
routines (malloc and related functions in the C library). malloc is often a bottleneck for
application performance, especially under AIX. AIX has an extensive set of optimized
malloc implementations, and it is easy to switch between them without rebuilding or
changing an application. Knowing how an application uses malloc is key to choosing the
best memory allocation alternatives that AIX offers. Even Java applications often make
extensive use of malloc, either in Java Native Interface (JNI) code that is part of the
application itself or in the Java class libraries, or in binary code that is part of the software
development kit (SDK).

� Appendix B, “Performance tools and empirical performance analysis” on page 215
describes some of the important performance tools that are available on the IBM Power
Architecture under AIX or Linux, and strategies for using them in empirical performance
analysis efforts.

These performance tools are most often used as part of the advanced investigative
techniques that are described in 1.5.3, “Deep performance optimization guidelines” on
page 21, except for the performance advisors, which are intended as investigative tools
that are appropriate for a broader audience of users.

Throughout the book, there are links to related sections among the chapters. For example,
Vector Scalar eXtension (VSX) is described in the processor chapter (Chapter 2, “The IBM
POWER8 processor” on page 25), all of the OS chapters (Chapter 4, “IBM AIX” on page 71,
Chapter 5, “IBM i” on page 111, and Chapter 6, “Linux” on page 117), and in the compiler
chapter (Chapter 7, “Compilers and optimization tools for C, C++, and Fortran” on page 141).
Therefore, after the description of VSX in the processor chapter, there are links to that same
section in the OS chapters and in the compiler chapter.

After you review the advice in this guide, for more information, visit the IBM Power Systems
website at:

http://www.ibm.com/systems/power/index.html
4 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/systems/power/index.html

1.3 Conventions that are used in this guide

In this guide, the conventions for indicating sections of code or command examples are
shown in Table 1-1.

Table 1-1 Conventions that are used in this guide

1.4 Background

Continuing trends in processor design are making it more important than ever to consider
analyzing and working to improve application performance. In the past, two of the ways in
which newer processor chips delivered higher performance were by:

� Increasing the clock rate
� Making microarchitectural improvements that increase the performance of a single thread

Often, upgrading to a new processor chip gave existing applications a 50% or possibly 100%
performance improvement, leaving little incentive to spend much effort to get an uncertain
amount of additional performance. However, the approach in the industry has shifted, so that
the newer processor chips do not substantially increase clock rates, as compared to the
previous generation. In some cases, clock rates declined in newer designs. Recent designs
also generally offer more modest improvements in the performance of a single execution
thread.

Instead, the focus has shifted to delivering multiple cores per processor chip, and to delivering
more hardware threads in each core (known as simultaneous multi-threading (SMT) in IBM
Power Architecture terminology). This situation means that some of the best opportunities for
improving the performance of an application are in delivering scalable code by having an
application make effective use of multiple concurrent threads of execution.

Coupled with the trend toward aggressive multi-core and multi-threaded designs, there are
sometimes changes in the amount of cache and memory bandwidth available to each
hardware thread. Cache sizes and chip-level bandwidth are, in some cases, increasing at a
slower rate than the growth of hardware threads, meaning that the amount of cache per
thread is not growing as rapidly. In particular instances, it decreases from one generation to
the next. Again, this situation shows where deeper analysis and performance optimization
efforts can provide some benefits.

Type of example Format that is
used in this
guide

Example of the convention

Commands and command
options within text

Monofont,
bolded

ldedit

Command lines or code
examples outside of text

Monofont ldedit -btextpsize=64k -bdatapsize=64k
-bstackpsize=64k

Variables in command lines Monofont,
italicized

ldedit -btextpsize=64k -bdatapsize=64k
-bstackpsize=64k <executable>

Variables that are limited to
specific choices

Monofont,
italicized

-mcmodel={medium|large}
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 5

There is also a recent trend toward adding transactional memory support to processors and
toward support for special purpose accelerators. Transactional memory is a feature that
simplifies multi-threaded programming by providing safe access mechanisms to shared data.
Special purpose accelerators may be based on adding new instructions to the core, on
chip-level accelerators, or on fast and efficient access mechanisms to new off-chip
accelerators, such as graphics processing units (GPUs) or field-programmable gate arrays
(FPGAs).

1.5 Optimizing performance on POWER8 processor-based
systems

This section provides guidance for optimizing performance on POWER8 processor-based
systems. It covers the more prominent performance opportunities that have been found in
past optimization efforts. The guidance is organized in to three broad categories:

1. Lightweight tuning and optimization guidelines

Lightweight tuning covers simple prescriptive steps for tuning application performance on
POWER8 processor-based systems. These simple steps can be carried out without
detailed knowledge of the internals of the application that is being optimized and usually
without modifying the application source code. Simple system utilization and performance
tools are used for understanding and improving your application performance. The steps
and tools are general guidelines that apply to all types of applications. Although they are
simple and straightforward, they often lead to significant performance improvements. It is
possible to accomplish these steps in as little as two days or so for a small application.
Two weeks might be required to perform these steps for a large and complex application.

2. Deployment guidelines

Deployment guidelines cover tuning considerations that are related to the:

– Configuration of a POWER8 processor-based system to deliver the best performance
– Associated runtime configuration of the application itself

There are many choices in a deployment, some of which are unrelated to the performance
of a particular application. This section presents some guidelines and preferred practices.
Understanding logical partitions (LPARs), energy management, I/O configurations, and
using multi-threaded cores are examples of typical system considerations that can impact
application performance.

3. Deep performance optimization guidelines

Deep performance analysis covers performance tools and general strategies for identifying
and fixing application bottlenecks. This type of analysis requires more familiarity with
performance tools and analysis techniques, sometimes requiring a deeper understanding
of the application internals, and often requiring a more dedicated and lengthy effort. Often,
a simpler analysis is all that is required to identify serious bottlenecks in an application;
however, a more detailed investigation is required to perform an exhaustive search for all
of the opportunities for increasing performance.

Performance improvement: Consider lightweight tuning to be the starting point for any
performance improvement effort.

Performance improvement: Consider deployment guidelines to be the second
required activity for any reasonably extensive performance effort.
6 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

This chapter provides only minimal background on the guidance provided. Detailed material
about these topics is incorporated in the chapters that follow and in the appendixes. The
following chapters and appendixes also cover many other performance topics that are not
addressed here.

1.5.1 Lightweight tuning and optimization guidelines

This section covers building and performance testing applications on POWER8
processor-based systems, and gives a brief introduction to the most important simple
performance tuning opportunities that are identified for POWER8 processor-based systems.
More details about these and other opportunities are presented in the later chapters of this
guide.

Performance test beds and workloads
In performance work, when you are tuning and optimizing an application for a particular
processor, you must run and measure performance levels on that processor. Although there
are some characteristics that are shared among processor chips in the same family, each
generation of processor chip has unique performance features and characteristics.
Optimizing code for POWER8 processor-based systems requires that you set up a test bed
on a POWER8 processor-based system.

Some organizations want to see good performance across a range of newer systems, with a
special emphasis on optimizing for the latest design. For Power Systems, the previous
POWER7 generation is still commonly used, and it might be necessary to support even older
POWER6 and earlier processor-based systems. For this reason, it is best to have multiple
test bed environments: a POWER8 processor-based system for most optimization work, and
POWER7 and possibly POWER6 processor-based systems for limited testing to ensure that
all tuning is beneficial on the previous generations of hardware.

POWER8, POWER7, and POWER6 processors are dissimilar in some respects, and some
simple steps can be taken to ensure good performance of a single binary running on any of
these systems. In particular, see the information in “C, C++, and Fortran compiler options” on
page 10.

Performance improvement: Consider this the last activity that is undertaken, with
simpler analysis steps, for a moderately serious performance effort. The more complex
iterative analysis is reserved for only the most performance critical applications.

Guidance for POWER8 processor-based systems: The guidance that is provided in this
book specifically applies to POWER8 processor chips and systems. The guidance that is
provided also generally applies to previous generations of POWER processor chips and
systems, including POWER7, POWER6, and POWER5 processor-based systems. When
the guidance is not applicable to all generations of Power Systems, it is noted.
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 7

Performance test beds must be sized and configured for performance and scalability testing.
Choose your scalability goals based on the requirements that are placed on an application,
and the test bed must accommodate at least the minimum requirements. For example, when
you target a multi-threaded application to scale up to four cores on POWER8
processor-based systems, it is important that the test bed be at least a 4-core system and
that tests are configured to run in various configurations (1-core, 2-core, and 4-core). You
want to be able to measure performance across the different configurations such that the
scalability can be computed. Ideally, a 4-core system delivers four times the performance of a
1-core system, but in practice, the scalability is less than ideal. Scalability bottlenecks might
not be clearly visible if the only testing done for this example was in a 4-core configuration.

With the multi-threaded POWER8 cores (see 2.2, “Using POWER8 features” on page 28),
each processor core can be instantiated with one, two, four, or eight logical CPUs within the
operating system. A 4-core server, with SMT8 mode (eight hardware threads per core),
means that the operating system is running 32 logical CPUs. Also, larger-core servers are
becoming more pervasive, with scaling considerations well beyond 4-core servers.

The performance test bed should be a dedicated LPAR. You must ensure that there is no
other activity on the system (including on other LPARs, if any, configured on the system) when
performance tests are run. The initial performance testing should be done in a dedicated
resource environment to minimize the factors that affect performance. Ensure that the LPAR
is running an up-to-date version of the operating system, at the level that is expected for the
typical usage of the application. Keep the test bed in place after any performance effort so
that performance can occasionally be monitored, which ensures that later maintenance of an
application does not introduce a performance regression.

Choosing the appropriate workloads for performance work is also important. Ideally, a
workload has the following characteristics:

� Be representative of the expected actual usage of the application.

� Have simple measures of performance that are easily collected and compared, such as
run time or transactions/second.

� Be easy to set up and run in an automated environment, with a fairly short run time for a
fast turnaround in performance experiments.

� Have a low run-to-run variability across duplicated runs, such that extensive tests are not
required to obtain a statistically significant measure of performance.

� Produce a result that is easily tested for correctness.

When an application is being optimized for multiple operating systems, much of the
performance work can be undertaken on just one of the operating systems. However, some
performance characteristics are operating system-dependent, so some analysis must be
performed on each operating system. In particular, perform profiling and lock analysis
separately for each operating system to account for differences in system libraries and
kernels. Each operating system also has unique scalability considerations.

Build environment and build tools
The build environment, if separate from the performance test bed, must be running an
up-to-date operating system. Only recent operating system levels include Application Binary
Interface (ABI) extensions to use or control newer hardware features.
8 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Critically, all compilers that are used to build an application must use up-to-date versions that
offer full support for the target processor chip. Older levels of a compiler might tolerate newer
processor chips, but they do not capitalize on the unique features of the latest processor
chips. For the IBM XL compilers on AIX or Linux, XLC13 and XLF15 are the first compiler
versions that have processor-specific tuning for POWER8 processor-based systems. For the
GCC compiler on Linux, IBM Advance Toolchain Version 7.0 (and later versions) contain an
updated GCC compiler that is preferred for POWER7 and POWER8 processor-based
systems, and Version 8.0 and later support POWER Little Endian and Big Endian. The IBM
XL Fortran Compiler is recommended over gfortran for the most optimized high floating point
performance characteristics.

For more information about the Advance Toolchain features and supported environments, see
the Introduction and Supported Linux Distributions sections of the Advance Toolchain wiki
page at the following website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4d
fd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Docu
mentation

For the GCC compiler on Linux, the GCC compilers, which come with the distributions, both
recognize and take advantage of the POWER architecture and optimizations. For improved
optimizations and newer GCC technology, the IBM Advance Toolchain package provides an
updated GCC compiler and optimized toolchain libraries for use with POWER8
processor-based systems.

The Advance Toolchain is a key performance technology that is available for Power Systems
running Linux. It includes newer, POWER-optimized versions of compilers (GCC, G++,
GFortran, and GCCGo (since Version 8.0)), utilities, and libraries, along with various
performance tools. The full Advance Toolchain must be installed in the build environment, and
the Advance Toolchain runtime package must be installed in the performance test bed. The
Toolchain is designed to coexist with the GCC compilers and toolchain that are provided in
the standard Linux distributions. More information is available in 6.3.1, “GCC, toolchain, and
IBM Advance Toolchain” on page 129.

Along with the compilers for C/C++ and Fortran, there is the separate IBM Feedback Directed
Program Restructuring (FDPR®) tool to optimize performance. FDPR takes a post-link
executable image (such as one produced by static compilers) and applies additional
optimizations. FDPR is another tool that can be considered for optimizing applications that
are based on an executable image. More details can be found in 7.4, “IBM Feedback Directed
Program Restructuring” on page 160.

Java also contains a dynamic Just-In-Time (JIT) compiler, and only newer versions are tuned
for POWER8 processor-based systems. However, Java compilations to binary code take
place at application execution time, so a newer Java release must be installed on the
performance test bed system.
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 9

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/IBM%20Advance%20Toolchain%20for%20PowerLinux%20Documentation

C, C++, and Fortran compiler options
For the static compilers, the important compilation options to consider are as follows:

� Basic optimization options: The minimum suggested optimization level for the XL
compilers and GCC is -02. Higher levels of optimization are better for some types of code,
and you might want to experiment with them. The XL compiler option -03 or -qhot -03 is
recommended for numerical floating point compute-intensive applications, and -03 or -03
-qipa is recommended for integer applications for better performance. More options are
detailed in 7.1, “Compiler versions and optimization levels” on page 142. The more
aggressive optimization options might not work for all programs and might need to be
coupled with the strict options described in this list (see page 11).

� Target processor chip options: It is possible to build a single executable file that runs on
various POWER processors. However, that executable file does not take advantage of
some of the features added to later processor chips, such as new instructions. If only a
restricted range of newer processor chips must be supported, consider using the
compilation options that enable the usage of newer features. With the XL compilers, for
example, if the executable file must run only on POWER7 or later processors (including
the POWER8 processor), the -qarch=pwr7 option can be specified. The equivalent GCC
option is -mcpu=power7. Similarly, if the executable file must run only on POWER8
processors, the XL -qarch=pwr8 option can be specified. The equivalent GCC option is
-mcpu=power8.

� Target processor chip tuning options: The XL compiler -qtune option specifies that the
code produced must be tuned to run optimally on particular processor chips in a specified
SMT mode. The executable file that is produced still runs on other processor chips, but
might not be tuned for them.

GCC uses the -mcpu and -mtune= options, which take a chip or platform name string (for
example, Power platform names include power7 or power8). For -mcpu=, the platform name
implies a specific PowerISA version and specific PowerISA categories that are
implemented for that chip. The same platform names, when applied to -mtune=, imply a
specific chip micro-architecture. If the -mtune= is not specified, it is implied by the -mcpu=
option. The -mtune= option can specify a different platform name than specified by -mcpu=.
For example, -mcpu=power7 -mtune=power8 generates code that runs on POWER7 and
later POWER processors (including the POWER8 processor), but is tuned for the
POWER8 micro-architecture. For the new Little Endian systems, use -mcpu=power8
-mtune=power8 unless you know that is the compiler default.

Some other possible chip tuning options to consider are noted in the following list:

– The SMT suboptions for -qtune allow specification of a target SMT mode to direct
optimizations for best performance in that mode:

• -qtune=ST for optimizations that are tuned for single-threaded execution
• -qtune=SMT2 for SMT2 execution mode
• -qtune=SMT4 for SMT4 execution mode
• -qtune=SMT8 for SMT8 execution mode

– -qarch=ppc64 -qtune=pwr8 for an executable file that is optimized to run on POWER8
processor-based systems, but that can run on all 64-bit implementations of the Power
Architecture (POWER8, POWER7, POWER6, and other processor-based systems)

– -qarch=pwr7 -qtune=pwr8 for an executable file that can run on POWER7 or POWER8
processor-based systems (with access to Vector Scalar eXtension (VSX) features), but
is optimized to run on POWER8 processor-based systems
10 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

– -qarch=pwr5 -qtune=balanced for an executable file that can run on POWER5 and
higher processor-based systems, and is tuned for good performance for all recent
Power Systems (including POWER6, POWER7, and POWER8 processor-based
systems)

– -mtune=power7 to tune for the POWER7 processsor on GCC and -mtune=power8 for the
POWER8 processor on GCC

� Strict options: Sometimes the compilers can produce faster code by subtly altering the
semantics of the original source code. An example of this scenario is expression
reorganization. Especially for floating point code, the effect of expression reorganization
can produce different results. For some applications, these optimizations must be
prevented to achieve valid results. For the XL compilers, certain semantic-altering
transformations are allowed by default at higher optimization levels, such as -O3, but those
transformations can be disabled by using the -qstrict option (for example, -O3
-qstrict). For GCC, the default is strict mode, but you can use -ffast-math to enable
optimizations that are not concerned with Not a Number (NaN), signed zeros, infinities,
floating point expression reorganization, or setting the errno variable. The new -Ofast
GCC option includes -O3 and -ffast-math, and might include other options in the future.

� Source code compatibility options: The XL compilers assume that the C and C++ source
code conforms to language rules for aliasing. On occasion, older source code fails when
compiled with optimization because the code violates the language rules. A workaround
for this situation is to use the -qalias=noansi option. The GCC workaround is the
-fno-strict-aliasing option.

� Profile Directed Feedback (PDF): PDF is an advanced optimization feature of the
compilers to consider for performance-critical applications.

� Interprocedural Analysis (IPA): IPA is an advanced optimization feature of the compilers
to consider for performance-critical applications.

A simple way to experiment with the C, C++, and Fortran compilation options is to repeatedly
build an application with different option combinations, and then to run it and measure
performance to see the effect. If higher optimization levels produce invalid results, try adding
one or both of the -qstrict and -qalias options with the XL compilers, or
-fno-strict-aliasing with GCC.

Not all source files must be compiled with the same set of options, but all files must be
compiled at the minimum optimization level. There are cases where optimization was not
used on just one or two important source files and that caused an application to suffer from
substantially reduced performance.

Java options
Many Java applications are performance-sensitive to the configuration of the Java heap and
garbage collection (GC). Experimentation with different heap sizes and GC policies is an
important first optimization step. For generational GC, consider using the options that specify
the split between nursery space (also known as the new or young space) and tenured space
(also known as the old space). Most Java applications have modest requirements for
long-lived objects in the tenured space, but frequently allocate new objects with a short life
span in the nursery space. For more information, see 8.5, “Java garbage collection tuning” on
page 183

If 64-bit Java is used, use the -Xcompressedrefs option. In newer Java releases, the
compressed references option is the default for a 64-bit Java. For more information, see 8.3.4,
“Compressed references” on page 177.
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 11

By default, newer releases of Java use 64 KB medium pages for the Java heap, which is the
equivalent of explicitly specifying the -Xlp64k option. Linux defaults to 64 KB pages, but AIX
defaults to 4 KB pages. If older releases of Java are used on AIX, use the -Xlp64k option;
otherwise, those releases default to using 4 KB pages. Often, there is some additional
performance improvement that is seen in using larger 16 MB large pages by using the -Xlp
option. However, using 16 MB pages normally requires explicit configuration by the
administrator of the AIX or Linux operating system to reserve a portion of the memory to be
used exclusively for large pages. (For more information, see 8.3.2, “Configuring large pages
for Java heap and code cache” on page 176.) As such, the medium pages are a better choice
for general use, and the large pages can be considered for performance critical applications.

Many Java applications benefit from turning off the default hardware prefetching on the
POWER7 processor, and some applications might benefit from doing so on the POWER8
processor. Some recent Java releases turn off hardware prefetching by default. If you turned
off hardware prefetching on the POWER7 processor, revisit that tuning because hardware
changes on the POWER8 processor have made prefetching more beneficial across different
types of code and applications. For more information, see in “Tuning to capitalize on hardware
performance features” on page 14. The new and improved hardware prefetcher on the the
POWER8 processor has proven to be beneficial to numerous Java applications.

On Power Systems, the -Xcodecache option often delivers a small improvement in
performance, especially in a large Java application. This option specifies the size of each
code cache that is allocated by the JIT compiler for the binary code that is generated for Java
methods. Ideally, all of the compiled Java method binary code fits into a single code cache,
eliminating the small penalty that might occur when one Java method calls another method
when the binary code for the two methods is in different code caches. To use this option,
determine how much code space is being used, and then set the size of the option correctly.
The maximum size of each code cache that is allocated is 32 MB, so the largest value that
can be used for this option is -Xcodecache32m. For more information, see 8.3.5, “JIT code
cache” on page 180.

The JIT compiler automatically uses an appropriate optimization level when it compiles Java
methods. Recent Java releases automatically fully use all of the new features of the target
POWER8 processor of the system on which an application is running.

For more information about Java performance, see Chapter 8, “Java” on page 173.

Optimized libraries
Optimized libraries are important for application performance. This section covers some
considerations that are related to standard libraries for AIX or Linux, libraries for Java, or
specialized mathematical subroutine libraries that are available for the Power Architecture.

AIX malloc
The AIX operating system offers various memory allocation packages (the standard malloc()
and related routines in the C library). The default package offers good space efficiency and
performance for single-threaded applications, but it is not a good choice for the scalability of
multi-threaded applications. Choosing the correct malloc package on AIX is important for
performance. Even Java applications can make extensive use of malloc through JNI code or
internally in the Java Runtime Environment (JRE).

Fortunately, AIX offers a number of different memory allocation packages that are appropriate
for different scenarios. These different packages are chosen by setting environment variables
and do not require any code modification or rebuilding of an application.
12 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Choosing the best malloc package requires some understanding of how an application uses
the memory allocation routines. Appendix A, “Analyzing malloc usage under IBM AIX” on
page 211 shows how to collect easily the required information. Following the data collection,
experiment with various alternatives, alone or in combination. Some alternatives that deliver
high performance include:

� Pool malloc: The pool front end to the malloc subsystem optimizes the allocation of
memory blocks of 512 bytes or less. It is common for applications to allocate many small
blocks, and pools are particularly space- and time-efficient for that allocation pattern.
Thread-specific pools are used for multi-threaded applications. The pool malloc is a good
choice for both single-threaded and multi-threaded applications.

� Multiheap malloc: The multiheap malloc package uses up to 32 separate heaps, reducing
contention when multiple threads attempt to allocate memory. It is a good choice for
multi-threaded applications.

Using the pool front end and multiheap malloc in combination is a good alternative for
multi-threaded applications. Small memory block allocations, typically the most common, are
handled with high efficiency by the pool front end. Larger allocations are handled with good
scalability by the multiheap malloc. A simple example of specifying the pool and multiheap
combination is by using the following environment variable setting:

MALLOCOPTIONS=pool,multiheap

For more information about malloc alternatives, see 4.3.1, “Malloc” on page 95.

IBM Advance Toolchain libraries for Linux
The IBM Advance Toolchain contains replacements for various standard system libraries.
These replacement libraries are optimized for specific processor chips, including POWER7
and POWER8 processors. After you install the IBM Advance Toolchain and relink your
applications with it, the dynamic linker automatically has programs use the library that is
optimized for the processor chip type in the system.

The libraries in IBM Advance Toolchain V7.0 and later are optimized to use the multi-core
facilities in POWER7 and POWER8 processors.

Mathematical Acceleration Subsystem Library and Engineering and Scientific
Subroutine Library

The Mathematical Acceleration Subsystem (MASS) libraries contain accelerated scalar,
Single Instruction Multiple Data (SIMD), and vector versions of a collection of elementary
mathematical functions (such as exp, log, and sin) that run on AIX and Linux. The MASS
libraries are included with the XL compilers and are automatically used by the compilers when
the -O3 -qhot compilation options are used. The MASS routines can be used automatically
with the Advance Toolchain GCC by using the -mveclibabi=mass option, but MASS is not
included with GCC and must be separately installed. Explore the use of MASS for
applications that use elementary mathematical functions. Substantial performance
improvements can occur when you use the vector versions of the functions. The MASS
routines do not necessarily provide the same accuracy of results or the same edge-case
behavior as standard libraries do.

The Engineering and Scientific Subroutine Library (ESSL) contains an extensive set of
advanced mathematical functions and runs on AIX and Linux. Avoid having applications write
their own versions of functions, such as the Basic Linear Algebra Subprograms (BLAS).
Instead, use the Power optimized versions in ESSL.
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 13

java/util/concurrent
For Java, all of the standard class libraries are included with the JRE. One package of interest
for scalability optimization is java/util/concurrent. Some classes in java/util/concurrent
are more scalable replacements for older classes, such as
java/util/concurrent/ConcurrentHashMap, which can be used as a replacement for
java/util/Hashtable. ConcurrentHashMap might be slightly less efficient than Hashtable
when run in smaller system configurations where scalability is not an issue, so there can be
trade-offs. Also, switching packages requires a source code change, albeit a simple one.

Tuning to capitalize on hardware performance features
For almost all applications, using 64 KB pages is beneficial for performance. Newer Linux
releases (RHEL5, SLES11, and RHEL6) default to 64 KB pages, and AIX defaults to 4 KB
pages. Applications on AIX have 64 KB pages that are enabled through one or a combination
of the following methods:

� Using an environment variable setting:

LDR_CNTRL=TEXTPSIZE=64K@DATAPSIZE=64K@STACKPSIZE=64K@SHMPSIZE=64K

� Modifying the executable file with the following command:

ldedit -btextpsize=64k -bdatapsize=64k -bstackpsize=64k <executable>

� Using linker options at build time:

cc -btextpsize:64k -bdatapsize:64k -bstackpsize:64k ...
ld -btextpsize:64k -bdatapsize:64k -bstackpsize:64k ...

All of these mechanisms for enabling 64 KB pages can be safely used when the application
must run on older hardware or operating system levels that do not support 64 KB pages.
When the needed support is not in place, the system simply defaults to using 4 KB pages.

As mentioned in “Java options” on page 11, the newer Java releases default to using 64 KB
pages. For Java, it is important that the Java heap space uses 64 KB pages, which are
enabled by the -Xlp64k option in older releases of Java.

Larger 16 MB pages are also supported on the Power Architecture and might provide an
additional performance boost when compared to 64 KB pages. However, the usage of 16 MB
pages requires explicit configuration by the administrator of the AIX or Linux operating
system.

For certain types of non-numerical applications, turning off the default hardware prefetching
improves performance. In specific cases, disabling hardware prefetching is beneficial for Java
programs, WebSphere Application Server, and DB2. One way to control hardware prefetching
is at the partition level, where prefetching is turned off by running the following commands:

� AIX: dscrctl -n -s 1
� Linux: ppc64_cpu --dscr=1

Controlling prefetching in this way might not be appropriate if different applications are
running in a partition because some applications might run best with prefetching enabled.
There are also mechanisms to control prefetching at the process level.

Since Java 7 SR3 (and Java 6 26 SR4), the JVM defaults to disable hardware prefetch on
AIX. Option -XXsetHWPrefetch:os-default can be used to revert to the AIX default hardware
prefetch setting.
14 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Recent POWER processors allow not only prefetching to be enabled or disabled, but they
also allow the fine-tuning of the prefetch engine. Such fine-tuning is especially beneficial for
scientific and engineering and memory-intensive applications.1 Because the effect of
hardware prefetching is heavily dependent on the way that an application accesses memory,
and also dependent on the cache sizes of a particular POWER chip, it is always best to test
explicitly the effects of different prefetch settings on each chip on which the application is
expected to run.

For more information about hardware prefetching and hardware and operating system tuning
and usage for optimum performance, see Chapter 2, “The IBM POWER8 processor” on
page 25, Chapter 4, “IBM AIX” on page 71, Chapter 6, “Linux” on page 117, and Chapter 5,
“IBM i” on page 111.

1.5.2 Deployment guidelines

This section describes deployment guidelines, which relate to how you configure a Power
Systems system or an application to achieve optimal performance.

Virtualized versus non-virtualized environments
Virtualization is a powerful technique that is applicable to situations where many applications
are consolidated onto a single physical server. This consolidation leads to better usage of
hardware and simplified system administration. Virtualization is efficient on the Power
Architecture, but it does come with some costs. For example, the Virtual I/O Server (VIOS)
partition in the IBM PowerVM® Hypervisor that is allocated for a virtualized deployment
consumes a portion of the hardware resources to support the virtualization. For situations
where few business-critical applications must be supported on a server, it might be more
appropriate to deploy with non-virtualized resources. This situation is particularly true in
cases where the applications have considerable network requirements.

Virtualized environments that are provided by the PowerVM Hypervisor offer many choices for
deployment, such as dedicated or non-dedicated processor cores and memory, IBM
Micro-Partitioning® that uses fractions of a physical processor core, and memory
compression. These alternatives are explored in Chapter 3, “The IBM POWER Hypervisor”
on page 57. When you set up a virtualized deployment, it is important that system
administrators have a complete understanding of the trade-offs inherent in the different
choices and the performance implications of those choices. Some deployment choices, such
as enabling memory compression features, can disable other performance features, such as
support for 64 KB memory pages.

POWER8 processor-based systems allow a second form of virtualization through the
PowerKVM hypervisor, which is based on Linux Kernel-based Virtual Machine (KVM)
technology. The traditional virtualization environment that is provided by PowerKVM is built
upon the quick emulator (QEMU).

POWER8 processor-based systems also support bare metal Linux, which is a
non-virtualized environment on the entire system, and Docker, which is an form of light-weight
virtualization (see https://www.docker.com). Chapter 3, “The IBM POWER Hypervisor” on
page 57 provides more information about these different forms of virtualized and
non-virtualized environments.

1 Making data prefetch smarter: adaptive prefetching on POWER7, found at:
http://dl.acm.org/citation.cfm?id=2370837 (available for purchase or with access to the ACM Digital Library)
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 15

https://www.docker.com
http://dl.acm.org/citation.cfm?id=2370837

The POWER8 processor and affinity performance effects
The POWER8 processor chip is available in configurations with up to 12 cores per chip, as
compared to the POWER7 processor, which has up to eight cores per chip. Along with the
increased number of cores, the POWER8 processor chip implements SMT8 mode,
supporting eight hardware threads per core, as compared to the POWER7 processor, which
supported only four hardware threads per core. Each POWER8 processor core supports
running in single-threaded mode with one hardware thread, an SMT2 mode with two
hardware threads, an SMT4 mode with four hardware threads, or an SMT8 mode with eight
hardware threads.

Each SMT hardware thread is represented as a logical processor in AIX, IBM i, or Linux.
When the hardware runs in SMT8 mode, the operating system has eight logical processors
for each dedicated POWER8 processor core that is assigned to the partition. To gain the full
benefit from the throughput improvement of SMT, applications must use all of the SMT
threads of the processor cores.

Each POWER8 chip has memory controllers that allow direct access to a portion of the dual
inline memory modules (DIMMs) in the system. Any processor core on any chip in the system
can access the memory of the entire system, but it takes longer for an application thread to
access the memory that is attached to a remote chip than to access data in the local memory
DIMMs.

For more information about the POWER8 hardware, see Chapter 2, “The IBM POWER8
processor” on page 25. This short description provides some background to help understand
two important performance issues that are known as affinity effects.

Cache affinity
The hardware threads for each core of a POWER8 processor share a core-specific cache
space. For multi-threaded applications where different threads are accessing the same data,
it can be advantageous to arrange for those threads to run on the same core. By doing so, the
shared data remains resident in the core-specific cache space, as opposed to moving
between different private cache spaces in the system. This enhanced cache affinity can
provide more efficient utilization of the cache space in the system and reduce the latency of
data references.

Similarly, the multiple cores on a POWER8 processor share a chip-specific cache space.
Again, arranging the software threads that are sharing the data to run on the same POWER8
processor (when the partition spans multiple chips) often allows more efficient utilization of
cache space and reduced data reference latencies.

Memory affinity
By default, the POWER Hypervisor attempts to satisfy the memory requirements of a partition
by using the local memory DIMMs for the processor cores that are allocated to the partition.
For larger partitions, however, the partition might contain a mixture of local and remote
memory. For an application that is running on a particular core or chip, the application runs
best when using only local memory. This enhanced memory affinity reduces the latency of
memory accesses.

Partition sizes and affinity
In terms of partition sizes and affinity, this section describes POWER dedicated LPARs,
shared resource environments, and memory requirements.
16 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Power dedicated LPARs
Dedicated LPAR deployments generally use larger partitions, ranging from just one POWER8
core up to a partition that includes all of the cores and memory in a large symmetric
multi-processor (SMP) system. A smaller partition might run a single application and a larger
partition typically runs multiple applications, or multiple instances of a single application. A
common example of multiple instances of a single application is in deployments of
WebSphere Application Server.

With larger partitions, one of the most important performance considerations is often which
cores and memory are allocated to a partition. For partitions of up to the number of cores on
the chips that are used in the system, the POWER Hypervisor attempts to allocate all cores
for the partition from a single POWER8 chip and attempts to allocate only memory local to the
chip that is used. Those partitions generally and automatically have good cache and memory
affinity. However, it might not be possible to obtain resources for each of the LPARs from a
single chip.

For example, assume that you have a 32-core system with four chips, each with eight cores. If
five partitions are configured, each with six cores, the fifth LPAR spreads across three chips.
Start the most important partition first to obtain resources from a single chip. (The order of
starting partitions is one consideration in obtaining the best performance for high priority
workloads). This topic is described further in 3.2.3, “Placing LPAR resources to attain higher
memory affinity” on page 63.

Another example is when the partition sizes are mixed. Here, starting smaller partitions might
consume resources that are spread across many chips, resulting in larger partitions that are
spread across multiple chips, which might be contained on a chip if the larger partitions are
started first. It is a preferred practice to start higher priority partitions first, so that there is a
better opportunity for them to obtain good affinity characteristics in their core and memory
allocations. The affinity of the cores and memory that is allocated to a partition can be
determined by running the AIX lssrad -va command or the Linux numactl --hardware
command. For more information about partition resource allocation and the lssrad command,
see Chapter 3, “The IBM POWER Hypervisor” on page 57.

For partitions larger than the number of cores on a chip, the partition always spans more than
one chip and has a mixture of local and remote memory. For these larger partitions, it is often
useful to force manually good affinity for an application. Manual affinity can be forced by
binding applications so that they can run only on particular cores, and by specifying to the
operating system that only local memory should be used by the application.

Consider an example where you run four instances of WebSphere Application Server on a
partition of 16 cores on a POWER8 processor-based system that is running in SMT8 mode.
Each instance of WebSphere Application Server is bound to run on four of the cores of the
system. Because each of the cores has eight SMT threads, each instance of WebSphere
Application Server is bound to 32 logical processors. Good memory and cache affinity on AIX
can therefore be ensured by completing the following steps:

1. Set the AIX MEMORY_AFFINITY environment variable, typically to the value MCM. This setting
tells the AIX operating system to use local memory when an application thread requires
physical memory to be allocated.

2. Start the four instances of WebSphere Application Server by running the following
execrset commands, which bind the execution to the specified set of logical processors:

– execrset -c 0-31 -m 0 -e <command to start first WebSphere Application Server
instance>

– execrset -c 32-63 -m 0 -e <command to start second WebSphere Application
Server instance>
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 17

– execrset -c 64-95 -m 0 -e <command to start third WebSphere Application Server
instance>

– execrset -c 96-127 -m 0 -e <command to start fourth WebSphere Application Server
instance>

Here are some important items to understand in this example:

� For a particular number of instances and available cores, the most important consideration
is that each instance of an application runs only on the cores of one processor chip.

� Memory and logical processor binding is not done independently because doing so can
negatively affect performance.

� The workload must be evenly distributed over WebSphere Application Server processes
for the binding to be effective.

� There is an assumed mapping of AIX logical CPUs to cores and chips that is implicitly
being used in this example, and that is always established at boot time. This mapping can
be altered if the SMT mode of the system is changed by running smtctl -w now. If
dynamic changes have been made to a partition, ensure that you understand the resulting
mapping of logical CPUs to cores and chips before using any binding commands.

For more information about the MEMORY_AFFINITY environment variable, the execrset
command, and related environment variables and commands, see Chapter 4, “IBM AIX” on
page 71.

The same forced affinity can be established on Linux by running taskset or numactl.
For example:

� numactl -C 0-31 -l <command to start first WebSphere Application Server instance>

� numactl -C 32-63 -l <command to start second WebSphere Application Server
instance>

� numactl -C 64-95 -l <command to start third WebSphere Application Server instance>

� numactl -C 96-127 -l <command to start fourth WebSphere Application Server instance>

The -l option on these numactl commands is the equivalent of the AIX MEMORY_AFFINITY=MCM
environment variable setting.

Even for partitions that are contained on a single chip, better cache affinity can be established
with multiple application instances by using logical processor binding commands. With
partitions contained on a single chip, the performance effects typically range up to about 10%
improvement with binding. For partitions that span more than one POWER8 processor chip,
using manual affinity results in a substantially bigger performance effect. For more
information about this topic, see Chapter 3, “The IBM POWER Hypervisor” on page 57.

Shared resource environments
Virtualized deployments that share cores among a set of partitions also can use logical
processor binding to ensure good affinity within the guest operating system. However, the real
dispatching of physical cores is handled by the underlying host operating system (POWER
Hypervisor).
18 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The PowerVM Hypervisor uses a three-level affinity mechanism in its scheduler to enforce
affinity as much as possible. The reason why absolute affinity is not always possible is that
partitions can expand and use unused cycles of other LPARs. This process is done by using
uncapped mode in Power, where the uncapped cycles might not always have affinity.
Therefore, binding logical processors that are seen at the operating system level to physical
threads seen at the hypervisor level works only in some cases in shared partitions. Achieving
a high level of affinity is difficult when multiple partitions share resources from a single pool,
especially at high utilization, and when partitions are expanding to use other partition cycles.
Therefore, creating large shared processor core pools that span across chips tends to create
remote memory accesses. For this reason, it might be less desirable to use larger partitions
and large processor core pools where high-level affinity performance is expected.

Virtualized deployments can use Micro-Partitioning, where a partition is allocated a fraction of
a core. Micro-Partitioning allow a core allocation as small as 0.1 cores in older firmware
levels, and as small as 0.05 cores in more recent firmware levels, when coupled with
supporting operating system levels. This powerful mechanism provides great flexibility in
deployments. However, small core allocations can be more appropriate for situations in which
many virtual machines are often idle. Therefore, active 0.05 core LPARs can use those idle
cycles.

Also, there is one negative performance effect in deployments with considerably small
partitions, in particular with 0.1 or fewer cores at high system utilization: Java warm-up times
can be greatly increased. In a Java execution, the JIT compiler is producing binary code for
Java methods dynamically. Steady-state optimal performance is reached after a portion of the
Java methods are compiled to binary code. With considerably small partitions, there might be
a long warm-up period before reaching steady-state performance, where a 0.05 core LPAR
cannot get additional cycles from other LPARs because the other LPARs are consuming their
cycles. Also, if the workload that is running on this small-size LPAR does not need more than
5% of a processor core capacity, then the performance impact is mitigated.

For more information about this topic, see Chapter 3, “The IBM POWER Hypervisor” on
page 57.

Memory requirements
For good performance, there needs to be enough physical memory available so that
application data does not need to be frequently paged in and out between memory and disk.
The physical memory that is allocated to a partition must be enough to satisfy the
requirements of the operating system and the applications that are running on the partition.

Java is sensitive to having enough physical memory available to contain the Java heap
because Java applications often have frequent GC cycles where large portions of the Java
heap are accessed. If portions of the Java heap are paged out to disk by the operating system
because of a lack of physical memory, then GC cycles can cause a large amount of disk
activity, which is known as thrashing.

SMT mode
The POWER8 processor is designed to support as many as eight SMT threads in each core.
This is up to eight separate concurrent threads of instruction execution that share the
hardware resources of the core. At the operating system level, this is seen as up to eight
logical CPUs per core in the partition. The operating system therefore can schedule up to
eight software threads to run concurrently on the core.
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 19

Different operating systems can choose to run by default at different SMT modes. AIX
defaults to SMT4 when running on a POWER8 processor, and Linux defaults to SMT8
(assuming newer operating system levels that are POWER8 aware). As a deployment choice,
configuring the system to run in a particular SMT mode is easily done by the system
administrator by using the smtctl command on AIX or the ppc64_cpu --smt command on
Linux.

SMT is sometimes a trade-off between the best performance a single thread of execution can
achieve versus the best total throughput the partition can achieve. To understand this better,
consider the following cases:

� A particular software thread is consuming only a modest fraction of the hardware
resources of the core. This often occurs for threads in a Java application, for example. In
Java, there is typically a higher frequency of loads, stores and branches, and a lower level
of instruction-level parallelism, in the binary code. In a case such as this, SMT effectively
supports many software threads running simultaneously on the same core and achieves a
high level of total throughput without sacrificing the performance of the individual threads.

� A particular software thread can consume a large fraction of the hardware resources of
the core. This sometimes occurs in numerically intensive C code, for example. At high
SMT modes with many active threads, this particular software thread is competing with
other threads for core resources, and can be starved for resources by the other threads. In
a case such as this, the highest single thread performance of this particular software
thread is achieved at lower SMT modes. Conversely, the highest throughput is still
achieved with a high SMT mode, at the expense of reducing the performance of some
individual threads.

With the larger number of cores per chip in POWER8 processor-based systems as compared
to previous generations and the higher number of SMT threads per core on the POWER8
processor, one natural tendency is to create partitions with more logical CPUs than in the
past. One effect that has been repeatedly seen with more logical CPUs is for an application to
start suffering from scalability bottlenecks. All applications typically have a limit to their
scalability, and more logical CPUs can cause or exacerbate a scalability issue.

Counterintuitively, application performance goes down when a scalability bottleneck appears.
When this happens, users sometime experiment with different SMT modes and come to the
conclusion that the application naturally prefers a lower SMT mode, and adjust the operating
system configuration. This is often the incorrect conclusion. As explained previously, a small
minority of applications do perform better at SMT2, but most applications run well at SMT4 or
SMT8 if there are no scalability bottlenecks present.

For cases where an application is seeing reduced performance with higher SMT modes
because of scalability effects, possible remediations include:

� Bind the application to run on a subset of the available logical CPUs. See the example
under “Power dedicated LPARs” on page 17.

� Reduce the number of cores in the partition, which frees hardware resources that can be
used to create other partitions.

Note: The SMT mode that the operating system is running in specifies a maximum SMT
level, and not a fixed level. The AIX and Linux operating systems dynamically alter the
SMT level up to the maximum permitted. During periods where there are few software
threads available to run, the operating system can dynamically reduce the SMT mode.
During periods where there are many software threads available to run, the operating
system dynamically switches to the maximum SMT mode that the system administrator
has configured.
20 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

� Perform the analysis steps that are outlined in 1.5.3, “Deep performance optimization
guidelines” on page 21 for identifying scalability bottlenecks and fixing the application so
that it scales better.

� As a temporary measure, lower the SMT mode of the partition. This should be considered
a temporary measure only because by artificially lowering the SMT mode to address a
scalability issue, you are effectively wasting some of the available hardware resources of
the system.

For the cases where an application intrinsically runs better in a lower SMT mode, and where
there is a desire to achieve the best possible single thread performance at the expense of
overall throughput, possible remediations include:

� Segregate the system into partitions running in lower SMT modes and other partitions
running in higher SMT modes. Run the applications that prefer lower SMT modes in the
partitions with lower SMT levels.

� Use the hybrid thread and core feature to have some cores in a partition that is run in
lower SMT modes, while other cores run in high SMT modes. Bind the applications that
prefer lower SMT modes to the cores running in lower SMT modes and bind other
applications to the other cores.

For more information see 2.2.1, “Multi-core and multi-thread” on page 28, 4.2.1, “Multi-core
and multi-thread” on page 72, 5.2.1, “Multi-core and multi-thread” on page 112, and 6.2.1,
“Multi-core and multi-thread” on page 119, all of which address multi-core and multi-thread
from the processor and operating system standpoints.

Power management mode
As described in 2.2.13, “Power management and system performance” on page 52, there are
different power management modes available that can dramatically affect system
performance. Some modes are designed to reduce electrical power consumption at the
expense of system performance. Other modes, such as Dynamic Power Saver - Favor
Performance, run the system at the highest clock rate and deliver the highest performance.
As a deployment choice, a system administrator should configure an appropriate power
management mode.

1.5.3 Deep performance optimization guidelines

Performance tools for AIX and Linux are described in Appendix B, “Performance tools and
empirical performance analysis” on page 215. A deep performance optimization effort
typically uses those tools and follows this general strategy:

� Gather general information about the running of an application when it is running on a
dedicated POWER8 performance system. Important statistics to consider are:

– The user and system CPU usage of the application: Ideally, a multi-threaded
application generates a high overall CPU usage with most of the CPU time in user
code. Too high a system CPU usage is generally a sign of a locking bottleneck in the
application. Too low an overall usage usually indicates some type of resource
bottleneck, such as network or disk. For low CPU usage, look at the number of
runnable threads reported by the operating system, and try to ensure that there are as
many runnable threads as there are logical processors in the partition.

– The network utilization of the application: Networks can be a bottleneck in execution
either because of bandwidth or latency issues. Link aggregation techniques are often
used to solve networking issues.

– The disk utilization of the application: High disk I/O issues are increasingly being
solved by using solid-state devices (SSDs).
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 21

Common operating system tools for gathering this general information include topas and
perfpmr (AIX), top and LPCPU (Linux), vmstat, iostat, and netstat. Detailed CPU usage
information is available by running sar. This command diagnoses cases where some
logical processors are saturated and others are underutilized, an issue that is seen with
network interrupt processing on Linux.

� Collect a time-based profile of the application to see where run time is concentrated.
Some possible areas of concern are:

– Particular user routines or Java methods with a high concentration of execution time.
This situation is an indication of a poor coding practice or an inefficient algorithm that is
being used in the application itself.

– Particular library routines or Java class library methods with a high concentration of
execution time. First, determine whether the hot routine or method is legitimately used
to that extent. Look for alternatives or more efficient versions, such as using the
optimized libraries in the IBM Advance Toolchain or the vector routines in the MASS
library (for more information, see “Mathematical Acceleration Subsystem Library and
Engineering and Scientific Subroutine Library” on page 13).

– A concentration of run time in the pthreads library (see “Java profiling example” on
page 242) or in kernel locking routines. This situation is associated with a locking
issue. This locking might ultimately arise at the system level (as seen with malloc
locking issues on AIX), or at the application level in Java code (associated with
synchronized blocks or methods in Java code). The source of locking issues is not
always immediately apparent from a profile. For example, with AIX malloc locking
issues, the time that is spent in the malloc and free routines might be low, with almost
all of the impact appearing in kernel locking routines.

The tools for gathering profiles are tprof (AIX), OProfile (Linux), and perf (Linux) (these
tools are described in “IBM Rational Performance Advisor” on page 221). The curt tool
(see “AIX trace-based analysis tools” on page 226) also provides a breakdown, describing
where CPU time is consumed and includes more useful information, such as a system call
summary.

� Where there are indications of a locking issue, collect locking information.

With locking problems, the primary concern is to determine where the locking originates in
the application source code. Cases such as AIX malloc locking can be easily solved just
by switching to a more scalable memory allocation package through the MALLOCTYPE and
MALLOCOPTIONS environment variables. In this case, examine how malloc is used and
consider making changes at the source code level. For example, rather than repeatedly
allocating many small blocks of memory by calling malloc for each block, the application
can allocate an array of blocks and then internally manage the space.

As mentioned in “java/util/concurrent” on page 14, Java locking issues that are associated
with some older classes, such as java/util/Hashtable, can be easily solved by using
java/util/concurrent/ConcurrentHashMap.

For Java programs, use Java Lock Monitor (see “Java Health Center” on page 241). For
non-Java programs, use the splat tool on AIX (see “AIX trace-based analysis tools” on
page 226).
22 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

� For Java, the WAIT tool is a powerful, easy-to-use analysis tool that is based on collecting
thread state information.

Using the WAIT tool requires installing and running only a data collection shell. The shell
collects various information about the Java program execution, the most important of
which is a set of javacore files. The javacore files show the state of all of the threads at the
time the file was dumped. The collected data is submitted to an online tool by using a web
browser, and the tool analyzes the data and displays the results with a GUI. The GUI
presents information about thread states and has powerful features to drill down to see
call chains.

The WAIT tool results combine many of the features of a time-based profile, a lock
monitor, and other tools. For Java programs, the WAIT tool might be one of the first
analysis tools to consider because of its versatility and ease of use.

For more information about IBM Whole-system Analysis of Idle Time, which is the
browser-based (that is, no-install) WAIT tool, go to:

http://wait.researchlabs.ibm.com
Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems 23

http://wait.researchlabs.ibm.com

24 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Chapter 2. The IBM POWER8 processor

This chapter introduces the POWER8 processor and describes some of the technical details
and features of this product. It covers the following topics:

� 2.1, “Introduction to the POWER8 processor” on page 26
� 2.2, “Using POWER8 features” on page 28
� 2.3, “I/O adapter affinity” on page 55
� 2.4, “Related publications” on page 55

2

© Copyright IBM Corp. 2014, 2015. All rights reserved. 25

2.1 Introduction to the POWER8 processor

The POWER8 processor is manufactured by using the IBM 22 nm Silicon-On-Insulator (SOI)
technology. Each chip is 567 mm2 and contains 1.2 billion transistors. As shown in Figure 2-1,
the chip contains the following items:

� Twelve cores, each with its own 512 KB L2 and 8 MB L3 (embedded DRAM) cache

� Two memory controllers, PCIe Gen3 I/O controllers

� An interconnection system that connects all components within the chip

The interconnect also extends through module and board technology to other POWER8
processors in addition to DDR3 memory and various I/O devices.

POWER8 processor-based systems use memory buffer chips to interface between the
POWER8 processor and DDR3 or DDR4 memory. Each buffer chip also includes an L4 cache
to reduce the latency of local memory accesses. The number of memory controllers, memory
buffer chips, PCIe lanes, and cores that are available for use depend upon the particular
POWER8 processor-based system.

Figure 2-1 The POWER8 processor chip

Each core is a 64-bit implementation of the IBM Power Instruction Set Architecture (ISA)
Version 2.071 and has the following features:

� Multi-threaded design, capable of up to eight-way simultaneous multithreading (SMT)

� 32 KB, eight-way set-associative L1 i-cache

� 64 KB, eight-way set-associative L1 d-cache

1 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/

Mem. Ctrl. L3 Cache & Chip Interconnect

8M L3
Region

Mem. Ctrl.

Lo
ca

l S
M

P
Li

nk
s

Ac
ce

le
ra

to
rs

Lo
ca

l S
M

P
Li

nk
s

Ac
ce

le
ra

to
rs

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2
26 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/power-isa-v-2-07b/

� 72-entry Effective to Real Address Translation (ERAT) for effective to real address
translation for instructions (fully associative)

� 48-entry primary ERAT (fully associative) and 144-entry secondary ERAT for effective to
real address translation for data

� Aggressive branch prediction, using both local and global prediction tables with a selector
table to choose the best predictor

� 16-entry link stack

� 256-entry count cache

� Aggressive out-of-order execution

� Two symmetric fixed-point execution units

� Two symmetric load/store units and two load units, all four of which can also run simple
fixed-point instructions

� An integrated, multi-pipeline vector-scalar floating point unit for running both scalar and
SIMD-type instructions, including the Vector Multimedia eXtension (VMX) instruction set
and the new Vector Scalar eXtension (VSX) instruction set, and capable of up to eight
floating point operations (flops) per cycle (four double precision or eight single precision)

� In-core Advanced Encryption Standard (AES) encryption capability

� Hardware data prefetching with 16 independent data streams and software control

� Hardware decimal floating point (DFP) capability

The POWER8 processor is designed for system offerings from single-socket blades to
multi-socket Enterprise servers. It incorporates a triple-scope broadcast coherence protocol
over local and global SMP links to provide superior scaling attributes. Multiple-scope
coherence protocols reduce the amount of SMP link bandwidth that is required by attempting
operations on a limited scope (single chip or multi-chip group) when possible. If the operation
cannot complete coherently, the operation is reissued by using a larger scope to complete the
operation.

Here are additional features that can augment performance of the POWER8 processor:

� Adaptive power management.

� Support for DDR3 and DDR4 memory through memory buffer chips that offload the
memory support from the POWER8 memory controller.

� 16 MB L4 cache within the memory buffer chip that reduces the memory latency for local
access to memory behind the buffer chip. The operation of the L4 cache is transparent to
applications running on the POWER8 processor.

� On-chip accelerators, including on-chip encryption, compression, and random number
generation accelerators.

For more information about this topic, see 2.3, “I/O adapter affinity” on page 55.
Chapter 2. The IBM POWER8 processor 27

2.2 Using POWER8 features

This section describes several features of of the POWER8 processor that can affect
performance, including page sizes, cache sharing, SMT priorities, and others.

2.2.1 Multi-core and multi-thread

This section describes the advanced multi-core and multi-thread capabilities of the POWER8
processor. The effective use of the cores and threads is a critically important element of
capitalizing on the performance potential of the processor.

Multi-core and multi-thread scalability
POWER8 processor-based system advancements in multi-core and multi-thread scaling are
significant. A significant POWER8 processor performance opportunity comes from
parallelizing workloads to enable the full potential of the Power platform. Application scaling
is influenced by both multi-core and multi-thread technology in POWER8 processors. A single
POWER8 chip can contain up to twelve cores. With SMT, each POWER8 core can present
eight hardware threads. SMT is the ability of a single physical processor core to dispatch
simultaneously instructions from more than one hardware thread context. Because there are
multiple hardware threads per physical processor core, additional instructions can run at the
same time. SMT is primarily beneficial in commercial environments where the speed of an
individual transaction is not as important as the total number of transactions performed. SMT
is expected to increase the throughput of workloads with large or frequently changing working
sets, such as database servers and web servers.

Additional details about the SMT feature are described in Table 2-1.

Table 2-1 Multi-thread per core features by POWER generation

Information about the multi-thread per core features by single LPAR scaling is available in the
following tables:

� Table 4-1 on page 73 (AIX)
� Table 5-1 on page 112 (IBM i)
� Table 6-1 on page 119 (Linux)

Technology Cores/system Maximum SMT
mode

Maximum hardware
threads per LPAR

IBM POWER4
processor

32 ST 32

IBM POWER5
processor

64 SMT2 128

IBM POWER6
processor

64 SMT2 128

IBM POWER7
processor

256 SMT4 1024

IBM POWER8
processor

192 SMT8 1536
28 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Operating system enablement of multi-core and multi-thread technology varies by operating
system and release:

� Power operating systems present an SMP view of the resources of a partition.

� Hardware threads are presented as logical CPUs to the application stack.

� Many applications can use the operating system scheduler to place workloads onto logical
processors and maintain the SMP programming model.

� In some cases, the differentiation between hardware threads per core can be used to
improve performance.

� Placement of a workload on hardware book, drawer and node, socket, core, and thread
boundaries can improve application scaling.

Using multi-core and multi-thread features is a challenging prospect.

For more information about this topic, from the OS perspective, see:

� 4.2.1, “Multi-core and multi-thread” on page 72 (AIX)
� 5.2.1, “Multi-core and multi-thread” on page 112 (IBM i)
� 6.2.1, “Multi-core and multi-thread” on page 119 (Linux)

For more information about this topic, see 2.3, “I/O adapter affinity” on page 55.

Simultaneous multithreading
The Power Architecture uses simultaneous multithreading (SMT) to provide multiple streams
of hardware execution. The POWER8 processor provides eight SMT hardware threads per
core and can be configured to run in SMT8, SMT4, SMT2, or single-threaded mode (SMT1
mode or, as referred to in this publication, ST mode). The POWER7 and POWER7+
processors provide four SMT hardware threads per core and can be configured to run in
SMT4, SMT2, or ST mode. POWER6 and POWER5 processors provide two SMT threads per
core, and can be run in SMT2 mode or ST mode.

By using multiple SMT threads, a workload can take advantage of more of the hardware
features that are provided in the POWER processor than if a single SMT thread is used per
core. By configuring the processor core to run in multi-threaded mode, the operating system
can maximize the use of the hardware capabilities that are provided in the system and the
overall workload throughput by correctly balancing software threads across all of the cores
and SMT hardware threads in the partition.

SMT does include some performance tradeoffs:

� SMT can provide a significant throughput and capacity improvement on POWER
processors. When you are in SMT mode, there is a trade-off between overall CPU
throughput and the performance of each hardware thread. SMT allows multiple instruction
streams to be run simultaneously, but this concurrency can cause some resource conflict
between the instruction streams. This conflict can result in a decrease in performance for
an individual thread, but an increase in overall throughput.

� Some workloads do not run well with the SMT feature. This situation is not typical for
commercial workloads, but it has been observed with scientific (floating point-intensive)
workloads.

Information about the topic of SMT, from the OS perspective, is available in the following
sections:

� “Simultaneous multithreading” on page 73 (AIX)
� “Simultaneous multithreading” on page 112 (IBM i)
� “Simultaneous multithreading” on page 119 (Linux)
Chapter 2. The IBM POWER8 processor 29

Simultaneous multithreading priorities
The POWER5 processor introduced the capability for the SMT thread priority level for each
hardware thread to be set, controlling the relative priority of the threads within a single core.
This capability allows each SMT thread to be adjusted so that it can receive more or less
favorable performance than the other threads in the same core. The relative difference
between the priority of each hardware thread determines the number of decode cycles each
thread receives during a period.2 This mechanism can be used in various situations, for
example, to boost the performance of other threads on the same processor core, while the
thread with a lowered priority is waiting on a lock, or waiting on other cooperative threads to
reach a synchronization point.

Table 2-2 lists various SMT thread priority levels that are supported in the Power Architecture.
The level at which code can set the SMT priority level to is controlled by the privilege level that
the code is running at (such as problem-state versus supervisor level). For example, code that
is running in problem-state cannot set the SMT priority level to High.

Table 2-2 SMT thread priority levels for POWER5, POWER6, POWER7, POWER7+, and POWER8 processors

For more information about SMT priority levels, see Power ISA Version 2.07, found at:

https://www.power.org/documentation/power-isa-v-2-07b/

Changing the SMT priority level can generally be done in one of the following ways:

� Running a Priority Nop, a special form of the or x,x,x nop
� Writing a value to the Program Priority Register (PPR) by running mtppr
� Through a system call, which can be used by problem-state programs to set priorities in

the range that is permitted for the supervisor state

2 thread_set_smt_priority or thread_read_smt_priority System Call, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.ker
neltechref/doc/ktechrf1/thread_set_smt_priority.htm

SMT thread
priority levela

a. The required privilege to set a particular SMT thread priority level is associated with the physical processor
implementation that the LPAR is running on, and not the processor compatible mode. Therefore, setting Very Low
SMT priority requires only user level privilege on POWER7+ processors, even when running in IBM
POWER6-compatible, POWER6+™-compatible, or POWER7-compatible modes.

PPR
(11:13)

Priority Nop Minimum privilege
required to set level
in POWER5,
POWER6, and
POWER7
processors

Minimum privilege
required to set level
in a POWER7+
processor

Minimum privilege
required to set level
in a POWER8
processor

Thread shutoff
(read only; set
by disabling
thread)

b'000' Hypervisor Hypervisor Hypervisor

Very low b'001' or 31,31,31 Supervisor Problem-state Problem-state

Low b'010' or 1,1,1 Problem-state Problem-state Problem-state

Medium low b'011' or 6,6,6 Problem-state Problem-state Problem-state

Medium b'100' or 2,2,2 Problem-state Problem-state Problem-state

Medium high b'101' or 5,5,5 Supervisor Supervisor Problem-state

High b'110' or 3,3,3 Supervisor Supervisor Supervisor

Very high b'111' or 7,7,7 Hypervisor Hypervisor Hypervisor
30 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.kerneltechref/doc/ktechrf1/thread_set_smt_priority.htm
https://www.power.org/documentation/power-isa-v-2-07b/

On POWER5, POWER6, and POWER7 processor-based systems, problem-state programs
can set thread priority values only in the range of low (2) to medium (4). On POWER7+
processor-based systems, a problem-state program can set the thread priority value to very
low (1). POWER8 processor-based systems introduce the ability for a problem-state program
to change temporarily the thread priority value to medium-high (5). However, access to
medium-high priority is controlled by the operating system through the new Problem State
Priority Boost Register that was introduced in POWER8 processor-based systems.3

For more information about the topic of SMT priorities, from the OS perspective, see:

� “Simultaneous multithreading priorities” on page 74 (AIX)
� “Simultaneous multithreading priorities” on page 120 (Linux)

Affinitization and binding to hardware threads
Functionally, it does not matter which core in the partition an application thread is running on,
or what physical memory the data it is accessing is on. From a performance standpoint,
however, software threads that all access the same data are best placed on the SMT threads
of the same core, or on the cores of the same chip. Operating systems may provide facilities
to bind applications or specific software threads to run on specific SMT threads or cores.

For more information about the topic of affinitization and binding, from the OS perspective,
see:

� “Affinitization and binding” on page 74 (AIX)
� “Affinitization and binding” on page 121 (Linux)

Hybrid thread and core
The POWER8 processor allows the SMT mode of each core in a partition to be independently
controlled by the operating system. Exactly how this facility is presented to the users is
dependent on the specific operating system release and version. Some of the ways the
operating systems can expose this feature include:

� The ability to set all of the cores in a partition to run in a specific SMT mode, such as to
disable SMT and run all of the cores in ST mode.

� The ability to dynamically alter the SMT mode of specific cores based on load. When only
a small number of software threads are ready to run, the operating system can lower the
SMT mode of the cores to give each of the software threads the highest possible
performance. When a large number of software threads are ready to run, the operating
system can use higher SMT modes and maximize the overall throughput of the partition.

� The ability to specify a fixed asymmetric SMT configuration, where some cores are in high
SMT mode and others have SMT mode disabled. This configuration allows critical
software threads within a workload to receive an ST performance boost, and allows the
remaining threads to benefit from SMT mode. Typical reasons to take advantage of this
hybrid mode are:

– For an asymmetric workload, where the performance of one thread serializes an entire
workload. For example, one master thread dispatches work to many subordinate
threads.

– For software threads that are critical to a system administrator.

For more information about this topic, from the OS perspective, see:

� “Hybrid thread and core” on page 80 (AIX)
� “Hybrid thread and core” on page 122 (Linux)

3 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/
Chapter 2. The IBM POWER8 processor 31

https://www.power.org/documentation/power-isa-v-2-07b/

2.2.2 Multipage size support (page sizes (4 KB, 64 KB, 16 MB, and 16 GB))

The virtual address space of a program is divided into segments. The size of each segment
can be either 256 MB or 1 TB on Power Systems. The virtual address space can also consist
of a mix of these segment sizes. The segments are again divided into units, called pages. IBM
Power Architecture supports multiple virtual memory page sizes, which provides performance
benefits to an application because of hardware efficiencies that are associated with larger
page sizes.4

The POWER5+ and later processors support four virtual memory page sizes: 4 KB, 64 KB, 16
MB, and 16 GB. The POWER6 and later processors also support using 64 KB pages inside
segments along with a base page size of 4 KB.5 The 16 GB pages can be used only within
1 TB segments.

Large pages provide multiple technical advantages:

� Reduced Page Faults and Translation Lookaside Buffer (TLB) Misses: A single large page
that is being constantly referenced remains in memory. This feature eliminates the
possibility of several small pages often being swapped out.

� Unhindered Data Prefetching: A large page enables unhindered data prefetch (which is
constrained by page boundaries).

� Increased TLB Reach: This feature saves space in the TLB by holding one translation
entry instead of n entries, which increases the amount of memory that can be accessed by
an application without incurring hardware translation delays.

� Increased ERAT Reach: The ERAT on Power Systems is a first level and fully associative
translation cache that can go directly from effective to real address. Large pages also
improve the efficiency and coverage of this translation cache as well.

Large segments (1 TB) also provide reduced Segment Lookaside Buffer (SLB) misses, and
increases the reach of the SLB. The SLB is a cache of the most recently used Effective to
Virtual Segment translations.

The 16 MB and 16 GB pages are intended only for high-performance environments; however,
64 KB pages are considered general-purpose, and most workloads benefit from using 64 KB
pages rather than 4 KB pages.

For more information about this topic, from the OS perspective, see:

� 4.2.2, “Multipage size support on AIX” on page 83
� 5.2.2, “Multipage size support on IBM i” on page 113
� 6.2.2, “Multipage size support on Linux” on page 123

4 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/
5 Multiple page size support, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.prf
tungd/doc/prftungd/multiple_page_size_support.htm
32 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/power-isa-v-2-07b/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_support.htm

2.2.3 Efficient use of cache and memory

Hardware facilities for controlling the efficient use of cache and memory are described in this
section.

Cache sharing
Power Systems consist of multiple processor cores and multiple processor chips that share
caches and memory in the system. The architecture uses a processor and memory layout
that you can use to scale the hardware to many nodes of processor chips and memory. One
advantage is that systems can be used for multiple workloads and workloads that are large.
However, these characteristics must be carefully weighed in the design, implementation, and
evaluation of a workload. Aspects of a program, such as the allocation of data across cores
and chips and the layout of data within a data structure, play a key role in maximizing
performance, especially when scaling across many processor cores and chips.

Power Systems use a cache-coherent SMP design, in which all of the memory in the system
is accessible to all of the processor cores in the system, and all of the cache is coherently
maintained:

� Any processor core on any chip can access the memory of the entire system.
� Any processor core can access the contents of any core cache, even if it on a different

chip.

In POWER8 processor-based systems, each chip consists of twelve processor cores, each
with on-core L1 instruction and d-caches, an L2 cache, and an L3 cache, as shown in
Figure 2-2.6

Figure 2-2 POWER8 chip and local memory

Processor core access: In both of these cases, the processor core can access only
memory or cache that it has authorized access to using normal operating system and
Hypervisor memory access permissions and controls.

6 Ibid

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Core

L2
512KB

L3
8 MB

Cach e

Processor Chip

L4 Cach e
Memor y BufferMemory

L4 Cach e
Memor y BufferMemory

L4 Cach e

Memor y Buffer
Memory

L4 Cach e
Memor y BufferMemory

L4 Cach e

Memor y Buffer
Memory

L4 Cach e

Memor y Buffer
Memory

L4 Cach e

Memor y Buffer
Memory

L4 Cache
M emory BufferMemory
Chapter 2. The IBM POWER8 processor 33

All of these caches are effectively shared. The L2 cache has a longer access latency than L1,
and L3 has a longer access latency than L2. Each chip also has memory controllers, allowing
direct access to a portion of the memory DIMMs in the system.7 Thus, it takes longer for an
application thread to access data in cache or memory that is attached to a remote chip than
to access data in a local cache or memory. These types of characteristics are often referred to
as affinity performance effects (for more information, see “The POWER8 processor and
affinity performance effects” on page 16). In many cases, systems that are built around
different processor models that have varying characteristics (for example, although L3 is
supported, it might not be implemented on some models).

Functionally, it does not matter which core in the system an application thread is running on,
or what memory the data it is accessing is on. However, this situation does affect the
performance of applications because accessing a remote memory or cache takes more time
than accessing a local memory or cache.8 This situation becomes even more imperative with
the capability of modern systems to support massive scaling and the resulting possibility for
remote accesses to occur across a large processor interconnection complex.

The effect of these system properties can be observed by application threads because they
often move, sometimes rather frequently, between processor cores. This situation can
happen for various reasons, such as a page fault or lock contention that results in the
application thread being preempted while it waits for a condition to be satisfied, and then
being resumed on a different core. Any application data that is in the cache local to the
original core is no longer in the local cache because the application thread moved and a
remote cache access is required.9 Although modern operating systems, such as AIX, attempt
to ensure that cache and memory affinity is retained, this movement does occur, and can
result in a loss in performance. For an introduction to the concepts of cache and memory
affinity, see “The POWER8 processor and affinity performance effects” on page 16.

The POWER Hypervisor is responsible for:

� Virtualization of processor cores and memory that is presented to the operating system
� Ensuring that the affinity between the processor cores and memory an LPAR is using is

maintained as much as possible

However, it is important for application designers to consider affinity issues in the design of
applications, and to carefully assess the impact of application thread and data placement on
the cores and the memory that is assigned to the LPAR the application is running in.

Various techniques that are employed at the system level can alleviate the effect of cache
sharing. One example is to configure the LPAR so that the amount of memory that is
requested for the LPAR is satisfied by the memories that are locally available to processor
cores in the system (the memory DIMMs that are attached to the memory controllers for each
processor core). It is more likely that the POWER Hypervisor can maintain affinity between
the processor cores and memory that is assigned to the partition, improving performance.10

For more information about LPAR configuration and running the AIX lssrad-va command to
query the affinity characteristics of a partition, see Chapter 3, “The IBM POWER Hypervisor”
on page 57. The equivalent Linux command is numactl --hardware.

The rest of this section covers multiple topics that can affect application performance,
including the effects of cache geometry, alignment of data, and sensitivity to the scaling of
applications to more cores.

7 Of NUMA on POWER7 in IBM i, found at:
http://www.ibm.com/systems/resources/pwrsysperf_P7NUMA.pdf
8 Ibid
9 Ibid
10 Ibid
34 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/systems/resources/pwrsysperf_P7NUMA.pdf

Cache geometry
Cache geometry refers to the specific layout of the caches in the system, including their
location, interconnection, and sizes. These design details change for every processor chip,
even within the Power Architecture. Figure 2-2 on page 33 shows the layout of a POWER8
chip, including the processor cores, caches, and local memory. Table 2-3 shows the cache
sizes and related geometry information for POWER8 processor-based systems.11

Table 2-3 POWER8 storage hierarchy

Optimizing for cache geometry
There are several ways to optimize for cache geometry:

� Splitting structures into hot and cold elements

A technique for optimizing applications to take advantage of cache is to lay out data
structures so that fields that have a high rate of reference (that is, hot) are grouped, and
fields that have a relatively low rate of reference (that is, cold) are grouped.12 The concept
is to place the hot elements into the same byte region of memory, so that when they are
pulled into the cache, they are co-located in to the same cache line or lines. Additionally,
because hot elements are referenced often, they are likely to stay in the cache. Likewise,
the cold elements are in the same area of memory and result in being in the same cache
line, so that being written out to main storage and discarded causes less of a performance
degradation. This situation occurs because they have a much lower rate of access.

Power Systems use 128-byte length cache lines. Compared to Intel processors (64-byte
cache lines), these larger cache lines have the advantage of increasing the reach possible
with the same size cache directory, and the efficiency of the cache by covering up to 128
bytes of hot data in a single line. However, it also has the implication of potentially bringing
more data into the cache than needed for fine-grained accesses (that is, less than 64
bytes).

11 Ibid

Cache POWER7 processor-based
system

POWER7+
processor-based system

POWER8 processor-based
systems

L1 i-cache:
Capacity/associativity

32 KB, 4-way 32 KB, 4-way 32 KB, 8-way

L1 d-cache:
Capacity/associativity
bandwidth

32 KB, 8-way
2 16 B reads or
1 16 B writes per cycle

32 KB, 8-way
2 16 B reads or
1 16 B writes per cycle

64 KB, 8-way
4 16 B reads or
1 16 B writes per cycle

L2 cache:
Capacity/associativity
bandwidth

256 KB, 8-way
Private
32 B reads and 16 B writes
per cycle

256 KB, 8-way
Private
32 B reads and 16 B writes
per cycle

512 KB, 8-way
Private
64 B reads and 16 B writes
per cycle

L3 cache:
Capacity/associativity
bandwidth

On-Chip
4 MB/core, 8-way
16 B reads and 16 B writes
per cycle

On-Chip
10 MB/core, 8-way
16 B reads and 16 B writes
per cycle

On-Chip
8 MB/core, 8-way
32 B reads and 32 B writes
per cycle

L4 cache:
Capacity/associativity
bandwidth

N/A N/A On-Chip
16 MB/buffer chip, 16-way
Up to 8 buffer chips per
socket

12 Splitting Data Objects to Increase Cache Utilization (Preliminary Version, 9th October 1998). found at:
http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.84.3359
Chapter 2. The IBM POWER8 processor 35

http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.84.3359

As described in Eliminate False Sharing, Stop your CPU power from invisibly going down
the drain,13 it is also important to assess carefully the impact of this strategy, especially
when applied to systems where there are a high number of CPU cores and a phenomenon
referred to as false sharing can occur. False sharing occurs when multiple data elements
are in the same cache line that can otherwise be accessed independently. For example, if
two different hardware threads wanted to update (store) two different words in the same
cache line, only one of them at a time can gain exclusive access to the cache line to
complete the store. This situation results in:

– Cache line transfers between the processors where those threads are
– Stalls in other threads that are waiting for the cache line
– Leaving all but the most recent thread to update the line without a copy in their cache

This effect is compounded as the number of application threads that share the cache line
(that is, threads that are using different data in the cache line under contention) is scaled
upwards.14 The discussion about cache sharing15 also presents techniques for analyzing
false sharing and suggestions for addressing the phenomenon.

� Prefetching to avoid cache miss penalties

Prefetching to avoid cache miss penalties is another technique that is used to improve
performance of applications. The concept is to prefetch blocks of data to be placed into the
cache a number of cycles before the data is needed. This action hides the penalty of
waiting for the data to be read from main storage. Prefetching can be speculative when,
based on the conditional path that is taken through the code, the data might end up not
being required. The benefit of prefetching depends on how often the prefetched data is
used. Although prefetching is not strictly related to cache geometry, it is an important
technique.

A caveat to prefetching is that, although it is common for the technique to improve
performance for single-thread, single core, and low utilization environments, it can
decrease performance in high thread-count per-socket and high-utilization environments.
Most systems today virtualize processors and the memory that is used by the workload.
Because of this situation, the application designer must consider that, although an LPAR
might be assigned only a few cores, the overall system likely has a large number of cores.
Further, if the LPARs are sharing processor cores, the problem becomes compounded.

The dcbt and dcbtst instructions are commonly used to prefetch data.16,17 Power
Architecture ISA 2.06 Stride N Prefetch Engines to boost Application's performance
provides an overview about how these instructions can be used to improve application
performance. These instructions can be used directly in hand-tuned assembly language
code, or they can be accessed through compiler built-ins or directives.

A preferred way to use pre-fetching is to have the compiler decide where in the application
code to place prefetch instructions. The type of analysis that is required is highly suited for
computers to perform.

Prefetching is also automatically done by the POWER8 hardware and is configurable, as
described in “Data prefetching using d-cache instructions and the Data Streams Control
Register (DSCR)” on page 39.

13 Eliminate False Sharing, Stop your CPU power from invisibly going down the drain, found at:
http://drdobbs.com/goparallel/article/showArticle.jhtml?articleID=217500206

14 Ibid
15 Ibid
16 dcbt (Data Cache Block Touch) instruction, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/a
langref/idalangref_dcbt_instrs.htm

17 dcbtst (Data Cache Block Touch for Store) instruction, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/a
langref/idalangref_dcbstst_instrs.htm
36 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://drdobbs.com/goparallel/article/showArticle.jhtml?articleID=217500206
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/alangref/idalangref_dcbt_instrs.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/alangref/idalangref_dcbstst_instrs.htm

Alignment of data
Processors are optimized for accessing data elements on their naturally aligned boundaries.
Unaligned data accesses might require extra processing time by the processor for individual
load or store instructions. They might require a trap and emulation by the host operating
system. Ensuring natural data alignment also ensures that individual accesses do not span
cache line boundaries.

Similar to the idea of splitting structures into hot and cold elements, the concept of data
alignment seeks to optimize cache performance by ensuring that data does not span across
multiple cache lines. The cache line size in Power Systems is 128 bytes.

The general technique for alignment is to keep operands (data) on natural boundaries, such
as a word or doubleword boundary (that is, an int is aligned on a word boundary in memory).
This technique might involve padding and reordering data structures to avoid cases such as
the interleaving of chars and doubles: char; double; char; double. High-level language
compilers can ensure optimal data alignment by inserting padding. However, data layout must
be carefully analyzed to avoid an undue increase in size by such methods. For example, the
previous case of a structure containing char; double; char; double; requires 14 bytes of
padding. Such an increase in size might result in more cache misses or page misses
(especially for rarely referenced groupings of data).

Additionally, to achieve optimal performance, floating point and VMX/VSX have different
alignment requirements. For example, the preferred VSX alignment is 16 bytes instead of the
element size of the data type being used. This situation means that VSX data that is smaller
than 16 bytes must be padded out to 16 bytes. The compilers introduce padding as
necessary to provide optimal alignment for vector data types.

Non-vector data that is intended to be accessed through VSX instructions should be aligned
so that VSX loads and stores are performed on addresses that are aligned to 16-byte
boundaries. However, the POWER8 processor improves the handling of misaligned
accesses. Most loads, which cross cache lines and hit in the d-cache, are handled by the
hardware with minimal impact on performance.

Byte ordering
The byte ordering (Big Endian or Little Endian) is specified by the operating system. In Little
Endian mode, byte swapping is performed before data is written to storage and before data is
fetched into the execution units. The Load and Store Multiple instructions and the Move Assist
instructions are not supported in Little Endian mode. Attempting to run any of these
instructions in Little Endian mode causes the system alignment error handler to be started.

The POWER8 processor can operate with the same byte ordering for both instruction and
data, or with Split Endian, with instructions and data having different byte ordering.

Sensitivity of scaling to more cores
Different processor chip versions and system models provide less or more scaling of LPARs
and workloads to cores. Different processor chips and systems might have different bus
widths and latencies. All of these factors result in the sensitivity of the performance of an
application/workload to the number of cores it is running on to change based on the
processor chip version and system model.
Chapter 2. The IBM POWER8 processor 37

In general terms, an application that tends to not access memory without CPU intervention
(that are core-centric) scales perfectly across more cores. Performance loss when scaling
across multiple cores tends to come from one or more of the following sources:

� Increased cache misses (often from invalidations of data by other processor cores,
especially for locks)

� The increased cost of cache misses, which in turn drives overall memory and interconnect
fabric traffic into the region of bandwidth limitations (saturating the memory busses and
interconnect)

� The additional cores that are being added to the workload in other nodes, resulting in
increased latency in reaching memory and caches in those nodes

Briefly, cache miss requests and returning data can end up being routed through busses that
connect multiple chips and memory, which have particular bandwidth and latency
characteristics. The goal for scaling across multiple cores, then, is to minimize the change in
the potential penalties that are associated with cache misses and data requests as the
workload size grows.

It is difficult to assess what strategies are effective for scaling to more cores without
considering the complex aspects of a specific application. For example, if all of the cores that
the application is running across eventually access all of the data, then it might be wise to
interleave data across the processor sockets (which are typically a grouping of processor
chips) to optimize them from a memory bus utilization point of view. However, if the access
pattern to data is more localized so that, for most of the data, separate processor cores are
accessing it most of the time, the application might obtain better performance if the data is
close to the processor core that is accessing that data the most (maintaining affinity between
the application thread and the data it is accessing). For the latter case, where the data ought
to be close to the processor core that is accessing the data, the AIX MEMORY_AFFINITY=MCM
environment variable can be set to achieve this behavior. For Linux, the equivalent is the -l
option on a numactl command.

When multiple processor cores are accessing the same data and that data is being held by a
lock, resulting in the data line in the cache that is invalidated, programs can suffer. This
phenomenon is often referred to as hot locks, where a lock is holding data that has a high rate
of contention. Hot locks result in cache-to-cache intervention and can easily limit the ability to
scale a workload because all updates to the lock are serialized.

Tools such as splat (see “AIX trace-based analysis tools” on page 226) can be used to
identify hot locks. Additionally, the transactional memory (TM) feature can speed up
lock-based programs. Learn more about TM in 2.2.4, “Transactional memory” on page 42.

Hot locks can be caused by the programmer having lock control access to too large an area of
data, which is known as coarse-grained locking.18 In that case, the strategy to deal effectively
with a hot lock is to split the lock into a set of fine-grained locks, such that multiple locks, each
managing a smaller portion of the data than the original lock, now manage the data for which
access is being serialized. Hot locks can also be caused by trying to scale an application to
more cores than the original design intended. In that case, using an even finer grain of locking
might be possible, or changes can be made in data structures or algorithms, such that lock
contention is reduced.

Additionally, the programmer must spend time considering the layout of locks in the cache to
ensure that multiple locks, especially hot locks, are not in the same cache line because any
updates to the lock itself results in the cache line being invalidated on other processor cores.
When possible, pad the locks so that they are in their own distinct cache line.

18 Synchronization & Deadlock Notes, found at:
http://www.read.seas.harvard.edu/~kohler/class/05s-osp/notes/notes8.html
38 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.read.seas.harvard.edu/~kohler/class/05s-osp/notes/notes8.html

For more information about this topic, see 2.3, “I/O adapter affinity” on page 55.

Data prefetching using d-cache instructions and the Data Streams
Control Register (DSCR)
The hardware data prefetch mechanism reduces the performance impact that is caused by
the latency in retrieving cache lines from higher-level caches and from memory. The data
prefetch engine of the processor can recognize sequential data access patterns in addition to
certain non-sequential (stride-N) patterns and initiate prefetching of d-cache lines from L2
and L3 cache and memory into the L1 d-cache to improve the performance of these storage
reference patterns.

The Power ISA architecture also provides cache instructions to supply a hint to prefetch
engines for data prefetching to override the automatic stream detection capability of the data
prefetcher. Cache instructions, such as dcbt and dcbtst, allow applications to specify stream
direction, prefetch depth, and number of units. These instructions can avoid the starting cost
of the automatic stream detection mechanism.

The d-cache instructions dcbt (d-cache block touch) and dcbtst (d-cache block touch for
store) affect the behavior of the prefetched lines. The syntax for the assembly language
instructions is:19

dcbt RA, RB, TH
dcbtst RA, RB, TH

� RA specifies a source general-purpose register for Effective Address (EA) computation.

� RB specifies a source general-purpose register for EA computation.

� TH indicates when a sequence of d-cache blocks might be needed.

The block that contains the byte addressed by the EA is fetched into the d-cache before the
block is needed by the program. The program can later perform loads and stores from the
block and might not experience the added delay that is caused by fetching the block into the
cache.

The Touch Hint (TH) field is used to provide a hint that the program probably loads or stores
to the storage locations specified by the EA and the TH field. The hint is ignored for locations
that are caching-inhibited or guarded. The encodings of the TH field depend on the target
architecture that is selected with the -m flag or the machine assembly language pseudo-op.

The dcbt and dcbtst instructions provide hints about a sequence of accesses to data
elements, or indicate the expected use. Such a sequence is called a data stream. The range
of values for the TH field describing data streams is 0b01000 - 0b01111. A dcbt or dcbtst
instruction in which TH is set to one of these values is said to be a data stream variant of dcbt
or dcbtst.

A data stream to which a program can perform Load accesses is said to be a load data
stream, and is described by using the data stream variants of the dcbt instruction.

A data stream to which a program can perform Store accesses is said to be a store data
stream, and is described by using the data stream variants of the dcbtst instruction.

19 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/
Chapter 2. The IBM POWER8 processor 39

https://www.power.org/documentation/power-isa-v-2-07b/

The dcbt and dcbtst instructions can also be used to provide hints about the transient nature
of accesses to data elements. If TH=0b10000, the dcbt instruction provides a hint that the
program will probably soon load from the block that contains the byte addressed by EA, and
that the program’s need for the block will be transient (this means the time interval during
which the program accesses the block is likely to be short). If TH=0b10001, the dcbt
instruction provides a hint that the program will probably not access the block that contains
the byte addressed by EA for a relatively long period.

The contents of the DSCR, a special purpose register, affects how the data prefetcher
responds to hardware-detected and software-defined data streams.

The layout of the DSCR register is shown in Table 2-4.

Table 2-4 DSCR register layout (field names are defined following the table)

Where:

� 39 Software Transient Enable (SWTE)

New field added in the POWER8 processor. Applies the transient attribute to
software-defined streams.

� 40 Hardware Transient Enable (HWTE)

New field added in the POWER8 processor. Applies the transient attribute to
hardware-detected streams.

� 41 Store Transient Enable (STE)

New field added in the POWER8 processor. Applies the transient attribute to store
streams.

� 42 Load Transient Enable (LTE)

New field added in the POWER8 processor. Applies the transient attribute to load streams.

� 43 Software Unit count Enable (SWUE)

New field added in the POWER8 processor. Applies the unit count to software-defined
streams.

� 44 Hardware Unit count Enable (HWUE)

New field added in the POWER8 processor. Applies the unit count to hardware-detected
streams.

� 45:54 Unit Count (UNITCNT)

New field added in the POWER8 processor. Number of units in data stream. Streams that
exceed this count are terminated.

� 55:57 Depth Attainment Urgency (URG)

New field added in the POWER7+ processor. This field indicates how quickly the prefetch
depth can be reached for hardware-detected streams.

� Bits 58 Load Stream Disable (LDS)

New field added in the POWER7+ processor. Disables hardware detection and initiation of
load streams.

SWTE HWTE STE LTE SWUE HWUE UNT
CNT

URG LSD SNSE SSE DPFD

0:38 39 40 41 42 43 44 45:54 55 57 58 59 60 61:63
40 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

� Bits 59 Stride-N Stream Enable (SNSE)

Enables hardware detection and initiation of load and store streams that have a stride
greater than a single cache block. Such load streams are detected when LSD = 0, and
such store streams are detected when SSE=1.

� Bits 60 Store Stream Enable (SSE)

Enables hardware detection and initiation of store streams.

� Bits 61:63 Default Prefetch Depth (DPFD)

Supplies a prefetch depth for hardware-detected streams and for software-defined
streams for which a depth of zero is specified, or for which dcbt or dcbtst with TH=1010 is
not used in their description.

� Bits 55:57 Depth Attainment Urgency (URG)

This field is a new one added in the POWER7+ processor. This field indicates how quickly
the prefetch depth can be reached for hardware-detected streams. Values and their
meanings are as follows:

– 0: Default
– 1: Not urgent
– 2: Least urgent
– 3: Less urgent
– 4: Medium
– 5: Urgent
– 6: More urgent
– 7: Most urgent

The ability to enable or disable the three types of streams that the hardware can detect (load
streams, store streams, or stride-N streams), or to set the default prefetch depth, allows
empirical testing of any application. There are no simple rules for determining which settings
are optimum overall for an application: The performance of prefetching depends on many
different characteristics of the application in addition to the characteristics of the specific
system and its configuration. Data prefetches are purely speculative, meaning they can
improve performance greatly when the data that is prefetched is, in fact, referenced by the
application later, but can also degrade performance by expending bandwidth on cache lines
that are not later referenced, or by displacing cache lines that are later referenced by the
program.

Similarly, setting DPFD to a deeper depth tends to improve performance for data streams that
are predominately sourced from memory because the longer the latency to overcome, the
deeper the prefetching must be to maximize performance. But deeper prefetching also
increases the possibility of stream overshoot, that is, prefetching lines beyond the end of the
stream that are not later referenced. Prefetching in multi-core processor implementations has
implications for other threads or processes that are sharing cache (in SMT mode) or the same
system bandwidth.

For information about modifying the DSCR value by using the XL compiler family, see 7.3.4,
“Data Streams Control Register controls” on page 154.

Instruction cache instructions
The icbt instruction provides a hint that the program will probably soon run code from a
storage location and that the cache line containing that code will be loaded into the Level 2
cache. For example, see the instruction the follows:

icbt CT, RA, RB
Chapter 2. The IBM POWER8 processor 41

Where:

� RA specifies a source general-purpose register for EA computation.
� RB specifies a source general-purpose register for EA computation.
� CT indicates the level of cache the block is to be loaded into. The only supported value for

the POWER8 processor is 2.

Information about the efficient use of cache, from the OS perspective, is available in the
following sections:

� 4.2.3, “Efficient use of cache” on page 86 (AIX)
� 6.2.3, “Efficient use of cache” on page 123 (Linux)
� 7.3.4, “Data Streams Control Register controls” on page 154 (compilers)

2.2.4 Transactional memory

Transactional memory is a shared-memory synchronization construct that allows
process-threads to perform sequences of storage operations that appear to be atomic to
other process-threads and applications. This allows for optimistic execution as a means to
take advantage of the inherent parallelism that is found in the latest generation of Power
Systems.

One of the main uses of TM is the speed-up of lock-based programs by using the speculative
execution of lock-based critical sections (CSs), without first acquiring a lock. This allows
applications that have not been carefully tuned for performance to take advantage of the
benefits of fine-grain locking. The transactional programming model also provides productivity
gains when developing lock-based shared memory programs.

Applications can also use TM to checkpoint and restore architectural state, independent of
the atomic storage access guarantees that are provided by TM.

Using transactional memory
To use the TM facility in the most basic form, the process-thread marks the beginning and end
of the sequence of storage accesses (namely, the transaction) by using the instructions
tbegin. and tend., respectively. The tbegin. instruction initiates transactional execution,
during which the loads and stores appear to occur atomically. The tend. instruction
terminates transactional execution.

A transaction may either succeed or fail. If a transaction succeeds, it is said to commit, and
the transaction appears to have run as a single atomic unit when viewed by other processors
and mechanisms. If a transaction fails, it is as though none of the instructions that were part
of the transaction were ever run. The storage updates that were made since the tbegin.
instruction was run are rolled back, and control is transferred to a software failure handler.

It is possible to nest transactions within one another, although the support is using a form of
nesting called flattened nesting. New transactions that are begun during transactional
execution are subsumed by the pre-existing transaction. The effects of a successful nested
transaction do not become visible until the outermost (the first transaction that was started in
the absence of any previous transactional execution) transaction commits. When a nested
transaction fails, the entire set of transactions is rolled back, and control is transferred to the
failure handler of the outermost transaction.
42 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

A transaction may be put into suspended state by the application by using the tsuspend.
instruction. This allows a sequence of instructions within the transaction to have the same
effect as though the sequence were run in the absence of a transaction. For example, such
instructions are not run speculatively, and any storage updates are committed, regardless of
transaction success or failure. The tresume. instruction is used to resume the transaction and
to continue speculative execution of instructions.

Checkpoint state
When a transaction is initiated, and when it is restored following transaction failure, a set of
registers is saved or restored, representing the checkpoint state of the processor (for
example, the pre-transactional state). The checkpoint state includes all of the problem state,
writable registers, with the exception of CR0, FXCC, EBBHR, EBBRR, BESCR, the
performance monitor registers, and the TM special purpose registers (SPRs).

The checkpoint state is not directly accessible in either the supervisor or problem state.
Instead, the checkpoint state is copied into the respective registers when the treclaim.
instruction is run. This allows privileged code to save or modify values. The checkpoint state
is copied back into the speculative registers (from the respective user-accessible registers)
when the new trechkpt. instruction is run.

Transaction failure
A transaction might fail for various reasons, which can be either externally induced or
self-induced. External causes include conflicts with the storage accesses of another process
thread (for example, they both access the same storage area and one of the accesses is a
store). There are many self-induced causes for a transaction to fail, for example:

� Explicitly aborted by using a set of conditional and unconditional abort instructions (for
example, various forms of the tabort. instruction)

� Too many nested transactions

� Too many storage accesses performed in the transactional state, causing a state overflow

� Execution of certain instructions that are disallowed in transactional state (for example,
slbie, dcbi, and so on)

When a transaction fails, a software failure handler may be started. This is accomplished by
redirecting control to the instruction following the tbegin. instruction of the outermost
transaction and setting CR0 to 0b1010. Therefore, when writing a TM program, the tbegin.
instruction must always be followed with a conditional branch (for example, beq), predicated
on bit 2 of CR0. The target of the branch should be the software failure handler that is
responsible for handling the transaction failure. For comparison, when tbegin. is successfully
ran at the start of the transaction, CR0 is set to either 0b0000 or 0b0100.

A transaction failure may be of a transient or a persistent type. Transient failures are typically
considered temporary failures, and persistent failures indicate that it is unlikely that the
transaction will succeed if restarted. The failure handler can retry the transaction or employ a
different locking construct or logic path, depending on the nature of the failure. When handling
transient type failures, applications might find it useful to keep a count of transient failures and
to treat the failure as a persistent type failure on reaching a threshold. If the failure is of
persistent type, the expectation is that the applications fall back to non-transactional logic.

When transaction failure occurs while in a suspended state, failure handling occurs after the
transaction is resumed by using the tresume. instruction.
Chapter 2. The IBM POWER8 processor 43

The software failure handler may identify the cause of the transaction failure by examining bits
0:31 of the Transaction EXception And Summary Register (TEXASR), a special purpose
register that is associated with the TM architecture. In particular, bits 0:6 indicate the failure
code, and bit 7 indicates whether the failure is persistent and whether the transaction will
likely fail if attempted again. These bits are copied from the treclaim. instruction (privileged
code) or the tabort. instruction (problem state code) that are used by software to induce a
transaction failure.

The Power Architecture Platform reserves a range of failure codes for use by client operating
systems and a separate range for use by a hypervisor, leaving a range of codes free for use
by software applications:

� 0x00 – 0x3F is reserved for use by the OS.
� 0x40 – 0xDF is free for use by problem state (application) code.
� 0xE0 – 0xFF is reserved for use by a hypervisor.

Problem state code is limited to using transaction failure codes to the range specified above
to provide a failure reason when issuing a tabort. instruction.

Sample transaction
Example 2-1 is a sample of assembly language code, showing a simple transaction that
writes the value in GPR 5 into the address in GPR 4, which is assumed to be shared among
multiple threads of execution. If the transaction fails because of a persistent cause, the code
falls back to an alternative code path at the label lock_based_update (the code for the
alternative path is not shown) (based on sample code available from Power.org20).

Example 2-1 A transaction that writes to an address that is shared among multiple execution threads

trans_entry:
tbegin. # Start transaction
beq- failure_hdlr # Handle transaction failure

Transaction Body
stw r5, 0(r4) # Write to memory pointed to by r4.
tend. # End transaction
b trans_exit

Failure Handler
failure_hdlr: # Handle transaction failures:
mfspr r4, TEXASRU # Read high-order half of TEXASR
andis. r5, r4, 0x0100 # Is the failure persistent?
bne lock_based_update # If persistent, acquire lock and

then perform the write.
b trans_entry # If transient, try again.

Alternate path for obtaining a lock and performing memory updates
(non-transactional code path):

lock_based_update:

trans_exit:

20 Power ISA Transactional Memory, found at:
https://www.power.org/documentation/power-isa-transactional-memory/ (registration required).
44 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/power-isa-transactional-memory/

Synchronization mechanisms
In multi-thread programs, synchronization mechanisms are used to ensure that threads have
exclusive access to critical sections. Usually, compare-and-swap (CAS - x86_64) or
load-link/store-conditional (LLSC - PowerPC) instructions are used to create locks, a
synchronization mechanism. The semantics of locks is this: A running program acquires the
lock, runs its CSs in a serialized way (only one thread of execution at a time), and releases
the lock.

The serialization of threads because of CSs is a bottleneck to achieving high performance in
multi-thread programs. There are some techniques for mitigating or removing such
performance issues, for example, non-blocking algorithms, lock-free data, and fine-grained
locking.

Lock Elision (LE) is another optimization technique that uses Hardware Transaction Memory
(HTM) primitives to avoid lock acquiring. It relies on the behavior of some algorithms that do
not have mutually exclusive executions of CS. For example, a hash table insertion where
updates can be done in parallel, and locks are only needed when the same bucket is
accessed at same time.

The LE uses an HTM to first try a transaction on a shared data resource. If it is successful, no
locks are required. If the transaction cannot succeed, such as during concurrent access, it
falls back to default locking mechanism.

For more information about the topic of transactional memory, from the OS and compiler
perspectives, see:

� 4.2.4, “Transactional memory” on page 89 (AIX)
� 6.2.4, “Transactional memory” on page 124 (Linux)
� 7.3.5, “Transactional memory” on page 156 (XL and GCC compiler families)
� 8.4.2, “Transactional memory” on page 182 (Java)

2.2.5 Vector Scalar eXtension

Vector Scalar eXtension (VSX) in the Power ISA introduced more support for Vector and
Scalar Binary flops conforming to the Institute of Electrical and Electronics Engineers-
(IEEE-)754 Standard for Floating Point Arithmetic. The introduction of VSX into the Power
Architecture increases the parallelism by providing SIMD execution functions for floating point
double-precision to improve the performance of HPC applications.

The following VSX features are provided to increase opportunities for vectorization:

� A Unified Register File and a set of Vector-Scalar Registers (VSRs), supporting both
scalar and vector operations, is provided, eliminating the impact of vector-scalar data
transfer through storage.

� Support for word-aligned storage accesses for both scalar and vector operations is
provided.

� Robust support for IEEE-754 for both vector and scalar flops is provided.

� Support for symmetric AES instructions that include polynomial multiply to support the
Galios Counter Mode (GCM).
Chapter 2. The IBM POWER8 processor 45

A 64-entry Unified Register File is shared across VSX, the Binary floating point unit (BFP),
VMX, and the DFP unit. The thirty-two 64-bit Floating Point Registers (FPRs), which are used
by the BFP and DFP units, are mapped to registers 0 - 31 of the Vector Scalar Registers. The
32 vector registers (VRs) that are used by the VMX are mapped to registers 32 - 63 of the
VSRs, as shown in Table 2-5.

Table 2-5 The Unified Register File

VSX supports Double Precision Scalar and Vector Operations and Single Precision Vector
Operations. VSX instructions are broadly divided into two categories that can operate on 64
vector scalar registers:21, 22, 23, 24

� Computational instructions: Addition, subtraction, multiplication, division, extracting the
square root, rounding, conversion, comparison, and combinations of these operations

� Non-computational instructions: Loads/stores, moves, select values, and so on

In terms of compiler support for vectors, XLC supports vector processing technologies
through language extensions on both AIX and Linux. GCC supports using the VSX engine on
Linux. XL and GCC C implement and extend the AltiVec Programming Interface specification.

For more information about the topic of VSX, from the OS and compiler perspectives, see:

� 4.2.5, “Vector Scalar eXtension” on page 91 (AIX)
� 5.2.3, “Vector Scalar eXtension” on page 113 (IBM i)
� 6.2.5, “Vector Scalar eXtension” on page 125 (Linux)
� 7.3.2, “Compiler support for Vector Scalar eXtension” on page 151 (XL and GCC compiler

families)

FPR0 VSR0

FPR1 VSR1

....

FPR30

FPR31

VR0

VR1

..

..

VR30 VSR62

VR31 VSR63

21 Support for POWER7 processors, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ib
m.xlc111.aix.doc/getstart/architecture.html

22 Vector built-in functions, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ib
m.xlc111.aix.doc/compiler_ref/vec_intrin_cpp.html

23 Initialization of vectors (IBM extension), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ib
m.xlc111.aix.doc/language_ref/vector_init.html

24 Engineering and Scientific Subroutine Library (ESSL), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/clresctr/vxrx/index.jsp?topic=/com.ibm.cl
uster.essl.doc/esslbooks.html
46 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ibm.xlc111.aix.doc/getstart/architecture.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ibm.xlc111.aix.doc/compiler_ref/vec_intrin_cpp.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ibm.xlc111.aix.doc/language_ref/vector_init.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.essl.doc/esslbooks.html

2.2.6 Decimal floating point

Decimal (base 10) data is widely used in commercial and financial applications. However,
most computer systems have only binary (base two) arithmetic. There are two binary number
systems in computers: integer (fixed-point) and floating point. Unfortunately, decimal
calculations cannot be directly implemented with binary floating point. For example, the value
0.1 needs an infinitely recurring binary fraction, and a decimal number system can represent
it exactly, as 1/10th. So, using binary floating point cannot ensure that results are the same as
those results that use decimal arithmetic.

In general, DFP operations are emulated with binary fixed-point integers. Decimal numbers
are traditionally held in a binary-coded decimal (BCD) format. Although BCD provides
sufficient accuracy for decimal calculation, it imposes a heavy cost in performance because it
is implemented in software.

POWER6, POWER7, and POWER8 processors provide hardware support for DFP
arithmetic. The POWER6, POWER7, and POWER8 microprocessor cores include a DFP unit
that provides acceleration for the DFP arithmetic. The IBM Power Systems instruction set is
expanded: 54 new instructions were added to support the DFP unit architecture. DFP can
provide a performance boost for applications that are using BCD calculations.25

For more information about this topic, from the OS perspective, see:

� 4.2.6, “Decimal floating point” on page 92 (AIX)
� 5.2.4, “Decimal floating point” on page 113 (IBM i)
� 6.2.6, “Decimal floating point” on page 126 (Linux)

2.2.7 In-core cryptography and integrity enhancements

POWER8 in-core enhancements are targeting applications by the use of symmetric
cryptography (Advanced Encryption Standard (AES)) and security (Secure Hash Algorithms
(SHA-2)) and cyclic redundancy check (CRC) algorithms. In cryptography, the information is
scrambled so that only an authorized receiver can read the message. Asymmetric-key
algorithms require two separate keys, one private and one public, and symmetric-key
algorithms use the same key for encryption and decryption (for example, AES). Many
applications not only require information protection (for confidentiality) but they also need to
ensure that data is not changed when sent to the receiver (for integrity). This is realized by
cryptographic hash functions, which take an arbitrary block of data (often called a message)
and return a fixed-size bit string (called a message digest or digest). Well-established
algorithms are SHA and CRC.

AES
AES was established for the encryption of electronic data by the US National Institute of
Standards and Technology (NIST) in 2001 (FIPS PUB 197). AES is a symmetric-key
algorithm that processes data blocks of 128 bits (a block cipher algorithm), and, therefore,
naturally fits into the 128-bit VSX data flow. The AES algorithm is covered in five new
instructions, available in Power ISA Version 2.07.26

25 How to Leverage Decimal Floating-Point unit on POWER6 for Linux, found at:
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Welcome%20to%20High%20Perform
ance%20Computing%20%28HPC%29%20Central/page/How%20to%20Leverage%20Decimal%20Floating-Point%20unit%20
on%20POWER6%20for%20Linux

26 Power ISA Version 2.07, found athttps://www.power.org/documentation/power-isa-v-2-07b/
Chapter 2. The IBM POWER8 processor 47

https://www.power.org/documentation/power-isa-v-2-07b/
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Welcome%20to%20High%20Performance%20Computing%20%28HPC%29%20Central/page/How%20to%20Leverage%20Decimal%20Floating-Point%20unit%20on%20POWER6%20for%20Linux

AES special mode of operation: Galois Counter Mode
The AES Galois Counter Mode (GCM) mode of operation is designed to provide both
confidentiality and integrity (for authentication). GCM is defined for block ciphers (block sizes
of 128, 192, and 256 bits). The key feature is that Galois Field multiplication (used for
authentication) can be computed in parallel, resulting in higher throughput than the
authentication algorithms that use chaining modes.

SHA-2
SHA-2 was designed by the US National Security Agency (NSA) and published in 2001 by the
NIST (FIPS PUB 180-2). It is a set of four hash functions (SHA-224, SHA-256, SHA-384, and
SHA-512) with message digests that are 224, 256, 384, and 512 bits. The SHA-2 functions
compute the digest based on 32-bit words (SHA-224 and SHA-256) or 64-bit words (SHA-384
and SHA-512). Different combinations of rotate and xor vector instructions have been
identified to be merged into a new instruction to accelerate the SHA-2 family. The new
instruction comes in two flavors:

� In word (32-bit), targeting SHA-224 and SHA-256
� In doubleword (64 bit), accelerating SHA-384 and SHA-512 (Power ISA v2.07)

CRC
CRC can be seen as an error-detecting code. It is used in storage devices and digital
networks to protect data from accidental (or hacker-intended) changes to raw data. Data to be
stored or information that is sent over the network (in a stream) gets a short checksum
attached (based on the remainder of the polynomial division and modulo operations). CRC is
a reversible function, which makes it unsuitable for use in digital signatures, but it is in use for
error detection when data is transferred, for example, in an Ethernet network protocol.

CRC algorithms are defined by the different generator polynomial used. For example, an n-bit
CRC is defined by an n-bit polynomial. Examples for applications using CRC-32 are Ethernet
(Open Systems Interconnection (OSI) physical layer), Serial Advanced Technology
Attachment (Serial ATA), Moving Picture Experts Group (MPEG-2), GNU Project file
compression software (Gzip), and Portable Network Graphics (PNG, fixed 32-bit polynomial).
In contrast, Internet Small Computer System Interface (iSCSI) and the Stream Control
Transmission Protocol (SCTP transport layer protocol) are based on a different, 32-bit
polynomial.27 The POWER8 enhancements focus on a specific application that supports only
one single generator polynomial, and they help to accelerate any kind of CRC size, ranging
from 8-bit CRC, 16-bit CRC, and 32-bit CRC, to 64-bit CRC.

For more information about the topic of in-core cryptography, from the OS and compiler
perspectives, see:

� 4.2.7, “On-chip encryption accelerator” on page 94 (AIX)
� 7.3.1, “In-core cryptography” on page 148 (XL and GCC compiler families)

2.2.8 On-chip accelerators

On-chip accelerators, initially available in the POWER7 processor, provide the following
benefits:

� On-chip encryption: AIX transparently uses on-chip encryption accelerators. There are no
application visible changes or awareness required.

� On-chip compression.

27 Optimization of cyclic redundancy-check codes with 24 and 32 parity bits, found at
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=231911&url=http%3A%2F%2Fieeexplore.ieee.org%2F
iel1%2F26%2F5993%2F00231911
48 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=231911&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel1%2F26%2F5993%2F00231911

� On-chip random number generator: AIX capitalizes on the on-chip random number
generator, providing the advantages of stronger hardware-based random numbers. In
some instances, there can also be a performance advantage.

For more information about this topic, from the AIX perspective, see:

� 4.2.7, “On-chip encryption accelerator” on page 94 (AIX)
� “AIX /dev/random (random number generation)” on page 94 (AIX)

2.2.9 Storage synchronization (sync, lwsync, lwarx, stwcx., and eieio)

The Power Architecture storage model provides for out-of-order storage accesses, providing
opportunities for performance enhancement when accesses do not need to be in order.
However, when accessing storage that is shared by multiple processor cores or shared with
I/O devices, it is important that accesses occur in the correct order that is required for the
sharing mechanisms that are used.

The architecture provides mechanisms for synchronization of such storage accesses and
defines an architectural model that ought to be adhered to by software. Several
synchronization instructions are provided by the architecture, such as sync, lwsync, lwarx,
stwcx., and eieio. There are also operating system-specific locking services provided that
enforce such synchronization. Software must be carefully designed when you use these
mechanisms to ensure optimal performance while providing appropriate data consistency
because of their inherent heavyweight nature.

Concepts and benefits
The Power Architecture defines a storage model that provides weak ordering of storage
accesses. The order in which memory accesses are performed might differ from the program
order and the order in which the instructions that cause the accesses are run.28

The Power Architecture provides a set of instructions that enforce storage access
synchronization, and the AIX kernel provides a set of kernel services that provide locking
mechanisms and associated synchronization support.29 However, such mechanisms come
with an inherent cost because of the nature of synchronization. Thus, it is important to use
intelligently the correct storage mechanisms for the various types of storage access scenarios
to ensure that accesses are performed in program order while minimizing their impact.

Associated instructions
The following instructions provide various storage synchronization mechanisms:

sync This instruction provides an ordering function, so that all instructions issued
before the sync complete and no subsequent instructions are issued until
after the sync completes.30

lwsync This instruction provides an ordering function similar to sync, but it is only
applicable to load, store, and dcbz instructions that are run by the processor
(hardware thread) running the lwsync instruction, and only for specific
combinations of storage control attributes.31

28 PowerPC storage model and AIX programming: What AIX programmers need to know about how their software
accesses shared storage, found at: http://www.ibm.com/developerworks/systems/articles/powerpc.html

29 Ibid
30 sync (Synchronize) or dcs (Data Cache Synchronize) instruction. found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.a
ixassem%2Fdoc%2Falangref%2Fidalangref_sync_dcs_instrs.htm

31 PowerPC storage model and AIX programming: What AIX programmers need to know about how their software
accesses shared storage, found at: http://www.ibm.com/developerworks/systems/articles/powerpc.html
Chapter 2. The IBM POWER8 processor 49

http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.aixassem%2Fdoc%2Falangref%2Fidalangref_sync_dcs_instrs.htm
http://www.ibm.com/developerworks/systems/articles/powerpc.html

lwarx This instruction reserves a storage location for subsequent store by using a
stwcx. instruction and notifies the memory coherence mechanism of the
reservation.32

stwcx. This instruction performs a store to the target location only if the location
specified by a previous lwarx instruction is not used for storage by another
processor (hardware thread) or mechanism, which invalidates the
reservation.33

eieio This instruction creates a memory barrier that provides an order for storage
accesses caused by load, store, dcbz, eciwx, and ecowx instructions.34

makeitso New in the POWER8 processor, this instruction allows data to push out to the
coherence point as quickly as possible. An attempt to run the makeitso
instruction provides a hint that preceding stores are made visible with higher
priority.

lbarx/stbcx. These instructions were added in the POWER8 processor and are similar to
lwarx/stwcx., except that they load and store a byte.

lharx/sthcx. These instructions were added in the POWER8 processor and are similar to
lwarx/stwcx., except that they load and store a 16-bit halfword.

ldarx/stdcx. These instructions are similar to lwarx/stwcx., except that they load and
store a 64-bit doubleword (requires 64-bit mode).

lqarx/stqcx. These instructions were added in the POWER8 processor and are similar to
lwarx/stwcx., except that they load and store a 128-bit quad word (requires
64-bit mode).

Where to use
Care must be taken when you use synchronization mechanisms in any processor architecture
because the associated load and store instructions have a heavier weight than normal loads
and stores, and the barrier operations have a cost that is associated with them. Thus, it is
imperative that the programmer carefully consider when and where to use such operations,
so that data consistency is ensured without adversely affecting the performance of the
software and the overall system.

PowerPC storage model and AIX programming35 describes where synchronization
mechanisms must be used to ensure that the code adheres to the Power Architecture.
Although this documentation covers how to write compliant code, it does not cover the
performance aspect of using the mechanisms.

Unless the code is hand-tuned assembly language code, take advantage of the locking
services that are provided by the operating system because they are tuned and provide the
necessary synchronization mechanisms. Power Instruction Set Architecture Version 2.0736
provides assembly language programming examples for sharing storage. For more
information, see Appendix B, “Performance tools and empirical performance analysis” on
page 215.
32 lwarx (Load Word and Reserve Indexed) instruction, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.a
ixassem%2Fdoc%2Falangref%2Fidalangref_lwarx_lwri_instrs.htm

33 stwcx (Store Word Conditional Indexed) instruction, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/pseries/v5r3/index.jsp?topic=/com.ibm.aix
.aixassem/doc/alangref/stwcx.htm

34 eieio (Enforce In-Order Execution of I/O) instruction, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/a
langref/idalangref_eieio_instrs.htm

35 PowerPC storage model and AIX programming: What AIX programmers need to know about how their software
accesses shared storage, found at: http://www.ibm.com/developerworks/systems/articles/powerpc.html

36 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/
50 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.aixassem%2Fdoc%2Falangref%2Fidalangref_lwarx_lwri_instrs.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/pseries/v5r3/index.jsp?topic=/com.ibm.aix.aixassem/doc/alangref/stwcx.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/alangref/idalangref_eieio_instrs.htm
http://www.ibm.com/developerworks/systems/articles/powerpc.html
https://www.power.org/documentation/power-isa-v-2-07b/

For more information about this topic, from the perspective of compiler built-ins, see 7.3.3,
“Built-in functions for storage synchronization” on page 154.

2.2.10 Fixed-point load and store quadword instructions

The Power Architecture provides load and store instructions that operate on quadwords
(16 bytes) of storage. The Load Quadword (lq) instruction loads an even-odd pair of
general-purpose registers from the storage that is addressed by the effective address that is
specified by the instruction. The store quadword (stq) instruction stores the contents of an
even-odd pair of general-purpose registers in to the storage that is addressed by the effective
address that is specified by the instruction.

2.2.11 Instruction fusion

POWER8 instruction fusion combines information from two adjacent instructions into one
instruction, such that it runs faster than the non-fused instruction. Two forms of fusion are
supported for loads with immediate fields that are larger than the allotted 16 bits that are
provided by the Power Architecture. This is typically accomplished by running an addis
instruction to compute the address followed by a load from that address. The two forms of
fusion are described in “Table of content fusion” on page 51 and “Vector load fusion” on
page 51.

Capitalizing on instruction fusion
The instruction fusion capabilities of the POWER8 processor are a feature of the processor
and do not require special options for the compilers to use them. However, for best
performance, -qtune=pwr8 (XL family) or -mtune=power8 (GCC) are recommended for the
best use of this feature.

For hand-tuned assembly language code, ensure that the appropriate pattern of code is used
and that the two instructions to be fused are adjacent.

Table of content fusion
Here is an example of table of content fusion:

ADDIS RT, RA, SI

LD RT, RA, DS (eligible instructions are LD, LBZ, LHZ, and LWZ)

Where the RT of the ADDIS is the same as RA of the LD instruction. The POWER8 processor
internally fuses them into a single instruction.

Vector load fusion
Here is an example of vector load fusion:

addi RT,0,SI

lvx VRT, RA, RB (eligible instructions are lxvd2x, lxvw4x, lxvdsx, lvebx, lvehx, lvewx, lvx,
and lxsdx)

Where RT of ADDI is the same as RB of the LVX instruction and RA cannot be zero. The
POWER8 processor internally fuses them into a single instruction.
Chapter 2. The IBM POWER8 processor 51

2.2.12 Event-based branches (or user-level fast interrupts)

The event-based branch facility is a hardware facility that generates event-based exceptions
when certain event criteria are met. For example, this facility allows application programs to
enable hardware to change the EA of the next instruction to be run when certain events occur
to an EA specified by the program.

For more information about this topic, from the OS perspective, see 6.2.7, “Event-based
branches” on page 128 (Linux).

2.2.13 Power management and system performance

The POWER8 processor has power saving and performance enhancing features that can be
used to lower overall energy usage, and yielding higher performance when needed. The
following modes can be enabled and modified to use these features.

Dynamic Power Saver: Favor Performance
This mode is intended to provide the best performance. If the processor is being used even
moderately, the frequency is raised to the maximum frequency possible to provide the best
performance. If the processors are lightly used, the frequency is lowered to the minimum
frequency, which is potentially far below the nominal shipped frequency, to save energy. The
top frequency that is achieved is based on system type and is affected by environmental
conditions. Also, when running at the maximum frequency, more energy is being consumed,
which means this mode can potentially cause an increase in overall energy consumption.

Dynamic Power Saver: Favor Power
This mode is intended to provide the best performance per watt consumed. The processor
frequency is adjusted based on the processor utilization to maintain the workload throughput
without using more energy than required to do so. At high processor utilization levels, the
frequency is raised above nominal, as in the Favor Performance mode. Likewise, at low
processor utilization levels, the frequency is lowered to the minimum frequency. The
frequency ranges are the same for the two Dynamic Power Saver modes, but the algorithm
that determines which frequency to set is different.

Dynamic Power Saver: Tunable Parameters
The Favor Performance and Favor Power modes are tuned to provide both energy savings
and performance increases. However, there might be situations where only top performance
is of concern, or, conversely, where peak power consumption is an issue. The tunable
parameters can be used to modify the setting of the processor frequency in these modes to
meet these various objectives. Modifying these parameters should be done only by advanced
users. If there are issues that must be addressed by the Tunable Parameters, IBM should be
directly involved in the parameter value selection.

Idle Power Saver
This mode is intended to save the maximum amount of energy when the system is nearly idle.
When the processors are found to be nearly idle, the frequency of all processors is lowered to
the minimum. Additionally, workloads are dispatched onto a smaller number of processor
cores so that the other processor cores can be put into a low energy usage state. When
processor utilization increases, the process is reversed: The processor frequency is raised
back up to nominal, and the workloads are spread out once again over all of the processor
cores. There is no performance boosting aspect in this mode, but entering or exiting this
mode might affect overall performance. The delay times and utilization levels for entering and
exiting this mode can be adjusted to allow for more or less aggressive energy savings.
52 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The controls for all modes that are listed above are available on the Advanced System
Management Interface and are described in more detail in a white paper that is found at
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW0
3125USEN. Additionally, the appendix of this white paper includes links to other papers that
detail the performance benefits and impacts of using these controls.

2.2.14 Coherent Accelerator Processor Interface

The Coherent Accelerator Interface Architecture (CAIA) defines a coherent accelerator
interface structure for attaching peripheral devices to Power Systems. This allows
accelerators to work coherently with system memory, removing additional processing from
the main system processor and reducing the overall memory requirements for the
accelerator.

The Coherent Accelerator Processor Interface (CAPI) can attach accelerators that have
coherent shared memory access to the processors in the server and share full virtual address
translation with these processors by using a standard PCIe Gen3 bus.

Applications can access customized functions in Field Programmable Gate Arrays (FPGAs),
allowing them to enqueue work requests directly in shared memory queues to the FPGA, and
using the same effective addresses (pointers) it uses for any of its threads running on a host
processor. From the practical perspective, CAPI allows a specialized hardware accelerator to
be seen as an additional processor in the system, with access to the main system memory,
and coherent communication with other processors in the system.

The benefits of using CAPI include the ability to access shared memory blocks directly from
the accelerator, the ability to perform memory transfers directly between the accelerator and
processor cache, and a reduction in the code path length between the adapter and the
processors. The latter occurs because the adapter is not operating as a traditional I/O device,
and there is no device driver layer to perform processing. It also presents a simpler
programming model.
Chapter 2. The IBM POWER8 processor 53

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03125USEN
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03125USEN

Figure 2-3 shows a high-level view of how an accelerator communicates with the POWER8
processor through CAPI. The POWER8 processor provides a Coherent Attached Processor
Proxy (CAPP), which is responsible for extending the coherence in the processor
communications to an external device. The coherency protocol is tunneled over standard
PCIe Gen3 connections, effectively making the accelerator part of the coherency domain.

Figure 2-3 CAPI accelerator that is attached to the POWER8 processor

The accelerator adapter implements the Power Service Layer (PSL), which provides address
translation and system memory cache for the accelerator functions. The custom processors
on the board, which might consist of an FPGA or an Application Specific Integrated Circuit
(ASIC) use this layer to access shared memory regions and cache areas as though they were
a processor in the system. This ability greatly enhances the performance of the data access
for the device and simplifies the programming effort to use the device. Instead of treating the
hardware accelerator as an I/O device, it is treated as a processor. This eliminates the
requirement of a device driver to perform communication, and the need for Direct Memory
Access that requires system calls to the operating system kernel. By removing these layers,
the data transfer operation requires fewer clock cycles in the processor, greatly improving the
I/O performance.

The implementation of CAPI on the POWER8 processor allows hardware companies to
develop solutions for specific application demands and use the performance of the POWER8
processor for general applications. The developers can also provide custom acceleration of
specific functions by using a hardware accelerator, with a simplified programming model and
efficient communication with the processor and memory resources.
54 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

2.3 I/O adapter affinity

The POWER8 processor benefits from the next generation PCIe Gen3 and shorter hardware
paths to the adapters. The POWER8 chip design includes on-chip PCIe buses, which means
that there are fewer hardware delays and lower latency to PCIe slots. This results in lower
latency for networking and storage protocols, reducing latency by over 1 µs from the previous
I/O hub-based POWER7 systems.

The PCIe Gen3 x16 bus increases the PCIe bus peak bandwidth to 112 Gbps (for a single
x16 bus), which is about four times the bandwidth in previous POWER PCIe Gen2 x8 slots in
POWER7 and POWER7+ processor-based systems. Each processor module or socket
provides two or four PCIe buses depending on the system model. Some buses are x16 and
others are x8. Depending on the system model several buses can connect to PCIe I/O hub
chips on the system board. These PCIe slots are for slower speed adapters so they can share
a single higher speed bus. In addition, for systems that support I/O drawers, the PCIe buses
in the I/O drawer all use a PCIe I/O hub. For applications that are sensitive to latency or those
requiring high bandwidth or high message rates, the adapters that are used by the application
should use, when possible, the PCIe slots in the chip where the application runs.

In all cases, bandwidth should be the same no matter where in a POWER8 processor-based
system an adapter is plugged. However, for latency, there are small increases if the adapter is
in a different socket, different node, or different central electronic complex (CEC) drawer.

As a general rule, high-speed and low-latency adapters should be placed in the direct PCIe
slots on each socket. The PCIe slots behind I/O hubs and in I/O drawers should be used for
lower bandwidth and non-latency sensitive adapters. There are a number of adapters that are
restricted to certain slots. Consult a Power Systems PCI Adapter Placement Guide for a
specific adapter.

2.4 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� AIX dscr_ctl API sample code, found at:

https://www.power.org/documentation/performance-guide-for-hpc-applications-on-i
bm-power-755-system/ (registration required)

� AIX Version 7.1 Release Notes, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.ntl/RELNOTES/GI11-9815-00.htm

Refer to the “The dscrctl command” section.

� Application configuration for large pages, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.prftungd/doc/prftungd/config_apps_large_pages.htm

� False Sharing, found at:

http://msdn.microsoft.com/en-us/magazine/cc872851.aspx

� sync (Synchronize) or dcs (Data Cache Synchronize) instruction, including information
about sync and lwsync (lightweight sync), found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.aixassem/doc/alangref/idalangref_sync_dcs_instrs.htm
Chapter 2. The IBM POWER8 processor 55

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/alangref/idalangref_sync_dcs_instrs.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/alangref/idalangref_sync_dcs_instrs.htm
https://www.power.org/documentation/performance-guide-for-hpc-applications-on-ibm-power-755-system/
https://www.power.org/documentation/performance-guide-for-hpc-applications-on-ibm-power-755-system/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.ntl/RELNOTES/GI11-9815-00.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/config_apps_large_pages.htm
http://msdn.microsoft.com/en-us/magazine/cc872851.aspx

� The Performance of Runtime Data Cache Prefetching in a Dynamic Optimization System,
found at:

http://www.microarch.org/micro36/html/pdf/lu-PerformanceRuntimeData.pdf

� POWER6 Decimal Floating Point (DFP), found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power+Sy
stems/page/POWER6+Decimal+Floating+Point+%28DFP%29

� Power ISA Transactional Memory, found at:
https://www.power.org/documentation/power-isa-transactional-memory/

� Power ISA Version 2.07, found at

https://www.power.org/documentation/power-isa-v-2-07b/

Refer to the following sections:

– Section 3.1: Program Priority Registers
– Section 3.2: “or” Instruction
– Section 4.3.4: Program Priority Register
– Section 4.4.3: OR Instruction
– Section 5.3.4: Program Priority Register
– Section 5.4.2: OR Instruction
– Book I – 4 Floating Point Facility
– Book I – 5 Decimal Floating Point
– Book I – 6 Vector Facility
– Book I – 7 Vector-Scalar Floating Point Operations (VSX)
– Book I – Chapter 5 Decimal Floating-Point.
– Book II – 4.2 Data Stream Control Register
– Book II – 4.3.2 Data Cache Instructions
– Book II – 4.4 Synchronization Instructions
– Book II – A.2 Load and Reserve Mnemonics
– Book II – A.3 Synchronize Mnemonics
– Book II – Appendix B. Programming Examples for Sharing Storage
– Book III – 5.7 Storage Addressing

� PowerPC storage model and AIX programming: What AIX programmers need to know
about how their software accesses shared storage, found at:

http://www.ibm.com/developerworks/systems/articles/powerpc.html

Refer to the following sections:

– Power Instruction Set Architecture
– Section 4.4.3 Memory Barrier Instructions – Synchronize

� Product documentation for XL C/C++ for AIX, V12.1 (PDF format), found at:

http://www.ibm.com/support/docview.wss?uid=swg27024811

� Simple performance lock analysis tool (splat), found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.prftools/doc/prftools/idprftools_splat.htm

� What makes Apple's PowerPC memcpy so fast?, found at:

http://stackoverflow.com/questions/1990343/what-makes-apples-powerpc-memcpy-so-
fast

� What programmers need to know about hardware prefetching?, found at:

http://www.futurechips.org/chip-design-for-all/prefetching.html
56 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftools/doc/prftools/idprftools_splat.htm
https://www.power.org/documentation/power-isa-v-2-07b/
http://www.microarch.org/micro36/html/pdf/lu-PerformanceRuntimeData.pdf
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power+Systems/page/POWER6+Decimal+Floating+Point+%28DFP%29
https://www.power.org/documentation/power-isa-transactional-memory/
http://www.ibm.com/developerworks/systems/articles/powerpc.html
http://www.ibm.com/support/docview.wss?uid=swg27024811
http://stackoverflow.com/questions/1990343/what-makes-apples-powerpc-memcpy-so-fast
http://www.futurechips.org/chip-design-for-all/prefetching.html

Chapter 3. The IBM POWER Hypervisor

This chapter introduces the POWER8 Hypervisor and describes some of the technical details
for this product. It covers the following topics:

� 3.1, “Introduction to PowerVM” on page 58
� 3.2, “Power Systems virtualization with PowerVM” on page 59
� 3.3, “Introduction to KVM Virtualization” on page 67
� 3.4, “Related publications” on page 68

3

© Copyright IBM Corp. 2014, 2015. All rights reserved. 57

3.1 Introduction to PowerVM

Power Virtualization was introduced in POWER5 processor-based systems, so there are
many reference materials that are available that cover all three resources (CPU, memory, and
I/O), virtualization, capacity planning, and virtualization management. Some of these
documents are shown in the reference section at the end of this chapter, which focuses on
POWER8 virtualization. As for any workload deployments, capacity planning, selecting the
correct set of technologies, and appropriate tuning are critical to deploying high performing
workloads. However, in deploying workloads in virtualized environments, there are more
aspects to consider, such as consolidation ratio, workload resource usage patterns, and the
suitability of a workload to run in a shared resource environment (or latency requirements).

The first step in the virtualization deployment process is to understand whether the
performance of a workload in a shared resource environment meets customer requirements.
If the workload requires consistent performance with stringent latency requirements, then
such workloads must be deployed on a dedicated partition rather than on a shared LPAR. The
exceptions are where a shared processor pool is not heavily over committed and
over-utilized; such workloads can meet stringent requirements in a shared LPAR
configuration.

It is a preferred practice to understand the resource usage of all workloads that are planned
for consolidation on a single system, especially when you plan to use a shared resource
model, such as shared LPARs, IBM Active Memory™ Sharing, and VIOS technologies. The
next step is to use a capacity planning tool that takes virtualization impacts into consideration,
such as the IBM Workload Estimator, to estimate capacity for each partition. One of the goals
of virtualization is maximizing usage. This improved usage can be achieved by consolidating
workloads that peak at different times. This is done in a non-overlapping manner, so each
workload (or partition) does not have to be sized for peak usage but rather for average usage.
At the same time, each workload can grow to consume free resources from the shared pool
that belong to other partitions on the system. This situation allows the packing of more
partitions (workloads) on a single system, producing a higher consolidation ratio or higher
density on the deployed system. A higher consolidation ratio is a key metric to achieve in the
data center, as it helps to reduce the total cost of ownership (TCO).

Let us look at a list of key attributes that require consideration when deploying workloads on a
shared resource model (virtualization):

� Levels of variation between average and peak usage of workloads:

– A large difference between average and peak usage

– A small difference between average and peak usage

� Workloads and their peak duration, frequency, and estimate when they potentially peak.
Select workloads that peak at different times (non-overlapping).

� Workload Service Level Agreement SLA requirements (latency requirements and their
tolerance levels).

� Ratio of active to inactive (mostly idle) partitions on a system.

� Provisioning and de-provisioning frequency.

� IBM PowerVM has a richer set of technology options than virtualization on other platforms.
It supports dedicated, shared, and a mix of dedicated and shared resource models for
each of the system resources, such as processor cores, memory, and I/O:

– Shared LPAR: Capped versus uncapped.

– Shared LPAR: Resources over-commit levels to meet the peak usage (the ratio of
virtual processors to physical processor entitled capacity).
58 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

– Shared LPAR: Weight selection to assign a level of priority to get uncapped capacity
(excess cycles to address the peak usage).

– Shared LPAR: Multiple shared pools to address software licensing costs, which
prevents a set of partitions from exceeding its capacity consumption.

– Active Memory Sharing: The size of a shared pool is based on active workload
memory consumption:

• Inactive workload memory is used for active workloads, which reduces the memory
capacity of the pool.

• The Active Memory Deduplication option can reduce memory capacity further.

• AIX file system cache memory is loaned to address memory demands that lead to
memory savings.

• Workload load variation changes active memory consumption, which leads to
opportunity for sharing.

– Active Memory Sharing: A shared pool size determines the levels of memory
over-commit. Starts without over-commit and is based on workload consumption that
reduces the pool.

– Active Memory Expansion: AIX working set memory is compressed.

– Active Memory Sharing and Active Memory Expansion can be deployed on the
same workload.

– Active Memory Sharing: VIOS sizing is critical for CPU and memory.

– Virtual Ethernet: An inter-partition communication VLANs option that is used for higher
network performance.

– Shared Ethernet versus host Ethernet.

– Virtual disk I/O: Virtual small computer system interface (vSCSI), N_Port ID
Virtualization (NPIV), file-backed storage, and storage pool.

– Dynamic resource movement (DLPAR) to adopt to growth.

3.2 Power Systems virtualization with PowerVM

PowerVM hypervisor and the AIX operating system (AIX V6.1 TL 7, and AIX V7.1 TL 1 and
later versions) on POWER8 processor-based systems implement enhanced affinity in a
number of areas to achieve optimized performance for workloads that are running in a
virtualized shared processor logical partition (SPLPAR) environment. By using the preferred
practices that are described in this guide, customers can attain optimum application
performance in a shared resource environment. This guide covers preferred practices in the
context of POWER8 processor-based systems, so this section can be used as an addendum
to other PowerVM preferred practice documents.

3.2.1 Virtual processors

A virtual processor is a unit of a virtual processor resource that is allocated to a partition or
virtual machine. PowerVM hypervisor can map a whole physical processor core, or it can
create a time slice of a physical processor core.

The PowerVM hypervisor creates time slices of Micro-Partitioning on physical CPUs by
dispatching and undispatching the various virtual processors for the partitions that are
running in the shared pool.
Chapter 3. The IBM POWER Hypervisor 59

If a partition has multiple virtual processors, they might be scheduled to run simultaneously
on the physical processor cores.

Partition entitlement is the guaranteed resource that is available to a partition. A partition that
is defined as capped can consume only the processors units that are explicitly assigned as its
entitled capacity. An uncapped partition can consume more than its entitlement, but is limited
by many factors:

� Uncapped partitions can exceed their entitlement if there is unused capacity in the shared
pool, dedicated partitions that share their physical processor cores while active or inactive,
unassigned physical processors, and Capacity on Demand (CoD) utility processors.

� If the partition is assigned to a virtual shared processor pool, the capacity for all of the
partitions in the virtual shared processor pool might be limited.

� The number of virtual processors in an uncapped partition is throttled depending on how
much CPU it can consume. For example:

– An uncapped partition with one virtual CPU can consume only one physical processor
core of CPU resources under any circumstances.

– An uncapped partition with four virtual CPUs can consume only four physical processor
cores of CPU.

� Virtual processors can be added or removed from a partition by using HMC actions.

Sizing and configuring virtual processors
The number of virtual processors in each LPAR in the system ought not to exceed the number
of cores available in the system (central electronic complex (CEC)/framework). Or, if the
partition is defined to run in a specific virtual shared processor pool, the number of virtual
processors ought not to exceed the maximum that is defined for the specific virtual shared
processor pool. Having more virtual processors that are configured than can be running at a
single point in time does not provide any additional performance benefit and can cause more
context switches of the virtual processors, which reduces performance.

If there are sustained periods during which there is sufficient demand for all the shared
processing resources in the system or a virtual shared processor pool, it is prudent to
configure the number of virtual processors to match the capacity of the system or virtual
shared processor pool.

A single virtual processor can consume a whole physical core under two conditions:

1. SPLPAR has an entitlement of 1.0 or more processors.
2. The partition is uncapped and there is idle capacity in the system.

Therefore, there is no need to configure more than one virtual processor to get one physical
core.

For example, a shared pool is configured with 16 physical cores. Four SPLPARs are
configured, each with entitlement 4.0 cores. To configure virtual processors, consider the
sustained peak demand capacity of the workload. If two of the four SPLPARs were to peak to
use 16 cores (the maximum available in the pool), then those two SPLPARs need 16 virtual
CPUs. If the other two SPLPARs peak only up to eight cores, those two SPLPARs are
configured with eight virtual CPUs.

Entitlement versus virtual processors
Entitlement is the capacity that an SPLPAR is ensured to get its share from the shared pool.
Uncapped mode allows a partition to receive excess cycles when there are free (unused)
cycles in the system.
60 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Entitlement also determines the number of SPLPARs that can be configured for a shared
processor pool. The sum of the entitlement of all the SPLPARs cannot exceed the number of
physical cores that are configured in a shared pool.

For example, a shared pool has eight cores and 16 SPLPARs are created, each with 0.1 core
entitlement and one virtual CPU. In our example, we configured the partitions with 0.1 core
entitlement because these partitions are not running that frequently. In this example, the sum
of the entitlement of all the 16 SPLPARs comes to 1.6 cores. The rest of the 6.4 cores and
any unused cycles from the 1.6 entitlement can be dispatched as uncapped cycles.

At the same time, keeping entitlement low when there is capacity in the shared pool is not
always a preferred practice. Unless the partitions are frequently idle, or there is a plan to add
more partitions, the preferred practice is that the sum of the entitlement of all the SPLPARs
configured is close to the capacity in the shared pool. Entitlement cycles are guaranteed, so
when a partition is using its entitlement cycles, the partition is not preempted; however, a
partition can be preempted when it is dispatched to use excess cycles. Following this
preferred practice allows the hypervisor to optimize the affinity of the partition’s memory and
processor cores and also reduces unnecessary preemptions of the virtual processors.

Entitlement also affects the choice of memory and processors that are assigned by the
hypervisor for the partition. The hypervisor uses the entitlement value as a guide to the
amount of CPU that a partition consumes. If the entitlement is undersized, performance can
be adversely affected, for example, if there are four cores per processor chip and two
partitions are consistently consuming about 3.5 processors of CPU capacity. If the partitions
are undersized with four virtual processors and 2.0 entitlement (that is, entitlement is set
below normal usage levels), the hypervisor may allocate both of the partitions on the same
processor chip, as the entitlement of 2.0 allows two partitions to fit into a 4-core processor
chip. If both partitions consistently consume 3.5 processors worth of capacity, the hypervisor
is forced to dispatch some of the virtual processors on chips that do not contain memory that
is associated with the partitions. If the partitions were configured with an entitled capacity of
3.5 instead of 2.0, the hypervisor places each partition on its own processor chip to ensure
that there is sufficient processor capacity for each partition. This improves the locality,
resulting in better performance.

Matching the entitlement of an LPAR close to its average usage for
better performance
The aggregate entitlement (minimum or wanted processor) capacity of all LPARs in a system
is a factor in the number of LPARs that can be allocated. The minimum entitlement is what is
needed to boot the LPARs; however, the wanted entitlement is what an LPAR gets if there are
enough resources available in the system. The preferred practice for LPAR entitlement is to
match the entitlement capacity to average usage and let the peak be addressed by more
uncapped capacity.

When to add more virtual processors
When there is sustained need for a shared LPAR to use more resources in the system in
uncapped mode, increase the virtual processors.

How to estimate the number of virtual processors per uncapped shared
LPAR
The first step is to monitor the usage of each partition and for any partition where the average
utilization is about 100%, and then add one virtual processor, that is, use the capacity of the
configured virtual processors before you add more. Additional virtual processors run
concurrently if there are enough free processor cores available in the shared pool.
Chapter 3. The IBM POWER Hypervisor 61

If the peak usage is below the 50% mark, then there is no need for more virtual processors. In
this case, look at the ratio of virtual processors to configured entitlement and if the ratio is
greater than 1, then consider reducing the ratio. If there are too many virtual processors that
are configured, AIX can fold those virtual processors so that the workload can run on fewer
virtual processors to optimize virtual processor performance.

For example, if an SPLPAR is given a CPU entitlement of 2.0 cores and four virtual
processors in an uncapped mode, then the hypervisor can dispatch the virtual processors to
four physical cores concurrently if there are free cores available in the system. The SPLPAR
uses unused cores and the applications can scale up to four cores. However, if the system
does not have free cores, then the hypervisor dispatches four virtual processors on two cores
so that the concurrency is limited to two cores. In this situation, each virtual processor is
dispatched for a reduced time slice as two cores are shared across four virtual processors.
This situation can impact performance, so AIX operating system processor folding support
might be able to reduce to number of virtual processors that are dispatched so that only two
or three virtual processors are dispatched across the two physical cores.

Virtual processor management: Processor folding
The AIX operating system monitors the usage of each virtual processor and the aggregate
usage of a shared processor partition to manage the use of virtual processors that are
actively engaged by a partition. This management task is carried out by using a threshold
value that is used to increase, decrease, or hold steady the number of engaged virtual
processors for the partition. The threshold is observable as the vpm_fold_threshold output
by the schedo command.

When the aggregate usage goes below the threshold, AIX starts folding down the virtual
CPUs so that fewer virtual CPUs are dispatched. This action has the benefit of virtual CPUs
running longer before being preempted, which helps improve performance. If a virtual CPU
gets a shorter dispatch time slice, then more workloads are cut into time slices on the
processor core, which can cause higher cache misses. If the aggregate usage of an SPLPAR
goes above the threshold, AIX starts unfolding virtual CPUs so that additional processor
capacity can be given to the SPLPAR. AIX cannot engage more virtual processors than are
currently defined for the partition. Virtual processor management dynamically adopts the
number of virtual processors to match the load on an SPLPAR. This threshold
(vpm_fold_threshold) represents the SMT thread usage starting with AIX V6.1 TL6. In
versions before AIX V6.1 TL6, vpm_fold_threshold represents the core utilization. The
threshold is processor type specific.

When folding increases the number of virtual processors that are engaged, and there are free
cores available in the shared processor pool, then unfolding another virtual processor results
in the partition getting another core along with its associated caches. Now, the partition can
run on two primary threads of two cores, instead of two threads (primary and secondary) on
the same core. A workload that is running on two primary threads of two cores can achieve
higher performance if there is less sharing of data than the workload that is running on
primary and secondary threads of the same core. The AIX virtual processor management
default policy aims at using the primary thread of each virtual processor first; therefore, it
unfolds the next virtual processor without using the SMT threads of the first virtual processor.
After it unfolds all the virtual processors and consumes the primary thread of all the virtual
processors, it starts using the secondary and tertiary threads of the virtual processors.

For more information, see the following website:

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=P
OW03049USEN#loaded
62 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03049USEN#loaded
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03049USEN#loaded

Processor bindings in a shared LPAR
In AIX V6.1 TL 7, and in AIX V7.1 TL 1 and later versions, binding virtual processors is
available to an application that is running in a shared LPAR. An application process can be
bound to a virtual processor in a shared LPAR. In a shared LPAR, a virtual processor is
dispatched by the PowerVM hypervisor. The PowerVM hypervisor maintains three levels of
affinity for dispatching, such as core, chip, and node level. By maintaining affinity at the
hypervisor level and in AIX, applications can achieve higher-level affinity through virtual
processor bindings.

3.2.2 Page table sizes for LPARs

The hardware page table of an LPAR is sized based on the maximum memory size of an
LPAR and not what is assigned to (or wanted for) the LPAR. There are some performance
considerations if the maximum size is set higher than the wanted memory:

� A larger page table tends to help performance of the workload, as the hardware page table
can hold more pages. This larger table reduces translation page faults. Therefore, if there
is enough memory in the system and you want to improve translation page faults, set your
max memory to a higher value than the LPAR wanted memory.

� On the downside, more memory is used for the hardware page table, which wastes
memory and makes the table become sparse, which results in the following situations:

– A dense page table tends to help with better cache affinity because of reloads.

– Less memory that is consumed by the hypervisor for the hardware page table means
that more memory is made available to the applications.

– There is less page walk time as page tables are small.

3.2.3 Placing LPAR resources to attain higher memory affinity

POWER8 PowerVM optimizes the allocation of resources for both dedicated and shared
partitions as each LPAR is activated. Correct planning of the LPAR configuration enhances
the possibility of getting both CPU and memory in the same domain in relation to the topology
of a system.

PowerVM hypervisor selects the required processor cores and memory that is configured for
an LPAR from the system free resource pool. During this selection process, the hypervisor
takes the topology of the system into consideration and allocates processor cores and
memory where both resources are close. This situation ensures that the workload on an
LPAR has lower latency in accessing its memory.

When you install a system, power on the partitions of highest importance first. By doing so,
the partitions have first access to available memory and processing resources. After a
partition is powered on, the server undergoes IPL, or the Dynamic Platform Optimizer is run,
the processors and memory assignment are predetermined by the hypervisor, so that the
order of activation is not important. On the HMC, there is an option to activate the current
configuration, and when you use this option, there is no change in the current placement of
the partition. Activating with a partition profile might change the current placement of the
partition.

Partition powering on: Even though a partition is dependent on a VIOS, it is safe to
power on the partition before the VIOS; the partition does not fully power on because of its
dependency on the VIOS, but claims its memory and processing resources.
Chapter 3. The IBM POWER Hypervisor 63

How to determine whether an LPAR is contained within a domain
From an AIX LPAR, run lssrad to display the number of domains across which an LPAR
is spread.

The lssrad syntax is:

lssrad -av

If all the cores and memory are in a single domain, you receive the following output with only
one entry under REF1:

REF1 SRAD MEM CPU
0 0 31806.31 0-31

 1 31553.75 32-63

REF1 represents a domain, and domains vary by platform. SRAD always references a chip.
However, lssrad does not report the actual physical domain or chip location of the partition: it
is a relative value whose purpose is to inform you whether the resources of the partition are
within the same domain or chip. The output of this lssrad example indicates that the LPAR is
allocated with 16 cores from two chips within the same domain. The lssrad command output
was taken from an SMT4 platform, so CPU 0-31 represents eight cores.

When all the resources are free (an initial machine state or restart of the CEC), the PowerVM
allocates memory and cores as optimally as possible. At partition boot time, PowerVM is
aware of all of the LPAR configurations, so placement of processors and memory are made
regardless of the order of activation of the LPARs.

However, after the initial configuration, the setup might not stay static. Numerous operations
take place, such as:

� Reconfiguration of existing LPARs with new profiles
� Reactivating existing LPARs and replacing them with new LPARs
� Adding and removing resources to LPARs dynamically (DLPAR operations)

Any of these changes might result in memory fragmentation, causing LPARs to be spread
across multiple domains. There are ways to minimize or even eliminate the spread. For the
first two operations, the spread can be minimized by releasing the resources that are
assigned to the deactivated LPARs.

Resources of an LPAR can be released by running the following commands:

� chhwres -r mem -m <system_name> -o r -q <num_of_Mbytes> --id <lp_id>
� chhwres -r proc -m <system_name> -o r --procunits <number> --id <lp_id>

The first command frees the memory, and the second command frees cores.

Fragmentation because of frequent movement of memory or processor cores between
partitions is avoidable with correct planning. DLPAR actions can be done in a controlled way
so that the performance impact of resource addition or deletion is minimal. Planning for
growth helps alleviate the fragmentation that is caused by DLPAR operations. Knowing the
LPARs that must grow or shrink dynamically, and placing them with LPARs that can tolerate
nodal crossing latency (less critical LPARs), is one approach to handling the changes of
critical LPARs dynamically. In such a configuration, when growth is needed for the critical
LPAR, the resources that are assigned to the non-critical LPAR can be reduced so that the
critical LPAR can grow. Another method of managing fragmentation is to monitor the affinity
score of the system or important partitions and use the Dynamic Platform Optimizer to
reoptimize the memory and processor that is assigned to the partitions.
64 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Affinity groups
PowerVM firmware has support for affinity groups that can be used to group multiple LPARs
within the same processor chip, processor socket, or drawer. When using affinity groups, it is
important to understand the physical configuration of the processor cores and memory that is
contained within the processor chips, processor sockets. and drawers, such that the size of
the affinity group does not exceed the capacity of the wanted domain. For example, if the
system has 4 cores and 64 GB of memory per processor chip, and you want to contain the
partitions to a single processor chip, ensure that the size of the affinity group does not exceed
four cores and 64 GB of memory. When calculating the memory size of an affinity group and
what is available on a chip, the computed value must account for the memory that is used by
the hypervisor for I/O space and for objects that are associated with the partition, such as the
hardware page table.

This affinity group feature can be used in multiple situations:

� LPARs that are dependent or related, such as server and client, and application server
and database server, can be grouped so they are in the same book.

� Affinity groups can be created that are large enough such that they force the assignment
of LPARs to be in different books. For example, if you have a two-socket system and the
total resources (memory and processor cores) assigned to the two groups exceeds the
capacity of a single socket, these two groups are forced to be in separate sockets.

If a pair of LPARs is created with the intent of one being a failover to another partition, and
one partition fails, the other partition (which is placed in the same node, if both are in the
same affinity group) uses all of the resources that were freed up from the failed LPAR.

The following HMC CLI command adds or removes a partition from an affinity group:

chsyscfg -r prof -m <system_name> -i name=<profile_name>
lpar_name=<partition_name>,affinity_group_id=<group_id>

group_id is a number 1 - 255 (255 groups can be defined), and affinity_group_id=none
removes a partition from the group.

When the hypervisor places resources at frame restart, it first places all the LPARs in group
255, then the LPARs in group 254, and so on. Place the most important partitions regarding
affinity in the highest configured group.

PowerVM resource consumption for capacity planning considerations
PowerVM hypervisor consumes a portion of the memory resources in the system. During
your planning stage, consider the layout of LPARs. Factors that affect the amount of memory
that is consumed are the size of the hardware page tables in the partitions, the number of I/O
devices, hypervisor memory mirroring, and other factors. Use the IBM System Planning Tool
to estimate the amount of memory that is reserved by the hypervisor. This tool is found at the
following website:

http://www.ibm.com/systems/support/tools/systemplanningtool/

Note: As a general rule, the size of the affinity group wanted memory should allocate only
90 - 95% of the physical memory that is contained in a domain. If the affinity group is larger
than the wanted domain, the hypervisor cannot contain the affinity group within a single
domain.
Chapter 3. The IBM POWER Hypervisor 65

http://www.ibm.com/systems/support/tools/systemplanningtool/

Licensing resources and Capacity Upgrade on Demand
Some Power Systems support Capacity Upgrade on Demand (CUoD) so that customers can
license capacity on demand as business needs for compute capacity grows. Therefore, a
Power Systems server might not have usage of all of the resources that are installed, which
poses a challenge to allocate both cores and memory from a local domain. PowerVM
correlates customer configurations and licensed resources to allocated cores and memory
from the local domain to each of the LPARs. For systems with unlicensed memory, the
licensing is governed on a quantity of memory basis and not on a physical DIMM basis.
Therefore, any installed memory can be used to optimize the affinity of partitions. For systems
with unlicensed processors, during a CEC restart, Dynamic Platform Optimizer (see 3.2.5,
“Optimizing resource placement: Dynamic Platform Optimizer” on page 67), and some
DLPAR requests, the hypervisor can readjust which processors are licensed to optimize the
affinity of the partitions.

For more information about this topic, see 3.4, “Related publications” on page 68.

3.2.4 Active memory expansion

Active memory expansion (AME) is a capability that is supported on POWER8
processor-based systems that employs memory compression technology to expand the
effective memory capacity of an LPAR. The operating system identifies the least frequently
used memory pages and compresses them. The result is that more memory capacity within
the LPAR is available to sustain more load, or the ability to remove memory from the LPAR to
be used to deploy more LPARs. The POWER8 processor provides enhanced support of AME
with the inclusion of on-chip accelerators onto which the work of compression and
decompression is offloaded.

AME is deployed by first using the amepat tool to model the projected expansion factor and
CPU usage of a workload. This modeling looks at the compressibility of the data, the memory
reference patterns, and current CPU usage of the workload. AME can then be enabled for the
LPAR by setting the expansion factor. The operating system then reports the physical
memory that is available to applications as actual memory times the expansion factor. Then,
transparently, the operating system locates and compresses cold pages to maintain the
appearance of expanded memory.

Applications do not need to change, and they are not aware that AME is active. However, not
all applications or workloads have suitable characteristics for AME. Here is a partial list of
guidelines for the workload characteristics that can be a good fit for AME:

� The memory footprint is dominated by application working storage (such as heap, stack,
and shared memory).

� Workload data is compressible.

� Memory access patterns are concentrated in a subset of the overall memory footprint.

� Workload performance is acceptable without the use of larger page sizes, such as 64 KB
pages. AME disables the usage of large pages and uses only 4 KB pages.

� The average CPU usage of the workload is below 60%.

� Users of the application and workload are relatively insensitive to response
time increases.

For more information about AME usage, see Active Memory Expansion: Overview and Usage
Guide, found at:

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=P
OW03049USEN#loaded
66 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03049USEN#loaded
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03049USEN#loaded
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03049USEN#loaded
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03049USEN#loaded

3.2.5 Optimizing resource placement: Dynamic Platform Optimizer

The Dynamic Platform Optimizer feature automates the manual steps to improve resource
placement. For more information, go to the following website and select the Doc-type Word
document P7 Virtualization Best Practice. An update to this document from the POWER8
perspective is planned.

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/61ad9cf2-c6
a3-4d2c-b779-61ff0266d32a/page/64c8d6ed-6421-47b5-a1a7-d798e53e7d9a/attachments

3.2.6 Partition compatibility mode

When partitions are created, the processor compatibility mode can be specified. On
POWER8 processor-based systems, partitions can run in POWER6, POWER6+, POWER7,
POWER8, or default compatibility modes. Different modes support different SMT levels and
hardware instructions, based on the hardware model that is chosen.

For example, to migrate to a POWER6 processor-based system, the partition must be
selected to run in POWER6 mode. In addition to allowing migration, the partition, even on a
POWER8 processor-based system, runs at most in SMT2 mode, and only instructions that
are available on a POWER6 processor-based system can be used by the partition. SMT2
mode is used when POWER6 or POWER6+ is selected, SMT4 mode is used for POWER7
processor-based systems, and SMT8 mode is used for POWER8 processor-based systems.
AIX also supports the smtctl command, which can reduce the SMT level of the partition if
that is wanted. A value of default means that the partition runs in whatever mode was
available when the partition was activated. The selection of the default prevents the partition
from migrating to earlier generations of POWER processors.

3.3 Introduction to KVM Virtualization

Starting with POWER8 processor-based systems, IBM introduced a new family of servers
that are called scale-out systems. Scale-out systems are targeted at scale-out workloads and
support a complete stack of open software, ranging from the hypervisor to cloud
management. Examples of POWER8 scale-out systems are the single-socket IBM Power
System S812L and the two-socket IBM Power System S822L systems. Although scale-out
systems can be virtualized with the PowerVM hypervisor, a second virtualization mechanism,
which is known as the kernel-based virtual machine (KVM), is supported on these systems.

KVM is a Linux based complete virtualization solution, which consists of at least the following
components:

� A loadable kernel module that is called kvm.ko that provides the core virtualization
infrastructure

� A loadable kernel module that is called kvm-<arch>.ko, which a processor or
architecture-specific module, such as kvm-intel.ko

� A qemu (quick emulator) command, which emulates CPUs and provides a set of device
models

Note: This document is intended to address POWER8 processor technology-based
PowerVM preferred practices to attain the best LPAR performance. Use this document with
other PowerVM documents.
Chapter 3. The IBM POWER Hypervisor 67

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/61ad9cf2-c6a3-4d2c-b779-61ff0266d32a/page/64c8d6ed-6421-47b5-a1a7-d798e53e7d9a/attachments

IBM PowerKVM is the port of KVM for hardware virtualization of Power Systems and provides
full virtualization on POWER8 scale-out systems. The architecture-specific model for Power
Systems is called kvm-hv.ko. PowerKVM also includes the virtualization packages such as
libvirt, which provide the tools, runtime libraries, and a daemon for managing platform
virtualization. There is both a CLI interface (the virsh command, which is part of the
libvirt-client package) and a web-based interface, Kimchi, for managing virtualization,
including starting and stopping virtual machines.

In KVM terminology, a virtual machine is more commonly referred to as the guest. The
hypervisor is often referred to as running on the host machine. The hypervisor consists of the
operating system (including the virtualization modules) and firmware that directly runs on the
hardware and supports running guests.

PowerKVM V2.1, released June 2014, is the first PowerKVM release. Only Linux distributions
(such as RHEL, Ubuntu, SLES, or Fedora) are supported as guest OSes by PowerKVM.

Unlike PowerVM, there is no need for a Hardware Management Console (HMC) to manage
PowerKVM. Instead, the industry-standard Intelligent Platform Management Interface (IPMI)
interface is used to manage the host. On IBM Power Systems, the IPMI server runs on the
service controller and not on the host. Therefore, commands directed to the IPMI server must
use the service processor IP address in the command line.

For more information about the KVM technology on IBM systems and the various
virtualization support tools (such as qemu, libvirt, Kimchi, IPMI, and so on), see IBM
PowerKVM Configuration and Use, SG24-8231.

3.4 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� Active Memory Expansion: Overview and Usage Guide, found at:

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/pow03037usen/POW03037USEN.PDF

� IBM PowerVM Active Memory Sharing Performance, found at:

http://public.dhe.ibm.com/common/ssi/rep_wh/n/POW03017USEN/POW03017USEN.PDF

� IBM PowerVM Virtualization Introduction and Configuration, SG24-7940

� IBM PowerVM Virtualization Managing and Monitoring, SG24-7590

� POWER7 Virtualization Best Practice Guide, found at:

https://www.ibm.com/developerworks/wikis/download/attachments/53871915/P7_virtu
alization_bestpractice.doc?version=1

� PowerVM Migration from Physical to Virtual Storage, SG24-7825

Note: On the PowerVM hypervisor, a virtual machine or guest is called a logical partition
(LPAR).

Note: IBM PowerKVM Configuration and Use, SG24-8231 can help in configuring
PowerKVM and the guest OSes optimally.
68 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/pow03037usen/POW03037USEN.PDF
http://public.dhe.ibm.com/common/ssi/rep_wh/n/POW03017USEN/POW03017USEN.PDF
https://www.ibm.com/developerworks/wikis/download/attachments/53871915/P7_virtualization_bestpractice.doc?version=1

� Virtual I/O (VIO) and virtualization, found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20
Systems/page/Virtual%20IO%20and%20virtualization

� Virtualization Best Practice, found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20
Systems/page/Virtualization%20best%20practices
Chapter 3. The IBM POWER Hypervisor 69

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/Virtual%20IO%20and%20virtualization
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/Virtualization%20best%20practices

70 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Chapter 4. IBM AIX

This chapter describes the optimization and tuning of POWER8 and other Power Systems
processor-based servers running the AIX operating system. It covers the following topics:

� 4.1, “Introduction” on page 72
� 4.2, “Using Power Architecture features with AIX” on page 72
� 4.3, “AIX operating system-specific optimizations” on page 95
� 4.4, “AIX preferred practices” on page 105
� 4.5, “Related publications” on page 107

4

© Copyright IBM Corp. 2014, 2015. All rights reserved. 71

4.1 Introduction

AIX is regarded as a good choice for building an IT infrastructure on IBM systems that are
designed with Power Architecture technology. With its proven scalability, advanced
virtualization, security, manageability, and reliability features, it is an enterprise-class OS. In
particular, AIX is the only operating system that uses decades of IBM technology innovation
that is designed to provide the highest level of performance and reliability of any UNIX
operating system. AIX has demonstrated leadership performance on various system
benchmarks.

The performance benefits of AIX include:

� Deep integration with the Power Architecture (core design with the Power Architecture)
� Autonomic optimization

– A single OS image configures itself to support any POWER processor.
– Dynamic workload optimization.

� Performs on a wide variety of system configurations
– Scales from 0.05 to 256 cores (up to 1024 logical processors).
– Horizontal (native clustering) and vertical scaling.

� Strong virtualization support for PowerVM virtualization
– Tight integration with PowerVM.
– Enabler for virtual I/O (VIO).

� Full set of integrated performance tools.

AIX V6.1 and AIX V7.1 run on and maximize the capabilities of systems based on the
POWER8 processor-based system, which is the latest generation of POWER
processor-based systems, while supporting POWER4, POWER5, POWER6, and POWER7
(including POWER7+) processor-based systems.

For more information about this topic, see 4.5, “Related publications” on page 107.

4.2 Using Power Architecture features with AIX

Various significant features of the Power Architecture with POWER7 and POWER8
extensions in an AIX environment are described in this section.

4.2.1 Multi-core and multi-thread

Operating system enablement usage of multi-core and multi-thread technology varies by
operating system and release. Table 4-1 on page 73 shows the maximum processor cores
and threads for a (single) logical partition running AIX.
72 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Table 4-1 Multi-thread per core features by single LPAR scaling

Information about multi-thread per core features by POWER generation is available in
Table 2-1 on page 28.

Using multi-core and multi-thread features is a challenging prospect. In addition to the
overview material in this section, the following specific scaling topics are described:

� Malloc tuning (see 4.3.1, “Malloc” on page 95)
� Pthread tuning (see 4.3.2, “Pthread tunables” on page 97)

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.1, “Multi-core and multi-thread” on page 28 (processor)
� 5.2.1, “Multi-core and multi-thread” on page 112 (IBM i)
� 6.2.1, “Multi-core and multi-thread” on page 119 (Linux)

For more information about this topic, see 4.5, “Related publications” on page 107.

Simultaneous multithreading
Simultaneous Multithreading (SMT) is a feature of the Power Architecture and is described in
“Simultaneous multithreading” on page 29. SMT is supported in AIX, as described in
Simultaneous multithreading.1

AIX provides options to allow SMT customization. The smtctl command allows the SMT
feature to be enabled, disabled, or capped (SMT2 versus SMT4 mode on POWER7
processor-based systems and SMT2 or SMT4 modes versus SMT8 on POWER8
processor-based systems). The partition-wide tuning option, smtctl, changes the SMT mode
of all processor cores in the partition. It is built on the AIX dynamic reconfiguration (AIX DR)
framework to allow hardware threads (logical processors) to be added and removed in a
running partition. Because of this option’s global nature, it is normally set by system
administrators. Most AIX systems (commercial) use the default SMT settings enabled (that is,
SMT2 mode on POWER5 and POWER6 processor-based systems, and SMT4 mode on
POWER7 and POWER8 processor-based systems).

When SMT is enabled (SMT2, SMT4, or SMT8 mode), the AIX kernel takes advantage of the
platform feature to change SMT modes dynamically. These mode switches are done based
on partition load (the number of running or waiting to run software threads) to choose the
optimal SMT mode for the CPUs in the partition. The mode switching policies optimize overall
workload throughput, but do not attempt to optimize individual software threads.

For more information about the topic of SMT, from the processor and OS perspectives, see:

� “Simultaneous multithreading” on page 29 (processor)
� “Simultaneous multithreading” on page 112 (IBM i)
� “Simultaneous multithreading” on page 119 (Linux)

Single LPAR scaling AIX release

32-core/32-thread 5.3/6.1/7.1

64-core/128-thread (SMT2) 5.3/6.1/7.1

64-core/256-thread (SMT4) 6.1(TL4)/7.1

256-core/1024-thread (SMT4) or
128-core/1024-thread (SMT8)

7.1

1 Simultaneous multithreading, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/gen
progc/smt.htm
Chapter 4. IBM AIX 73

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/smt.htm

Simultaneous multithreading priorities
Simultaneous multithreading (SMT) priorities in the Power hardware are introduced in
“Simultaneous multithreading priorities” on page 30.

AIX kernel usage of simultaneous multithreading thread priority and effects
The AIX kernel is optimized to take advantage of SMT thread priority by lowering the SMT
thread priority in select code paths, such as when spinning in the wait process. When the
kernel modifies the SMT thread priority and execution is returned to a process-thread, the
kernel sets the SMT thread priority back to Medium or the level that is specified by the
process-thread by using an AIX system call that modified the SMT thread priority (see
“Application programming interfaces” on page 74).

Where to use
SMT thread priority can be used to improve the performance of a workload by lowering the
SMT thread priority that is being used on an SMT thread that is running a particular
process-thread in the following situations:

� The thread is waiting on a lock.
� The thread is waiting on an event, such as the completion of an IO event.

Alternatively, process-threads that are performance-sensitive can maximize their
performance by ensuring that the SMT thread priority level is set to an elevated level.

Application programming interfaces
There are three ways to set the SMT priority when it is running on POWER processors:2, 3

1. Modify the SMT priority directly by using the PPR register.4

2. Modify the SMT priority by using a special no-ops.5

3. Use the AIX thread_set_smt_priority system call.6

For more information about this topic, see Table 2-2 on page 30.

For more information about the topic of SMT priorities, from the processor and OS
perspectives, see:

� “Simultaneous multithreading priorities” on page 30 (processor)
� “Simultaneous multithreading priorities” on page 120 (Linux)

Affinitization and binding
Affinity performance effects are explained in “The POWER8 processor and affinity
performance effects” on page 16. Establishing good affinity is accomplished by understanding
the placement of a partition on the underlying cores and memory of a Power Systems server,
and then by using operating system facilities to bind application threads to run on specific
hardware threads or cores.

2 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/
3 thread_set_smt_priority or thread_read_smt_priority System Call, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.ker
neltechref/doc/ktechrf1/thread_set_smt_priority.htm

4 Power ISA Version 2.07, found at: https://www.power.org/documentation/power-isa-v-2-07b/
5 Ibid
6 thread_set_smt_priority or thread_read_smt_priority System Call, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.ker
neltechref/doc/ktechrf1/thread_set_smt_priority.htm
74 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/power-isa-v-2-07b/
https://www.power.org/documentation/power-isa-v-2-07b/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.kerneltechref/doc/ktechrf1/thread_set_smt_priority.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.kerneltechref/doc/ktechrf1/thread_set_smt_priority.htm

Flexible simultaneous multithreading
On POWER7 and POWER7+ processors, there is a correlation between the hardware thread
number (0 - 3) and the hardware resources within the processor. Matching the thread
numbers to the number of active threads was required for optimum performance. For
example, if only one thread was active, it was thread0; if two threads were active, they were
thread0 and thread1. On the POWER8 processor, the same performance is obtained
regardless of which thread is active. The processor balances resources according to the
number of active threads. There is no need to match the thread numbers with the number of
active tasks. Thus, when using the bindprocessor command or API, it is not necessary to
bind the job to thread0 for optimal performance.

Affinity APIs
Most applications must be bound to logical processors to get a performance benefit from
memory/cache affinity to prevent the AIX dispatcher from moving the application to processor
cores in different SRADs while the application runs.

AIX provides bind-ids, Resource Sets (RSETs), and Scheduler Resource Allocation Domains
(SRADs) for affinity tuning in the following ways:

� Bindprocessor: Provides affinity to a single hardware thread that is identified by bind-id. It
does not provide topology.

� RSET: Provides affinity to a group of hardware threads and supports memory binding. It
provides topology.

� SRAD: Provides affinity to a scheduler resource domain and supports memory binding. It
provides topology.

The most likely way to obtain a benefit from memory affinity is to limit the application to
running only on the processor cores that are contained in a single SRAD. You can accomplish
this task with the help of RSET (commands/API) and SRAD (APIs). If the application just
needs a single processor, then the bindprocessor command or the bindprocessor() function
can be used. It can also be done with the resource set affinity commands (rset) and service
applications. Often, affinity is provided as an administrator option that can be optionally
enabled on large systems.

When the application requires more processor cores than are contained in a single SRAD, the
performance benefit through memory affinity depends on the memory allocation and access
patterns of the various threads in the application. Applications with threads that individually
allocate and reference unique data areas can see improved performance.

Bind processor

Processor affinity is the probability of dispatching a thread to the logical processor that was
previously running it. If a thread is interrupted and later redispatched to the same logical
processor, the processor's cache might still contain lines that belong to the thread. If the
thread is dispatched to a different logical processor, it probably experiences a series of cache
misses until its cache working set is retrieved from RAM or the other logical processor's
cache. If a dispatchable thread must wait until the logical processor that it was previously
running on is available, the thread might experience an even longer delay.

The highest possible degree of processor affinity is to bind a thread to a specific logical
processor. Binding means that the thread is dispatched to that logical processor only,
regardless of the availability of other logical processors.
Chapter 4. IBM AIX 75

The bindprocessor command and the bindprocessor() subroutine bind the thread (or
threads) of a specified process to a particular logical processor. Explicit binding is inherited
through fork() and exec() system calls. The bindprocessor command requires the process
identifier of the process whose threads are to be bound or unbound, and the bind CPU
identifier of the logical processor to be used. This bind-id is different from the logical
processor number and does not have any topology that is associated with it. Bind-ids cannot
be associated to a specific chip/core because they tend to change on every DR operation
(such as an SMT mode change). For NUMA affinity, RSETs or SRADs should be used to
restrict the application to a set of logical processors in the same core/SRAD and its local
memory.

CPU binding is useful for CPU-intensive applications; however, it can sometimes be
counter-productive for I/O-intensive applications.

RSETS

Every process and kernel thread can have an RSET attached to it. The CPUs on which a
thread can be dispatched are controlled by a hierarchy of resource sets. RSETs are
mandatory bindings and are accepted by the AIX kernel always. Also, RSETs can affect
dynamic reconfiguration (DR) activities.

Resource sets

These resource sets are:

Thread effective RSET Created by ra_attachrset(). Must be a subset (improper or
proper) of “Other RSETs” on page 76.

Thread partition RSET Used by WLM. Partition RSETS allow WLM to limit where a
thread can run.

Process effective RSET Created by ra_attachrset(), ra_exec(), and ra_fork(). Must
be a subset (improper or proper) of the process partition RSET.

Process partition RSET Used by WLM to limit where processes in a WLM class are
allowed to run. Can also be created by root users that use the
rs_setpartion() service.

Other RSETs

Another type of RSET is the exclusive RSET. Exclusive use processor resource sets
(XRSETs) allow an installation to limit the usage of the processors in XRSETs; they are used
only by work that is attached to those XRSETS. They can be created by running the mkrset
command in the 'sysxrset' namespace.

RSET data types and operations

The public shipped header file rset.h contains declarations for the public RSET data types
and function prototypes.

An RSET is an opaque data type. Applications allocate an RSET by calling rs_alloc().
Applications receive a handle to the RSET. The RSET handle (data type rsethandle_t in
sys/rset.h) is then used in RSET APIs to manipulate or attach the RSET.
76 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Summary of RSET commands

Here is a summary of the RSET commands:

� lsrset: Displays RSETs that are stored in the system registry or RSETS that are attached
to a process. For example:

lsrset -av Displays all RSETS in the system registry.

lsrset -p 28026 Displays the effective RSET that is attached to
PID 28026.

� mkrset: Makes a named RSET containing specific CPU and memory pools and places the
RSET in the system registry. For example, mkrset -c 6 10-12 test/lotsofcpus creates
an RSET named test/lotsofcpus that contains the specified CPUs.

� rmrset: Removes an RSET from the system registry. For example:

rmrset test/lotsofcpus

� attachrset: Attaches an RSET to a specified PID. The RSET can either be in the system
registry, or CPUs or mempools that are specified in the command. For example:

attachrset test/lotsofcpus 28026 Attaches an RSET in a register to a process.

attachrset -c 4-8 28026 Attaches an RSET with CPUs 4 - 8 to a process
as an effective RSET.

attachrset -P -c 4-8 28026 Attaches an RSET with CPUs 4 - 8 to process as
a partition rset.

� detachrset: Detaches an RSET from a specified PID. For example:

detachrset 28026 Detaches an effective RSET from a PID.

detachrset -P 20828 Detaches a partition RSET from a PID.

� execrset: Runs a specific program or command with a specified RSET. For example:

execrset sys/node.04.00000 -e test Runs a program test with an effective RSET
from the system registry.

execrset -c 0-1 -e test2 Runs program test2 with an effective RSET that
contains logical CPU IDs 0 and 1.

execrset -P -c 0-1 -e test3 Runs program test3 with a partition RSET that
contains logical CPU IDs 0 and 1.

RSET manipulation and information services

This list contains only user space APIs. There are also similar kernel extension APIs. For
example, krs_alloc() is the kernel extension equivalent to rs_alloc().

rs_alloc() Allocates and initializes an RSET and returns an RSET handle to
a caller.

rs_free() Frees a resource set. The input is an RSET handle.

rs_init() Initializes a previously allocated RSET. The initialization options are
the same as for rs_alloc().

rs_op() Performs one of a set of operations against one or two RSETS.

rs_getinfo() Get information about an RSET.

rs_getrad() Get resource allocation domain information from an input RSET.

rs_numrads() Returns the number of system resource allocation domains at the
specified system detail level that have available or online resources.
Chapter 4. IBM AIX 77

rs_getpartition() Gets a process's partition RSET.

rs_setpartition() Sets a process's partition RSET.

rs_discardname()

rs_getnameattr()

rs_getnamedrset()

rs_setnameattr()

rs_registername() These are services that are used to manage the RSET system
registry. There are services to create, obtain, and delete RSETs in
the registry.

Attachment services

Here are the RSET attachment services:

ra_attachrset() A service to attach a work component to an RSET. The
service uses the rstype_t and rsid_t parameters to
identify the work component to attach to the input RSET
(specified by an rsethandle_t).

ra_detachrset() Detaches an RSET from the work unit that is specified by
the rstype_t/rsid_t parameters.

ra_exec() Runs a program that is attached to a specific work
component. The service uses rstype_t and rsid_t to
specify the work component. However, the only supported
rstype_t is R_RSET. All of the various versions of exec() are
supported.

ra_fork() Forks a process that is attached to a specific work
component. The service uses rstype_t and rsid_t to
specify the work component. However, the only supported
rstype_t is R_RSET.

ra_get_attachinfo() The ra_attachrset() also allows RSETs to be attached
to ranges of memory in a file or in a shared memory
segment.

ra_free_attachinfo() This service frees the memory that was allocated for the
attachment information that was returned by
ra_get_attachinfo().

ra_getrset() Retrieves the RSET attachment to a process or thread.
The return code indicates where the returned RSET is
attached.

ra_mmap() and ra_mmapv() Maps a file or memory region into a process and attaches
it to the resource set that is specified by the rstype_t and
rsid_t parameters. A memory allocation policy similar to
ra_attachrset() allows a caller to specify how memory is
preferentially allocated when the area is accessed.

ra_shmget() and ra_shmgetv() Gets a shared memory segment with an attachment to a
resource set. The RSET is specified by the rstype_t and
rsid_t parameters. A memory allocation policy similar to
ra_attachrset()allows a caller to specify how memory is
preferentially allocated when the area is accessed.
78 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

AIX Enhanced Affinity (SRADs)

AIX Enhanced Affinity is a collection of AIX internal system changes and API extensions to
improve performance on POWER7 processor-based systems. Enhanced Affinity improves
performance by increasing CPU and memory locality on POWER7 processor-based systems.
Enhanced Affinity extends the AIX existing memory affinity support. AIX V6.1 technology level
6100-05 contains AIX Enhanced Affinity support.

Enhanced Affinity status is determined during system start and remains unchanged for the
life of the system. A restart is required to change the Enhanced Affinity status. In AIX V6.1.0
technology level 6100-05, Enhanced Affinity is enabled by default on POWER7
processor-based systems. Enhanced Affinity is available only on POWER7 processor-based
systems. Enhanced Affinity is disabled by default on POWER6 and earlier processor-based
systems. A vmo command tunable (enhanced_memory_affinity) is available to disable
Enhanced Affinity support on POWER7 processor-based systems.

Here are two concepts that are related to Enhanced Affinity:

� SRAD: SRAD is the collection of logical CPUs and physical memory resources that are
close from a hardware affinity perspective. An AIX system (partition) can consist of one or
more SRADs. An SRAD represents the same collection of system resources as an
existing MCM. A specific SRAD in a partition is identified by a number. It is an sradit_t
data type and is often referred to as an SRADID.

� SRADID: The numeric identifier of a specific SRAD. It is a short integer data type. An
SRADID value is the index of the resource allocation domain at the R_SRADSDL system
detail level in the system’s resource set topology.

Power Systems before POWER7 processor-based systems provided only system topology
information to dedicated CPU logical partitions. This setup limited the usefulness of RSET
attachments for CPU and memory locality purposes to dedicated CPU partitions. POWER7
processor-based systems provide system topology information for shared CPU logical
partitions (SPLPAR).

The lssrad command can be used to display the processor and memory resources at the
SRAD and REF1 levels (where REF1 is the next higher-level affinity domain).

You can use the AIX Enhanced Affinity services to attach SRADs to threads and memory
ranges so that the application preferentially identifies the logical CPUs or physical memory to
use to run the application. AIX continues to support RSET attachments to identify resources
for an application.

RSET versus SRADs

When you compare RSET with SRADIDs:

1. SRADIDs can be attached to threads, shared memory segments, memory map regions,
and process memory subranges. SRADIDs may not be attached at the process level
(R_PROCESS). SRADIDs may not be attached to files (R_FILDES).

2. SRADID attachments are considered advisory. There are no mandatory SRADID
attachments. AIX may ignore advisory SRADID attachments.

3. Process and thread RSET attachments continue to be mandatory. The process and thread
resource set hierarchy continues to be enforced. Memory RSET attachments (shared
memory, file, and process subrange) continue to be advisory. This situation is unchanged
from previous affinity support.
Chapter 4. IBM AIX 79

API support

SRADIDs can be attached to threads and memory by using the following functions:

� ra_attach() (new)
� ra_fork()
� ra_exec()
� ra_mmap() and ra_mmapv()
� ra_shmget() and ra_shmgetv()

SRADIDs can be detached from thread and memory by using the sra_detach() function
(new).

For more information about the topic of affinitization and binding, from the processor and OS
perspectives, see:

� “Affinitization and binding to hardware threads” on page 31 (processor)
� “Affinitization and binding” on page 121 (Linux)

Hybrid thread and core
AIX provides facilities to customize SMT characteristics of CPUs running within a partition.
The features require some partition-wide CPU configuration options, so their use is limited to
specific workloads.

Hybrid thread features
AIX provides some basic features that allow more control in SMT mode. With these features,
specific software threads can be bound to hardware threads that are assigned to ST mode
CPUs. This configuration allows for an asymmetric SMT configuration, where some CPUs are
in high SMT mode, and others have SMT mode disabled. This configuration allows critical
software threads within a workload to receive an ST performance boost, and allows the
remaining threads to benefit from SMT mode. Typical reasons to take advantage of this hybrid
mode are:

� Asymmetric workload, where the performance of one thread serializes an entire workload.
For example, one master thread dispatches work to many subordinate threads.

� Software threads that are critical to a system administrator.

The ability to create hybrid SMT configurations is limited under current AIX releases and does
require administrator or privileged configuration changes. CPUs that provide ST mode
hardware threads must be placed into XRSETs. XRSETs contain logical CPUs that are
segregated from the general kernel dispatching pool. Software threads must be explicitly
bound to CPUs in an XRSET. The only way to create an XRSET is by running the mkrset
command. All of the hardware threads for logical CPUs must be contained in the XRSET
created RSET. To accomplish this task, run the following commands:

lsrset -av Displays the RSET topology. The system CPU topology is
broken down into a hierarchy that has the form
sys/node.XX.YYYYY. The largest XX value is the CPU (core)
level. This command provides logical processor groups by
core.

mkrset -c 4-7 sysxrset/set1 Creates an XRSET sysxrset/set1 containing logical CPUs
4 - 7.
80 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

An XRSET alone can be used to ensure that only specific work uses a CPU set. There is also
the ability to restrict work execution to primary threads in an XRSET. This ability is known as
an STRSET. STRSETs allow software threads to use ST execution mode independently of the
load on the other CPUs in the system. Work can be placed onto STRSETs by running the
following commands:

execrset -S This command allows external programs to start and be bound to an
exclusive RSET.

ra_attach(R_STRSET) This API allows a thread to be bound to an STRSET.

For more information about this topic, from the processor and OS perspectives, see:

� “Hybrid thread and core” on page 31 (processor)
� “Hybrid thread and core” on page 122 (Linux)

For more information about this topic, see 4.5, “Related publications” on page 107.

AIX folding
Folding is a key AIX feature on shared processor LPARs that can improve both system and
partition performance. Folding is needed for supporting many partitions in a system. It is an
integrated feature, requiring both hardware and PowerVM support. The AIX component that
manages folding is the Virtual Processor Manager (VPM).

The basic concept of folding is to compress work to a smaller number of cores, based on CPU
utilization, by folding the remaining cores. The unused cores are folded by VPM, and
PowerVM does not schedule them for dispatch in the partition unless the operating system
requests that the cores be unfolded (or woken up), for example, when the workload changes
or when a timer interrupt needs to be fired on that core.

As an example, an LPAR might have 24 virtual cores (processors) assigned, but is consuming
only a total of three physical processors across all of these virtual cores. Folding compresses
(moves) all work to a smaller number of cores (three cores plus some extra cores to handle
spikes in workload), allowing PowerVM to allocate the unused cores for use elsewhere on the
system.

Folding generally improves LPAR and system performance by reducing context switching of
cores between partitions across a system, thus reducing context switching of software
threads across multiple cores in an LPAR. It improves overall affinity at both the LPAR and
system levels.

VPM runs once per second and computes how many cores are kept unfolded based on the
overall CPU utilization of the LPAR. On POWER8 processor-based systems, the folding
algorithm has been enhanced to include the average load (or the average number of runnable
software threads) as a factor in the computation.

Folding can be enabled and disabled by using the schedo command to adjust the value of the
vpm_fold_policy tunable. To respond faster to spikes in workloads or on partitions with a high
interrupt load, a second tunable, vpm_xvcpus, can also be used to increase the number of
spare, unfolded CPUs. This can improve response time for workloads with steep utilization
spikes, or on partitions with a high interrupt load, although this can result in higher core
usage.
Chapter 4. IBM AIX 81

AIX V6.1 TL8 and AIX V7.1 TL2 introduced a new scaled throughput-based folding algorithm
that can be enabled by using the schedo command to adjust the value of the
vpm_throughput_mode tunable. The default folding algorithm favors single-threaded
performance and overall LPAR throughput over core utilization. The new scaled throughput
algorithm can favor reduced core utilization and higher core throughput, instead of overall
LPAR throughput. The new algorithm applies both load and utilization data to make folding
decisions. It can switch unfolded cores to SMT2, SMT4, or SMT8 modes when the workload
increases, rather than unfolding more cores, as shown in Figure 4-1.

Figure 4-1 Folding algorithm model comparison

The degree of SMT mode (SMT2 or SMT4 (or SMT8 for POWER8 processor-based
systems)) to favor reduced core utilization can be controlled by assigning the appropriate
value to the vpm_throughput_mode tunable (2 for SMT2 mode, 4 for SMT4 mode, and 8 for
SMT8 mode). When the vpm_throughput_mode tunable is set to a value of 1, the folding
algorithm behaves like the legacy folding algorithm and favors single-threaded (ST mode)
performance. However, unlike the legacy algorithm, which uses only utilization data, the new
algorithm employs both load and utilization data to make folding decisions.

The default value of the vpm_throughput_mode tunable is 1 on POWER8 processor-based
systems, and on POWER7 and earlier processor-based systems, the default value is zero
(the legacy folding algorithm continues to be applicable).

Folding Algorithm Model Comparison - Example Illustration

LPAR Load

Default Folding Approach

Scaled-Throughput Approach (Biased to SMT4)

Core 3Core 2 Core 1Core 1 Core 2 Core 1 Core N

Core 1 Core 1 Core 1 Core 1 Core 2 Core 2 Core N

Active
Thread

• Width represents thread strength
• Height represents response time

As load approaches max LPAR entitled capacity, the behavior converges

Core 1
82 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

If the vpm_throughput_mode is set to a value of 1 or greater, then the
vpm_throughput_core_threshold tunable can also be set to specify the number of cores that
must be unfolded before the vpm_throughput_mode parameter is accepted. One scheme that
balances between performance and core utilization when enabling higher SMT modes is to
set vpm_throughput_core_threshold to the integer value of the entitled capacity.

The scaled throughput algorithm can reduce overall core utilization at the frame level for
certain workloads.

4.2.2 Multipage size support on AIX

AIX supports up to four different page sizes (see Table 4-2), but the actual page sizes that are
supported by a particular system vary, based on processor chip type. The pagesize -a
command on AIX determines all of the page sizes that are supported by AIX on a particular
system.

Because the 64 KB page size is easy to use, and because it is expected that many
applications perform better when they use the 64 KB page size rather than the 4 KB page
size, AIX has rich support for the 64 KB page size. No system configuration changes are
necessary to enable a system to use the 64 KB page size. On systems that support the 64 KB
page size, the AIX kernel automatically configures the system to use it. Table 4-2 and
Table 4-3 list the page size specifications for Power Systems.

Table 4-2 Page size support for Power HW and AIX configuration support7

Table 4-3 Supported segment page sizes on AIX8

Page size Required hardware Requires user configuration Restricted

4 KB ALL No No

64 KB POWER5+
processor-based system or
later

No No

16 MB POWER4 processor-based
system or later

Yes Yes

16 GB POWER5+
processor-based system or
later

Yes Yes

7 Multiple page size support, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/p
rftungd/multiple_page_size_support.htm

Segment base page size Supported page sizes Minimum required hardware

4 KB 4 KB/64 KB POWER6 processor-based
system

64 KB 64 KB POWER5+ processor-based
system

16 MB 16 MB POWER4 processor-based
system

16 GB 16 GB POWER5+ processor-based
system

8 Ibid
Chapter 4. IBM AIX 83

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_support.htm

Page sizes are an attribute of an individual segment. Earlier POWER processors supported
only a single page size per segment. The system administrator or user had to choose the
optimal page size for a specific application based on its memory footprint. The POWER5+
processor introduced the concept of mixed or multiple page sizes within a single segment: 4
KB and 64 KB. POWER7 and later processors support mixed page segment sizes of 4 KB, 64
KB, and 16 MB.

Starting with Version 6.1, AIX takes advantage of this new hardware capability on POWER6
and later processor-based systems to combine the conservative memory usage aspects of
the 4 KB page size in sparsely referenced memory regions with the performance benefits of
the 64 KB page size in densely referenced memory regions. AIX V6.1 takes advantage of this
automatically, without user intervention, although it is disabled in segments that have an
explicit page size that is selected by the user. This AIX feature is referred to as dynamic
Variable Page Size Support (VPSS). Some applications might prefer to use a larger page
size, even when a 64 KB region is not fully referenced. The page size promotion
aggressiveness factor (PSPA) can be used to reduce the memory-referenced requirement, at
which point a group of 4 KB pages is promoted to a 64 KB page size. The vmo command on
AIX allows configuration of the VMM tunable parameters. The PSPA can be set for the whole
system by using the vmm_default_pspa vmo tunable, or for a specific process by using the
vm_pattr system call.9

In addition to 4 KB and 64 KB page sizes, AIX supports 16 MB pages, also called large
pages, and 16 GB pages, also called huge pages. These page sizes are intended for use only
in high-performance environments, and AIX by default does not automatically configure a
system to use these page sizes.

Use the vmo tunables lgpg_regions and lgpg_size to configure the number of 16 MB large
pages on a system.

The following example allocates 1 GB of 16 MB large pages:

vmo -r -o lgpg_regions=64 -o lgpg_size=16777216

To use large pages, non-root users must have the CAP_BYPASS_RAC_VMM capability in AIX
enabled. The system administrator can add this capability by running chuser:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE <user_id>

Huge pages must be configured by using the Hardware Management Console (HMC). To do
so, complete the following steps:

1. On the managed system, click Properties → Memory → Advanced Options → Show
Details to change the number of 16 GB pages.

2. Assign 16 GB huge pages to a partition by changing the partition profile.

The vmo tunable vmm_mpisze_support can be used to limit multiple page size support. The
default value of 1 supports all four page sizes, but the tunable can be set to other values to
configure which page sizes will to be supported.

Application support to use multisize pages on AIX10

As described in Power Instruction Set Architecture Version 2.07,11 you can specify page
sizes to use for four regions of a 32-bit or 64-bit process address space.

9 Ibid
10 Ibid
11 Power ISA Version 2.07, found at https://www.power.org/documentation/power-isa-v-2-07b/
84 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/power-isa-v-2-07b/

These page sizes can be configured with an environment variable or with settings in an
application XCOFF binary with the ldedit or ld commands, as shown in Table 4-4.

Table 4-4 Page sizes for four regions of a 32-bit or 64-bit process address space

You can specify a different page size to use for each of the four regions of a process address
space. Only the 4 KB and 64 KB page sizes are supported for all four memory regions. The
16 MB page size is supported only for the process data, process text, and process shared
memory regions. The 16 GB page size is supported only for a process shared memory
region.

You can set the preferred page sizes for an application in the XCOFF/XCOFF64 binary file by
running the ldedit or ld commands.

The ld or cc commands can be used to set these page size options when you are linking an
executable command:

� ld -o mpsize.out -btextpsize:4K -bstackpsize:64K sub1.o sub2.o
� cc -o mpsize.out -btextpsize:4K -bstackpsize:64K sub1.o sub2.o

The ldedit command can be used to set these page size options in an existing executable
command:

ldedit -btextpsize=4K -bdatapsize=64K -bstackpsize=64K mpsize.out

You can set the preferred page sizes of a process with the LDR_CNTRL environment variable.
As an example, the following command causes the mpsize.out process to use 4 KB pages for
its data, 64 KB pages for its text, 64 KB pages for its stack, and 64 KB pages for its shared
memory on supported hardware:

LDR_CNTRL=DATAPSIZE=4K@TEXTPSIZE=64K@SHMPSIZE=64K mpsize.out

Page size environment variables override any page size settings in an executable XCOFF
header. Also, the DATAPSIZE environment variable overrides any LARGE_PAGE_DATA
environment variable setting.

Rather than using the LDR_CNTRL environment variable, consider marking specific executable
files to use large pages because this limits the large page usage to the specific application
that benefits from large page usage.

Page size and shared memory
To back shared memory segments of an application with large pages, specify the SHM_LGPAGE
and SHM_PIN flags in the shmget() function. In addition, set the vmo v_pinshm tunable to a
value of 1 with, for example, vmo -r -o v_pinshm=1. If large pages are unavailable, the 4 KB
pages back the shared memory segment.

Region ld or ldedit
option

LDR_CNTRL
environment variable

Description

Data bdatapsize DATAPSIZE Initialized data, bss, and
heap

Stack bstackpsize STACKPSIZE Initial thread stack

Text btextpsize TEXTPSIZE Main executable text

Shared memory None SHMPSIZE Shared memory that is
allocated by the process
Chapter 4. IBM AIX 85

Support for specifying the page size to use for the shared memory of a process with the
SHMPSIZE environment variable is available starting in IBM AIX 5L™ Version 5.3 with the
5300-08 Technology Level, or later, and AIX Version 6.1 with the 6100-01 Technology Level,
or later.

Monitoring the page size that is used by an application
Monitoring the page size is accomplished by running the following commands:12

� The ps command can be used to monitor the base page sizes that are used for process
data, stack, and text.

� The vmstat command has two options available to display memory statistics for a specific
page size:

– The vmstat -p command displays global vmstat information, along with a breakdown
of statistics per page size.

– The vmstat -P command displays per page size statistics.

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.2, “Multipage size support (page sizes (4 KB, 64 KB, 16 MB, and 16 GB))” on page 32
(processor)

� 4.2.2, “Multipage size support on AIX” on page 83

� 5.2.2, “Multipage size support on IBM i” on page 113

� 6.2.2, “Multipage size support on Linux” on page 123

For more information about this topic, see 4.5, “Related publications” on page 107.

4.2.3 Efficient use of cache

Generally, with Power Architecture, unlike some other architectures, users do not need to be
concerned about cache management or optimizing cache usage. This section describes AIX
facilities for controlling hardware prefetching through the Data Streams Control Register
(DSCR) and is meant for advanced users who understand their workload characteristics and
want to experiment with the register settings for improving performance. For a more detailed
description of the DSCR register and its settings, see 2.2.3, “Efficient use of cache and
memory” on page 33.

Controlling Data Streams Control Register under AIX
Under AIX, DSCR settings can be controlled both by programming API and from the
command line by using the dscr_ctl() API and running the dscrctl command running the
dscr_ctl() API and dscrctl commands.13,14

dscr_ctl() API
#include <sys/machine.h>
int dscr_ctl(int op, void *buf_p, int size)

12 Multiple page size support, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/p
rftungd/multiple_page_size_support.htm

13 dscr_ctl Subroutine, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.basetechref/do
c/basetrf1/dscr_ctl.htm

14 dscrctl Command, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.cmds/doc/aixcm
ds2/dscrctl.htm
86 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_support.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_support.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf1/dscr_ctl.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.cmds/doc/aixcmds2/dscrctl.htm

Where:

op: Operation. Possible values are DSCR_WRITE, DSCR_READ,
DSCR_GET_PROPERTIES, and DSCR_SET_DEFAULT.

Buf_p: Pointer to an area of memory where the values are copied from
(DSCR_WRITE) or copied to (DSCR_READ and DSCR_GET_PROPERTIES). For
DSCR_WRITE, DSCR_READ, and DSCR_SET_DEFAULT operations, buf_p must
be a pointer to a 64-bit data area (long long *). For
DSCR_GET_PROPERTIES, buf_p must be a pointer to a struct
dscr_properties (defined in <sys/machine.h>).

Size: Size in bytes of the area pointed to by buf_p.

Function:

The action that is taken depends on the value of the operation parameter that is defined in
<sys/machine.h>:

DSCR_WRITE Stores a new value from the input buffer into the process context and
in the DSCR.

DSCR_READ Reads the current value of DSCR and returns it in the output buffer.

DSCR_GET_PROPERTIES Reads the number of hardware streams that are supported by the
platform, the platform (firmware) default Prefetch Depth, and the
Operating System default Prefetch Depth from kernel memory, and
returns the values in the output buffer (struct dscr_properties,
which is defined in <sys/machine.h>).

DSCR_SET_DEFAULT Sets a 64-bit DSCR value in a buffer pointed to by buf_p as the
operating system default. Returns the old default in the buffer pointed
to by buf_p. Requires root authority. The new default value is used by
all the processes that do not explicitly set a DSCR value by using
DSCR_WRITE. The new default is not permanent across restarts. For an
operating system default prefetch depth that is permanent across
restarts, use the dscrctl command, which adds an entry in the
inittab to initialize the system-wide prefetch depth default value upon
restart (for a description of this command, see “The dscrctl
command” on page 88).

Here are the return values:

� 0 if successful.
� -1 if an error detected. In this case, errno is set to indicate the error. Here are the possible

values:
EINVAL Invalid value for DSCR (DSCR_WRITE, DSCR_SET_DEFAULT).
EFAULT Invalid address that is passed to function.
EPERM Operation not permitted (DSCR_SET_DEFAULT by non-root user).
ENOTSUP Data streams that are not supported by platform hardware.

Symbolic values for the following SSE and DPFD fields are defined in <sys/machine.h>:

DPFD_DEFAULT 0
DPFD_NONE 1
DPFD_SHALLOWEST 2
DPFD_SHALLOW 3
DPFD_MEDIUM 4
DPFD_DEEP 5
DPFD_DEEPER 6
Chapter 4. IBM AIX 87

DPFD_DEEPEST 7
DSCR_SSE 8

Here is a description of the dscr_properties structure in <sys/machine.h>:

struct dscr_properties {
uintversion;
uintnumber_of_streams;/* Number of HW streams */
longlongplatform_default_pd;/* PFW default */
longlongos_default_pd;/* AIX default */
longlong dscr_res[5];/* Reservd for future use */
};

Here is an example of this structure:

#include <sys/machine.h>
int rc;
long long dscr = DSCR_SSE | DPFD_DEEPER;
rc = dscr_ctl(DSCR_WRITE, &dscr);
...

A new process inherits the DSCR from its parent during a fork. This value is reset to the
system default during exec (fork and exec are system calls).

When a thread is dispatched (starts running on a CPU), the value of the DSCR for the owning
process is written in the DSCR. You do not need to save the value of the register in the
process context when the thread is undispatched because the system call writes the new
value both in the process context and in the DSCR.

When a thread runs dcsr_ctl to change the prefetch depth for the process, the new value is
written into the AIX process context and the DSCR register of the thread that is running the
system call. If another thread in the process is concurrently running on another CPU, it starts
using the new DSCR value only after the new value is reloaded from the process context area
after either an interrupt or a redispatch. This action can take as much as 10 ms (a clock tick).

The dscrctl command
The system administrator can use this command to read the current settings for the hardware
streams mechanism and set a system-wide value for the DSCR. The DSCR is privileged. It
can be read or written only by the operating system.

To query the characteristics of the hardware streams on the system, run the following
command:

dscrctl -q

Here is an example of this command:

dscrctl -q
Current DSCR settings:

number_of_streams = 16
platform_default_pd = 0x5 (DPFD_DEEP)
os_default_pd = 0xd (DSCR_SSE | DPFD_DEEP)

To set the operating system default prefetch depth on the system temporarily (that is, for the
current session) or permanently (that is, after each restart), run the following command:

dscrctl [-n] [-b] -s <dscr_value>
88 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The dscr_value is treated as a decimal number unless it starts with 0x, in which case it is
treated as hexadecimal.

To cancel a permanent setting of the operating system default prefetch depth at start time, run
the following command:

dscrctl -c

Applications that have predictable data access patterns, such as numerical applications that
process arrays of data in a sequential manner, benefit from aggressive data prefetching.
These applications must run with the default operating system prefetch depth, or whichever
settings are empirically found to be the most beneficial.

Applications that have considerably unpredictable data access patterns, such as some
transactional applications, can be negatively affected by aggressive data prefetching. The
data that is prefetched is unlikely to be needed, and the prefetching uses system bandwidth
and might displace useful data from the caches. Some WebSphere Application Server and
DB2 workloads have this characteristic. Performance can be improved by disabling hardware
prefetching in these cases by running the following command:

dscrctl -n -s 1

This system (partition) wide disabling is only appropriate if it is expected to benefit all of the
applications that are running in the partition. However, the same effect can be achieved on an
application-specific basis by using the programming API.

For more information about the efficient use of cache, from the processor and OS
perspectives, see:

� 2.2.3, “Efficient use of cache and memory” on page 33 (processor)
� 6.2.3, “Efficient use of cache” on page 123 (Linux)

For more information about this topic, see 4.5, “Related publications” on page 107.

4.2.4 Transactional memory

Transactional memory (TM) is a POWER8 shared-memory synchronization construct that
allows process-threads to perform storage operations that appear to be atomic to other
process-threads and applications. One of the main uses of TM is that it speeds up the
lock-based programs through the speculative execution of lock-based, critical sections, and it
does so without first acquiring a lock. This allows applications that have not been carefully
tuned for performance to take advantage of the benefits of fine-grain locking. The
transactional programming model also provides productivity gains when developing
lock-based, shared memory programs.

Although POWER8 processor-based systems support TM, you must explicitly check for
support of TM before using the facility because the processor might be running in a
compatibility mode, or the operating system or hypervisor might not support the use of TM. In
AIX, the preferred API that determines whether TM is supported is the getsystemcfg()
system call. A new SC_TM_VER system variable setting is provided that reports whether TM is
supported. A new __power_tm() macro is provided that allows the caller to determine
whether TM is supported. For more information, see the /usr/include/sys/systemcfg.h file.
Chapter 4. IBM AIX 89

Software failure handler
Upon transaction failure, the hardware redirects control to the failure handler that is
associated with the outermost transaction. “Transaction failure” on page 43 explains this
process and provides details about how control is passed to the software failure handler and
the machine state of the status registers.

The Power Architecture Platform reserves a range of failure codes for the hypervisor, for client
operating systems, and for user applications, to indicate a failure reason when issuing a
tabort. instruction. These failure codes are noted in the following list:

� 0x00 – 0x3F is reserved for use by AIX.
� 0x40 – 0xDF is free for use by problem state (application) code.
� 0xE0 – 0xFF is reserved for use by a hypervisor.

The failure codes that are reserved by AIX to indicate the cause of the failure are defined in
/usr/include/sys/machine.h.

Debugger support
The dbx AIX debugger, found in /usr/ccs/bin/dbx, supports machine-level debugging of TM
programs. This support includes the ability to disassemble the new TM instructions, and to
display the TM SPRs.

Setting a breakpoint inside of a transaction causes the transaction to unconditionally fail
whenever the breakpoint is encountered. To determine the cause and location of a failing
transaction, the approach is to set a breakpoint on the transaction failure handler, and then to
view the TEXASR and TFIAR registers when the breakpoint is encountered.

The TEXASR, TFIAR, and TFHAR registers can be displayed by using the print
subcommand with the $texasr, $tfiar, or $tfhar parameter. The line of code that is
associated with the address that is found in TFIAR and TFHAR can be displayed by using the
list subcommand, for example:

(dbx) list at $tfiar

A new tm_status subcommand is provided that displays and interprets the contents of the
TEXASR register. This is useful in determining the nature of a transaction failure.

Tracing support
The AIX trace facility has been expanded to include a set of trace events for TM operations
that are performed by AIX, including the processing of TM-type facility unavailable interrupts,
preemptions that cause transaction failure, and other operations that can cause transaction
failure. The trace event identifier 675 can be used as input to the trace and trcrpt commands
to view TM-related trace events.

System call support
When a system call is made while a processor or thread is transactional (and the transaction
has not been suspended), the system call is not started by the AIX kernel. The associated
transaction persistently fails, and the system call handler returns control to the calling code
with an error code of ENOSYS. When this occurs, the FC field of the TEXASR register contains
the failure code TM_ILL_SC, which is defined in /usr/sys/include/machine.h.

It is assumed that any operations that are performed under a suspended transaction (when
the application programmer has explicitly suspended the transaction) are intended to be
persistent. Any operations that are performed by a system call that is made while in the
suspended state are not rolled back if the transaction fails.
90 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The reason that AIX cannot allow system calls to be made while in the transactional state is
that any operations (writes or updates, including I/O) that are performed by AIX underneath a
system call cannot be rolled back.

AIX threads library support
The use of TM is not supported for applications that use M:N threads. Undefined behavior
might be encountered by transactional threads in an environment where more than one
thread shares a single kernel thread. Usage of TM by an application that uses M:N threads
can lead to a persistent transaction failure with the failure code TM_PTH_PREEMPTED being set in
TEXASR.

Support of context management subroutines
The use of the context management subroutines, such as the libc subroutines getcontext(),
setcontext(), makecontext(), swapcontext(), setjmp(), and longjmp() are not supported
while in the transactional or suspended state. Such operations, where non-transactional
context is restored while in the transactional or suspended state or context, is saved off while
in the transactional or suspended state, and then restored while in the non-transactional
state, leads to an inconsistent state and can result in undefined behavior. Under certain
circumstances, AIX fails a transaction attempting to call such routines.

For more information about the topic of transactional memory, from the processor, OS, and
compiler perspectives, see:

� 2.2.4, “Transactional memory” on page 42 (processor)
� 6.2.4, “Transactional memory” on page 124(Linux)
� 7.3.5, “Transactional memory” on page 156 (XL and GCC compiler families)
� 8.4.2, “Transactional memory” on page 182 (Java)

4.2.5 Vector Scalar eXtension

A program can determine whether a system supports the vector extension by reading the
vmx_version field of the _system_configuration structure. If this field is nonzero, then the
system processor chips and operating system contain support for the vector extension. A
value of 1 means that the processor chips on the system are Vector Multimedia eXtension
(VMX) capable, and a value of 2 means that they are both VMX and Vector Scalar eXtension
(VSX) capable. Alternatively, the __power_vmx() and __power_vsx() macros that are provided
in /usr/include/sys/systemcfg.h can be used to perform these tests.

Vector capability support in AIX
The AIX Application Binary Interface (ABI) is extended to support the addition of vector
register state and conventions. AIX supports the AltiVec programming interface specification.

A set of malloc subroutines (vec_malloc, vec_free, vec_realloc, and vec_calloc) is provided
by AIX that give 16-byte aligned allocations. Vector-enabled compilation, with _VEC_ implicitly
defined by the compiler, result in any calls to older mallocs and callocs being redirected to
their vector-safe counterparts, vec_malloc and vec_calloc. Non-vector code can also be
explicitly compiled to pick up these same malloc and calloc redirections by explicitly defining
__AIXVEC.

The alignment of the default malloc(), realloc(), and calloc() allocations can also be
controlled at run time. This task can be done externally to any program by using the
MALLOCALIGN environment variable, or internally to a program by using the mallopt() interface
command option.15
Chapter 4. IBM AIX 91

For more information about the topic of VSX, from the processor, OS, and compiler
perspectives, see:

� 2.2.5, “Vector Scalar eXtension” on page 45 (processor)
� 5.2.3, “Vector Scalar eXtension” on page 113 (IBM i)
� 6.2.5, “Vector Scalar eXtension” on page 125 (Linux)
� 7.3.2, “Compiler support for Vector Scalar eXtension” on page 151 (XL and GCC compiler

families)

For more information about this topic, see 4.5, “Related publications” on page 107.

4.2.6 Decimal floating point

Decimal (base 10) data is widely used in commercial and financial applications. However,
most computer systems have only binary (base two) arithmetic. There are two binary number
systems in computers: integer (fixed-point) and floating point. Unfortunately, decimal
calculations cannot be directly implemented with binary floating point. For example, the value
0.1 needs an infinitely recurring binary fraction, and a decimal number system can represent
it exactly as 1/10th. So, using binary floating point cannot ensure that results are the same as
those results that use decimal arithmetic.

In general, decimal floating point (DFP) operations are emulated with binary fixed-point
integers. Decimal numbers are traditionally held in a binary-coded decimal (BCD) format.
Although BCD provides sufficient accuracy for decimal calculation, it imposes a heavy cost in
performance because it is implemented in software.

IBM Power Systems processor-based systems, starting with POWER6, provide hardware
support for DFP arithmetic. Their microprocessor cores include a DFP unit that provides
acceleration for the DFP arithmetic. The IBM Power Systems instruction set is expanded:
54 new instructions were added to support the DFP unit architecture. DFP can provide a
performance boost for applications that are using BCD calculations.

How to take advantage of DFP unit on POWER
You can take advantage of the DFP unit on POWER by using the following features:16

� Native DFP language support with a compiler

The C draft standard includes the following new data types (these are native data types,
as are int, long, float, double, and so on):

_Decimal32 Seven decimal digits of accuracy
_Decimal64 Sixteen decimal digits of accuracy
_Decimal128 Thirty-four decimal digits of accuracy

15 AIX vector programming, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.gen
progc/doc/genprogc/vector_prog.htm

16 How to compile DFPAL?, found at: http://speleotrove.com/decimal/dfpal/compile.html

Note: The printf() function uses new options to print these new data types:

� _Decimal32 uses %Hf
� _Decimal64 uses %Df
� _Decimal128 uses %DDf
92 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/vector_prog.htm
http://speleotrove.com/decimal/dfpal/compile.html

– The IBM XL C/C++ Compiler, Release 9 or later, includes native DFP language
support. Here is a list of compiler options for IBM XL compilers that are related to DFP:

• -qdfp: Enables DFP support. This option makes the compiler recognize DFP literal
suffixes, and the _Decimal32, _Decimal64, and _Decimal128 keywords.

• -qfloat=dfpemulate: Instructs the compiler to use calls to library functions to
handle DFP computation, regardless of the architecture level. You might experience
performance degradation when you use software emulation.

• -qfloat=nodfpemulate (the default when the -qarch flag specifies POWER6,
POWER7, or POWER8): Instructs the compiler to use DFP hardware instructions.

• -D__STDC_WANT_DEC_FP__: Enables the referencing of DFP-defined symbols.

For hardware supported DFP, with -qarch=pwr6, -qarch=pwr7, or -qarch=pwr8, run the
following command:

cc -qdfp

For software emulation of DFP (on earlier processor chips), run the following
command:

cc -qdfp -qfloat=dfpemulate

– The GCC compilers for Power Systems also include native DFP language support.

Here is a list of GCC compiler options that are related to DFP:

• -mhard-dfp (the default when -mcpu=power6 or -mcpu=power7 is specified): Instructs
the compiler to take direct advantage of DFP hardware instructions for decimal
arithmetic.

• -mno-hard-dfp: Instructs the compiler to use calls to library functions to handle DFP
computation, regardless of the architecture level. If your application is dynamically
linked to the libdfp variant and running on POWER6 or POWER7 processor-based
systems, then the run time automatically binds to the libdfp variant implemented
with hardware DFP instructions. Otherwise, the software DFP library is used. You
might experience performance degradation when you use software emulation.

• -D__STDC_WANT_DEC_FP__: Enables the reference of DFP defined symbols.

� Decimal Floating Point Abstraction Layer (DFPAL), which is a no additional cost,
downloadable library from IBM.17

Many applications that are using BCD today use a library to perform math functions.
Changing to a native data type can be hard work, after which you might have an issue with
one code set for AIX on POWER6, POWER7, or POWER8 processor-based systems, and
one for other platforms that do not support native DFP. The solution to this problem is
DFPAL, which is an alternative to the native support. DFPAL contains a header file to
include in your code and the DFPAL library.

The header file is downloadable from General Decimal Arithmetic at
http://speleotrove.com/decimal/ (search for “DFPAL”). Download the complete source
code, and compile it on your system.

If you have hardware support for DFP, use the library to access the functions.

If you do not have hardware support (or want to compare the hardware and software
emulation), you can force the use of software emulation by setting a shell variable before
you run your application by running the following command:

export DFPAL_EXE_MODE=DNSW

17 Ibid
Chapter 4. IBM AIX 93

http://speleotrove.com/decimal/

Determining whether your applications are using DFP
There are two AIX commands that are used for monitoring:

� hpmstat (for monitoring the whole system)
� hpmcount (for monitoring a single program)

The PM_DFU_FIN (DFU instruction finish) field in the output of the hpmstat and hpmcount
commands verifies that the DFP operations finished.

The -E PM_MRK_DFU_FIN option in the tprof command uses the AIX trace subsystem, which
tells you which functions are using DFP and how often.

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.6, “Decimal floating point” on page 47 (processor)
� 5.2.4, “Decimal floating point” on page 113 (IBM i)
� 6.2.6, “Decimal floating point” on page 126 (Linux)

For more information about this topic, see 4.5, “Related publications” on page 107.

4.2.7 On-chip encryption accelerator

When the AIX operating system runs on POWER7+ or POWER8 processors, it transparently
uses on-chip encryption accelerators. For each of the uses that are described in this section,
there are no application visible changes or awareness required.

AIX encrypted file system
Integrated with the AIX Journaled File System (JFS2) is the ability to create an encrypted file
system (EFS) where all data at rest in the file system is encrypted. When AIX EFS runs on
POWER7+ or POWER8 processor-based systems, it uses the encryption accelerators, which
can show up to a 40% advantage in file system I/O-intensive operations. Applications do not
need to be aware of this situation, but application and workload deployments might be able to
take advantage of higher levels of security by using AIX EFS for sensitive data.

AIX Internet Protocol Security
When Internet Protocol Security (IPSec) is enabled on AIX running on POWER7+ or
POWER8 processor-based systems, AIX transparently uses the on-chip encryption
accelerators for all data in transit. The advantage that is provided by the accelerators is more
pronounced when jumbo frames (a maximum transmission unit (MTU) of 9000 bytes) are
used. Applications do not need to be aware of this situation, but application and workload
deployments might be able to take advantage of higher levels of security by enabling IPSec.

AIX /dev/random (random number generation)
AIX capitalizes on the on-chip random number generator on POWER7+ and POWER8
processors. Applications that use the AIX special files /dev/random or /dev/urandom
transparently get the advantages of stronger hardware-based random numbers. If an
application is making high frequency usage of random number generation, there can also be
a performance advantage.
94 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

AIX PKCS11 Library
On POWER7+ and POWER8 processor-based systems, the AIX operating system PKCS11
library transparently uses the on-chip encryption accelerators. For an application that uses
the PKCS11 APIs, no change or awareness by the application is required. The AIX library
interfaces dynamically decide, based on the algorithm and data size, when to use the
accelerators. Because of the cost of setup and programming of the on-chip accelerators, the
advantage is limited to operations on large blocks of data (tens to hundreds of kilobytes).

For more information about this topic, from the processor perspective, see 2.2.8, “On-chip
accelerators” on page 48 (processor).

4.3 AIX operating system-specific optimizations

This section describes optimization methods that are specific to AIX.

4.3.1 Malloc

Every application needs a fast, scalable, and memory efficient allocator. However, each
application’s memory request patterns are different. It is difficult to provide one common
allocator or tunable that can satisfy the needs of all applications. AIX provides different
memory allocators and suboptions within the allocator so that a system administrator or
developer can choose more suitable settings for their application. This section explains the
available choices and when to choose them.

Memory allocators
AIX provides three different allocators, and each of them uses a different memory
management algorithm and data structures. These allocators work independently, so the
application developer must choose one of them by exporting the MALLOCTYPE environment
variable. The allocators are:

� Default allocator

The default allocator is selected when the MALLOCTYPE environment variable is unset. This
setting maintains a consistent performance, even in a worst case scenario, but might not
be as memory-efficient as a Watson allocator. This allocator is ideal for 32-bit applications,
which do not make frequent calls to malloc().

� Watson allocator

This allocator is selected when MALLOCTYPE=watson is set. This allocator is designed for
64-bit applications. It is memory efficient, scalable, and provides good performance. This
allocator has a built-in bucket component for allocation requests up to 512 bytes. Table 4-5
provides the mapping for the allocation requests to bucket size.

Table 4-5 Mapping for allocation requests to bucket size

Request
size

Bucket
size

Request
size

Bucket
size

Request
size

Bucket
size

Request
size

Bucket
size

1 - 4 33-40 40 129-144 144 257-288 288

5 - 8 41 - 48 48 145 - 160 160 289 - 320 320

9 - 12 12 49 - 56 56 161 - 176 176 321 - 352 352

13 - 16 16 57 - 64 64 177 - 192 192 353 - 384 384

17 - 20 20 65 - 80 80 193 - 208 208 385 - 416 416
Chapter 4. IBM AIX 95

This allocator is ideal for 64-bit memory-intensive applications.

� Malloc 3.1 allocator

This allocator is selected when MALLOCTYPE=3.1 is set. This is a bucket allocator that
divides the heap into 28 hash buckets, each with a size of 2 pow (x+4), where x stands for
bucket index. This allocator provides the best performance at the cost of memory. In most
cases, this algorithm can use as much as twice the amount of memory that is requested
by the application. In addition, an extra page is required for buckets larger than 4096 bytes
because objects of a page in size or larger are page-aligned. Interestingly, some earlier
customer applications still use this allocator, as it is more tolerant for application memory
overwrite bugs.

Memory allocator suboptions
There are many suboptions available that can be selected by exporting the MALLOCOPTIONS
environment variable. This section covers a few of the suboptions that are more relevant to
performance tuning. For a complete list of options, see System memory allocation using the
malloc subsystem, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.
aix.genprogc/doc/genprogc/sys_mem_alloc.htm

� Multiheap

By default, the malloc subsystem uses a single heap, which causes lock contention for
internal locks that are used by malloc in case of multi-threaded applications. By enabling
this option, you can configure the number of parallel heaps to be used by allocators. You
can set the multiheap by exporting MALLOCOPTIONS=multipheap[:n], where n can vary
between 1- 32 and 32 is the default if n is not specified.

Use this option for multi-threaded applications, as it can improve performance.

� Buckets

This suboption is similar to the built-in bucket allocator of the Watson allocator. However,
with this option, you can have fine-grained control over the number of buckets, number of
blocks per bucket, and the size of each bucket. This option also provides a way to view the
usage statistics of each bucket, which be used to refine the bucket settings.

If the application has many requests of the same size, then the bucket allocator can be
configured to preallocate the required size by correctly specifying the bucket options. The
block size can go beyond 512 bytes, compared to the Watson allocator or malloc pool
options.

You can enable the buckets allocator by exporting MALLOCOPTIONS=buckets. Details about
the buckets options for fine-grained control are available18. Enabling the buckets allocator
turns off the built-in bucket component if the Watson allocator is used.

21 - 24 24 81 - 96 96 209 - 224 224 417 - 448 448

25 - 28 28 97 - 112 112 224 - 240 240 449 - 480 480

29 - 32 32 113 - 128 128 241 - 256 256 481 - 512 512

18 System memory allocation using the malloc subsystem, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/gen
progc/sys_mem_alloc.htm
96 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/sys_mem_alloc.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/sys_mem_alloc.htm

� malloc pools

This option enables a high performance front end to malloc subsystem for managing
storage objects smaller than 513 bytes. This suboption is similar to the built-in bucket
allocator of the Watson allocator. However, this suboption maintains the bucket for each
thread, providing lock-free allocation and deallocation for blocks smaller than 513 bytes.
This suboption improves the performance for multi-threaded applications, as the time
spent on locking is avoided for blocks smaller than 513 bytes.

The pool option makes small memory block allocations fast (no locking) and memory
efficient (no header on each allocation object). The pool malloc both speeds up
single-threaded applications, and improves the scalability of multi-threaded applications.

� malloc disclaim

By enabling this option, free() automatically disclaims memory. This suboption is useful
for reducing the paging space requirement. This option can be set by exporting
MALLOCOPTIONS=disclaim.

Use cases
Here are some uses cases that you can use to set up your environment:

� For a 32-bit single-threaded application, use the default allocator.

� For a 64-bit application, use the Watson allocator.

� Multi-threaded applications use the multiheap option. Set the number of heaps
proportional to the number of threads in the application.

� For single-threaded or multi-threaded applications that make frequent allocation and
deallocation of memory blocks smaller than 513, use the malloc pool option.

� For a memory usage pattern of the application that shows high usage of memory blocks of
the same size (or sizes that can fall to common block size in bucket option) and sizes
greater than 512 bytes, use the configure malloc bucket option.

� For older applications that require high performance and do not have memory
fragmentation issues, use malloc 3.1.

� Ideally, the Watson allocator, along with the multiheap and malloc pool options, is good
for most multi-threaded applications. The pool front end is fast and scalable for small
allocations, and with multiheap, ensures scalability for larger and less frequent allocations.

� If you notice high memory usage in the application process even after you run free(), the
disclaim option can help.

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.2 Pthread tunables

The AIX pthread library can be customized with a set of environment variables. Specific
variables that improve scaling and CPU usage are listed here. A full description is provided in
the following settings:

� AIXTHREAD_SCOPE={P|S}

The P option signifies a process-wide contention scope (M:N), and the S option signifies a
system-wide contention scope (1:1). Use system scope (1:1) for AIX. Although process
scope (M:N) continues to be supported, it is no longer being enhanced in AIX.
Chapter 4. IBM AIX 97

� SPINLOOPTIME=n

The SPINLOOPTIME variable controls the number of times the system tries to get a busy
mutex or spin lock without taking a secondary action, such as calling the kernel to yield the
process. This control is intended for MP systems, where it is hoped that the lock that is
held by another actively running pthread is released. The parameter works only within
libpthreads (user threads). If locks are available within a short period, you might want to
increase the spin time by setting this environment variable. The number of times to try a
busy lock before yielding to another pthread is n. The default is 40 and n must be a
positive value.

� YIELDLOOPTIME=n

The YIELDLOOPTIME variable controls the number of times that the system yields the logical
processor when it tries to acquire a busy mutex or spin lock before it goes to sleep on the
lock. The logical processor is yielded to another kernel thread, assuming that there is
another executable thread with sufficient priority. This variable is effective in complex
applications, where multiple locks are in use. The number of times to yield the logical
processor before blocking on a busy lock is n. The default is 0 and n must be a positive
value.

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.3 pollset

AIX 5L V5.3 introduced the pollset APIs. Pollsets are an AIX replacement for UNIX select()
and poll(). Pollset, select(), and poll() all allow an application to query efficiently the
status of file descriptors. This action is typically done to allow a single application to multiplex
I/O across many file descriptors. Pollset APIs can be more efficient when the number of file
descriptors that are queried becomes large.

Efficient I/O event polling through the pollset interface on AIX contains a pollset summary and
outlines the most advantageous use of Java. To see this document, go to the following
website:

http://www.ibm.com/developerworks/aix/library/au-pollset/index.html

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.4 File system performance benefits

AIX JFS2 is the default file system for 64-bit kernel environments. Applications can capitalize
on the features of JFS2 for better performance.

4.3.5 Direct I/O

The AIX read-ahead and write-behind JFS2 feature might not be suitable for applications that
perform large-sized I/O operations, as the cache hit ratio is low. In those cases, an application
developer must evaluate Direct I/O for I/O-intensive applications.

Programs that are good candidates for direct I/O are typically CPU-limited and perform much
disk I/O. Technical applications that have large sequential I/Os are good candidates.
Applications that benefit from striping are also good candidates.
98 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/developerworks/aix/library/au-pollset/index.html

The direct I/O access method bypasses the file cache and transfers data directly from disk
into the user space buffer, as opposed to using the normal cache policy of placing pages in
kernel memory.

At the user level, file systems can be mounted by using the dio option with the mount
command.

At the programming level, applications enable direct I/O access to a file by passing the
O_DIRECT flag to the open subroutine. This flag is defined in the fcntl.h file. Applications must
be compiled with _ALL_SOURCE enabled to see the definition of O_DIRECT.

For more information, see Working with file I/O, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v6r1/index.jsp?topi
c=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc%2Fworking_file_io.htm

4.3.6 Concurrent I/O

An AIX JFS2 inode lock imposes write serialization at the file level. Serializing write accesses
prevents data inconsistency because of overlapping writes. Serializing reads regarding writes
ensures that the application does not read stale data.

However, some applications can choose to implement their own data serialization, usually at
a finer level of granularity than the file. Therefore, they do not need the file system to
implement this serialization for them. The inode lock hinders performance in such cases by
unnecessarily serializing non-competing data accesses. For such applications, AIX offers the
concurrent I/O (CIO) option. Under CIO, multiple threads can simultaneously perform reads
and writes on a shared file. For applications that do not enforce serialization for accesses to
shared files, do not use CIO, as it can result in data corruption because of competing
accesses.

Enhanced JFS supports concurrent file access to files. Similar to direct I/O, this access
method bypasses the file cache and transfers data directly from disk into the user space
buffer.

CIO can be specified for a file either by running mount -o cio or by using the open() system
call (by using O_CIO as the OFlag parameter).

4.3.7 Asynchronous I/O

If an application does a synchronous I/O operation, it must wait for the I/O to complete. In
contrast, asynchronous I/O operations run in the background and do not block user
applications, which improves performance because I/O operations and applications
processing can run simultaneously. Many applications, such as databases and file servers,
take advantage of the ability to overlap processing and I/O.

Applications can use the aio_read(), aio_write(), or lio_listio() subroutines (or their
64-bit counterparts) to perform asynchronous disk I/O. Control returns to the application from
the subroutine when the request is queued. The application can then continue processing
while the disk operation is being performed.
Chapter 4. IBM AIX 99

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v6r1/index.jsp?topic=%2Fcom.ibm.aix.genprogc%2Fdoc%2Fgenprogc%2Fworking_file_io.htm

4.3.8 I/O completion ports

A limitation of the AIO interface that is used in a threaded environment is that aio_nwait()
collects completed I/O requests for all threads in the same process. One thread collects
completed I/O requests that are submitted by another thread.

Another limitation is that multiple threads cannot start the collection routines (such as
aio_nwait()) at the same time. If one thread issues aio_nwait() when another thread is
calling it, the second aio_nwait() returns EBUSY. This limitation can affect I/O performance
when many I/Os must run at the same time and a single thread cannot run fast enough to
collect all the completed I/Os.

On AIX, using I/O completion ports with AIO requests provides the capability for an
application to capture the results of various AIO operations on a per-thread basis in a
multi-threaded environment. This function provides threads with a method of receiving a
completion status for only the AIO requests that are initiated by the thread.

You can enable IOCP on AIX by running smitty iocp. Verify that IOCP is enabled by running
the following command:

lsdev -Cc iocp

The resulting output is shown in the following example:

iocp0 Available I/O Completion Ports

4.3.9 shmat versus mmap

Memory-mapped files provide a mechanism for a process to access files by directly
incorporating file data into the process address space. The use of mapped files can reduce
I/O data movement because the file data does not have to be copied into process data
buffers, as is done by the read and write subroutines. When more than one process maps the
same file, its contents are shared among them, providing a low-impact mechanism by which
processes can synchronize and communicate.

AIX provides two methods for mapping files and anonymous memory regions. The first set of
services, which are known collectively as the shmat services, are typically used to create and
use shared memory segments from a program. The second set of services, which are known
collectively as the mmap services, is typically used for mapping files, although it can be used
for creating shared memory segments as well.

Both the mmap and shmat services provide the capability for multiple processes to map the
same region of an object so that they share addressability to that object. However, the mmap
subroutine extends this capability beyond that provided by the shmat subroutine by allowing a
relatively unlimited number of such mappings to be established. Although this capability
increases the number of mappings that are supported per file object or memory segment, it
can prove inefficient for applications in which many processes map the same file data into
their address space. The mmap subroutine provides a unique object address for each process
that maps to an object. The software accomplishes this task by providing each process with a
unique virtual address, which is known as an alias. The shmat subroutine allows processes to
share the addresses of the mapped objects.

shmat can be used to share memory segments in a way that is similar to how it creates and
uses files. An extended shmat capability is available for 32-bit applications with their limited
address spaces. If you define the EXTSHM=ON environment variable, then processes running in
that environment can create and attach more than 11 shared memory segments.
100 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Use the shmat services under the following circumstances:

� When mapping files larger than 256 MB

� When mapping shared memory regions that must be shared among unrelated processes
(no parent-child relationship)

� When mapping entire files

In general, shmat is more efficient but less flexible.

Use mmap under the following circumstances:

� Many files are mapped simultaneously.
� Only a portion of a file must be mapped.
� Page-level protection must be set on the mapping (allows a 4 K boundary).

For more information, see General Programming Concepts: Writing and Debugging
Programs, found at:

http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/underst
anding_mem_mapping.htm

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.10 Large segment tunable aliasing (LSA)

AIX V6.1 TL5 and AIX V7.1 introduce the 1 TB Segment Aliasing. 1 TB segments can
improve the performance of 64-bit large memory applications. The optimization is specific to
large shared memory (shmat() and mmap()) regions.

1 TB segments are a feature present in POWER5+ and later processor-based systems. They
can be used to reduce Segment Lookaside Buffer (SLB) misses, and increase the reach of
the SLB, reducing the impact of effective-to-virtual address to real translation impact.
Applications that are 64-bit and that have large shared memory regions can benefit from
incorporating 1 TB segments. This feature is enabled by default on AIX V7.1, but can be
enabled by using the vmo command to adjust the esid_allocator tunable.

An overview of 1 TB segment usage can be found in IBM AIX Version 7.1 Differences Guide,
SG24-7910.

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.11 64-bit versus 32-bit ABIs

AIX provides complete support for both 32-bit and 64-bit ABIs. Applications can be developed
by using either ABI with some performance trade-offs. The 64-bit ABI provides more scaling
benefits. With both ABIs, there are performance trade-offs to be considered.

Overview of 64-bit/32-bit ABI
All current POWER processors support a 32-bit and 64-bit execution mode. The 32-bit
execution mode is a subset of the 64-bit execution mode. The modes are similar, where the
most significant difference is addresses in address generation (effective addresses are
truncated to 32 bits) and computation of some fixed-point status registers (carry, overflow,
and so on). Although hardware 32-bit/64-bit mode does not affect performance, the
32-bit/64-bit ABIs that are provided by AIX do have performance implications and tradeoffs.
Chapter 4. IBM AIX 101

http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/understanding_mem_mapping.htm

The 32-bit ABI provides an ILP32 model (32-bit integers, longs, and pointers). The 64-bit ABI
provides an LP64 model (32-bit integer and 64-bit longs/pointers). Although current POWER
CPUs have 64-bit fixed-point registers, they are treated as 32-bit fixed-point registers by the
ABI (the high 32 bits of all fixed-point registers are treated as volatile or undefined by the ABI).
The 32-bit ABI preserves only 32-bit fixed-point context across subroutine linkage, non-local
goto (longjmp()), or signal delivery. 32-bit programs cannot attempt to use 64-bit registers
when they run in 32-bit mode (32-bit ABI). In general, other registers (floating point, vector,
and status registers) are the same size in both 32-bit/64-bit ABIs.

Starting with AIX V6.1, all supervisor code (kernel, kernel extensions, and device drivers)
uses the 64-bit ABI. In general, a unified system call interface is provided to applications that
provides efficient system call linkage to both 32-bit and 64-bit applications. Because the
AIX V6.1 kernel is 64-bit, it implies that all systems supported by AIX V6.1 support the 64-bit
ABI. Some older IBM PowerPC CPUs supported on AIX 5L V5.3 cannot run the 64-bit ABI.

Operating system libraries provide both 32-bit and 64-bit objects, allowing full support for
either ABI. Development tools (assembly language, linker, and debuggers) support both ABIs.

Trade-offs
The primary motivation to choose the 64-bit ABI is to go beyond the 4 GB directly memory
addressability barrier. A second reason is to improve scalability by extending some 32-bit
data type limits that are in the 32-bit ABI (time_t, pid_t, and offset_t). Lastly, 64-bit mode
provides access to 64-bit fixed-point registers and instructions that can improve the
performance of specific fixed-point operations (long long arithmetic and 64-bit memory
copies).

The 64-bit ABI does have some performance drawbacks, such as the 64-bit fixed-point
registers and the LP64 model grow stack usage and data structures. These items can cause
a performance drawback for some applications. Also, 64-bit text is larger for most compiles,
producing a larger i-cache footprint.

The most significant issue is typically the porting effort (for existing applications), as changing
between ILP32 and LP64 normally requires a port. Large memory addressability and
scalability are normally the deciding factor when you chose an application execution model.

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.12 Sleep and wake-up primitives (thread_wait and thread_post)

AIX provides proprietary thread_wait() and thread_post() APIs that can be used to
optimize thread synchronization and communication in instructions per cycle (IPC). AIX also
provides several standard APIs that can be used for thread synchronization and
communication. These APIs include pthread_cond_wait(), pthread_cond_signal(), and
semop(). Although many applications use these standard APIs, the low-level primitives are
available to optimize these operations. thread_wait() and thread_post() can be used to
optimize critical applications services, such as user-mode locking or message passing. They
are more efficient than the portable/standard APIs.
102 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The following list has more information about the associated subroutines:

� thread_wait

The thread_wait subroutine allows a thread to wait or block until another thread posts it
with the thread_post or the thread_post_many subroutine or until the time limit that is
specified by the timeout value expires.

If the event for which the thread is waiting and for which it is posted occurs only in the
future, the thread_wait subroutine can be called with a timeout value of 0 to clear any
pending posts. This action can be accomplished by running the following command:

thread_wait (timeout)

� thread_post

The thread_post subroutine posts the thread whose thread ID is indicated by the value of
the tid parameter, of the occurrence of an event. If the posted thread is waiting in
thread_wait, it is awakened immediately. If it is not waiting in thread_wait, the next call to
thread_wait is not blocked, but returns with success immediately.

Multiple posts to the same thread without an intervening wait by the specified thread
counts only as a single post. The posting remains in effect until the indicated thread calls
the thread_wait subroutine, upon which the posting is cleared.

� thread_post_many

The thread_post_many subroutine posts one or more threads of the occurrence of the
event. The number of threads to be posted is specified by the value of the nthreads
parameter, and the tidp parameter points to an array of thread IDs of threads that must be
posted. The subroutine works just like the thread_post subroutine, but can be used to
post to multiple threads at the same time. A maximum of 512 threads can be posted in one
call to the thread_post_many subroutine.

For more information about this topic, see 4.5, “Related publications” on page 107.

4.3.13 Shared versus private loads

You can use AIX to share text for libraries and dynamically loaded modules. File permissions
can be used to enable and disable sharing of loaded text.

Documentation
AIX provides optimizations that enable sharing of loaded text (libraries and dynamically
loaded modules). Sharing text among processes often improves performance because it
reduces resource usage (memory and disk space). It also allows unrelated software-threads
to share cache space when they run concurrently. Lastly, it can reduce load times when the
code is already loaded by a previous program.

Applications can control whether private or shared loads are performed to shared text
regions. Shared loads require that execute permissions be set for group/other on the text files.
As a preferred practice, enable sharing.

For more information about this topic, see 4.5, “Related publications” on page 107.
Chapter 4. IBM AIX 103

4.3.14 Workload partition shared licensed program installations

Starting with AIX V6.1, the workload partition (WPAR) feature gives the system administrator
the ability to create easily an isolated AIX operating system that can run services and
applications. WPAR provides a secure and isolated environment for enterprise applications in
terms of process, signal, and file system space. Any software that is running within the
context of a workload partition appears to have its own separate instance of AIX.

The usage of multiple virtual operating systems within a single global operating environment
can have multiple advantages. It increases administrative efficiency by reducing the number
of AIX instances that must be maintained.

Applications can be installed in a shared environment or a non-shared environment. When an
application is installed in a shared environment, it means that it is installed in the global
environment and then the application is shared with one or more WPARs. When an
application is installed in a non-shared environment, it means that it is installed in the WPAR
only. Other WPARs do not have access to that application.

Shared workload partition installation
A shared installation is straightforward because installing software in the global environment
is accomplished in the normal manner. What must be considered is whether the system
WPARs that share a single installation will interfere with each other’s operation.

For software to function correctly in a shared-installation environment, the software package
must be split into shareable and non-shareable files:

� Shareable files (such as executable code and message catalogs) must be installed into
the shared global file systems that are read-only to all system WPARs.

� Non-shareable files (such as configuration and runtime-modifiable files) must be installed
into the file systems that are writable to individual WPARs. This configuration allows
multiple WPARs to share a single installation, yet still have unique configuration and
runtime data.

In addition to splitting the software package, the software installation process must include a
synchronization step to install non-shareable files into system WPARs. To accomplish this
task, the application must provide a means to encapsulate the non-shareable files within the
shared global file systems so that the non-shared files can be extracted into the WPAR by
some means. For example, if a vendor creates a custom-installation system that delivers files
into /usr and /, then the files that are delivered into / must be archived within /usr and then
extracted into / by using some vendor-provided mechanism. This action can occur
automatically the first time that the application is started or configured.

Finally, the software update process must work so that the shareable and non-shareable files
stay synchronized. If the shared files in the global AIX instance are updated to a certain fix
level, then the non-shared files in individual WPARs also must be updated to the same level.
Either the update process discovers all the system WPARs that must be updated or, at start
time, the application detects the out-of-synchronization condition and applies the update.
Some software products manage to never change their non-sharable files in their update
process, so they do not need any special handling for updates.

Note: WPARs can be considered the AIX version of containers, and were invented before
Linux Docker containers. Thus, the use case of WPARs has some commonalities with
Docker containers.
104 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

This type of installation sometimes takes a little effort on the part of the application, but it
allows you to get the most value from using WPARs. If there is a need to run the same version
of the software in several WPARs, this type of installation provides the following benefits:

� It increases administrative efficiency by reducing the number of application instances that
users must maintain. The administrator saves time in application-maintenance tasks, such
as applying fixes and performing backups and migrations.

� It allows users to deploy quickly multiple instances of the same application, each in its own
secure and isolated environment. It can take only a matter of minutes to create and start a
WPAR to run a shared installation of the application.

� By sharing one AIX or application image among multiple WPARs, the memory resource
usage is reduced because only one copy of the application image is in real memory.

For more information about WPAR, see WPAR concepts, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.
aix.wpar/wpar-overview.htm

For more information about the topic of operating system-specific optimizations, from the IBM
i and Linux perspectives, see:

� 5.3, “IBM i operating system-specific optimizations” on page 114 (IBM i)
� 6.3, “Linux operating system-specific optimizations” on page 129 (Linux)

4.4 AIX preferred practices

This section describes AIX preferred practices, and includes these subsections:

� 4.4.1, “AIX preferred practices that are applicable to all Power Systems generations” on
page 105

� 4.4.2, “AIX preferred practices that are applicable to POWER7 and POWER8
processor-based systems” on page 106 systems

4.4.1 AIX preferred practices that are applicable to all Power Systems
generations

Preferred practices for the installation and configuration of all Power Systems generations are
noted in the following list:

� If this server is a VIOS, then run the VIO Performance Advisor on the VIOS. Instructions
are available for Virtual I/O Server Advisor at the following website:

http://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20S
ystems/page/VIOS%20Advisor

For more information, see “VIOS Performance Advisor” on page 217.

� For logical partitions (LPARs) with Java applications, run and evaluate the output from the
Java Performance Advisor, which can be run on POWER5 and POWER6 processor-based
systems, to determine whether there is an existing issue before you migrate to a POWER7
processor-based systems. Instructions are available for Java Performance Advisor (JPA)
at the following website:

https://www.ibm.com/developerworks/community/wikis/home/wiki/Power%20Systems/pa
ge/Java%20Performance%20Advisor%20(JPA)

For more information, see “Java Performance Advisor” on page 219.
Chapter 4. IBM AIX 105

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.wpar/wpar-overview.htm
http://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/VIOS%20Advisor
https://www.ibm.com/developerworks/community/wikis/home/wiki/Power%20Systems/page/Java%20Performance%20Advisor%20(JPA)

� For virtualized environments, you can also use the IBM PowerVM Virtualization
Performance Advisor. Instructions for the IBM PowerVM Virtualization Performance
Advisor are found at the following website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20
Systems/page/PowerVM%20Virtualization%20Performance%20Advisor

For more information, see “Virtualization Performance Advisor” on page 218.

� The number of online virtual CPUs of a single LPAR cannot exceed the number of active
CPUs in a pool. See the output of lparstat –i from the LPAR to see the values for online
virtual CPUs and active CPUs in pool.

� IBM maintains a strong focus on the quality and reliability of Power Systems servers. To
maintain this reliability, the currency of Licensed Internal Code levels on your systems is
critical. Therefore, apply the latest Power Systems Firmware and management console
levels as soon as possible. These service pack updates contain a collective number of
High Impact or PERvasive (HIPER) fixes that continue to provide you with the system
availability you expect from Power Systems.

� When you install firmware from the HMC, avoid the do not auto accept option. Selecting
this advanced option can cause firmware installation problems.

� Subscribe to My Notifications to provide you with customizable communications that
contain important news, new or updated support content, such as publications, hints, and
tips, technical notes, product flashes (alerts), downloads, and drivers.

4.4.2 AIX preferred practices that are applicable to POWER7 and POWER8
processor-based systems

This section covers the AIX preferred practices that are applicable to POWER7 and POWER8
processor-based systems.

Preferred practices for installation and configuration
Preferred practices for installation and configuration are noted in the following list:

� To ensure that your system conforms to the minimum requirements, see Chapter 3, “The
IBM POWER Hypervisor” on page 57 and the references that are provided for that chapter
(see 4.5, “Related publications” on page 107).

� Review the POWER7 Virtualization Best Practice Guide, found at:

https://www.ibm.com/developerworks/wikis/download/attachments/53871915/P7_virtu
alization_bestpractice.doc?version=1

� For POWER7 and POWER7+ processor-based systems, review the “Active System
Optimizer/Dynamic System Optimizer” section in POWER7 and POWER7+ Optimization
and Tuning Guide, SG24-8079 to identify whether those optimizations are useful.

For more information about this topic, see 4.5, “Related publications” on page 107.
106 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/PowerVM%20Virtualization%20Performance%20Advisor
https://www.ibm.com/developerworks/wikis/download/attachments/53871915/P7_virtualization_bestpractice.doc?version=1

4.5 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� 1 TB Segment Aliasing, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.prftungd/doc/prftungd/1TB_segment_aliasing.htm

� AIX 64-bit Performance in Focus, SG24-5103

� AIX dscr_ctl API sample code, found at:

https://www.power.org/documentation/performance-guide-for-hpc-applications-on-i
bm-power-755-system/ (registration required)

� AIX Version 7.1 Release Notes, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.ntl/RELNOTES/GI11-9815-00.htm

Refer to the “The dscrctl command” section.

� Application configuration for large pages, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.prftungd/doc/prftungd/config_apps_large_pages.htm

� AIX Linking and Loading Mechanisms, found at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/aix/es-aix_ll.pdf

� Efficient I/O event polling through the pollset interface on AIX, found at:

http://www.ibm.com/developerworks/aix/library/au-pollset/index.html

� Exclusive use processor resource sets, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.baseadmn/doc/baseadmndita/excluseprocrecset.htm

� execrset command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.cmds/doc/aixcmds2/execrset.htm

� General Programming Concepts: Writing and Debugging Programs, found at:

http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/unde
rstanding_mem_mapping.htm

� IBM AIX Version 7.1 Differences Guide, SG24-7910

See 1.2, “Improved performance using 1 TB segments”

� load and loadAndInit Subroutines, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.basetechref/doc/basetrf1/load.htm

� sync (Synchronize) or dcs (Data Cache Synchronize) instruction, including information
about sync and lwsync (lightweight sync), found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.aixassem/doc/alangref/idalangref_sync_dcs_instrs.htm

� mkrset Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.cmds/doc/aixcmds3/mkrset.htm
Chapter 4. IBM AIX 107

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/1TB_segment_aliasing.htm
https://www.power.org/documentation/performance-guide-for-hpc-applications-on-ibm-power-755-system/
https://www.power.org/documentation/performance-guide-for-hpc-applications-on-ibm-power-755-system/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.ntl/RELNOTES/GI11-9815-00.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/config_apps_large_pages.htm
http://download.boulder.ibm.com/ibmdl/pub/software/dw/aix/es-aix_ll.pdf
http://www.ibm.com/developerworks/aix/library/au-pollset/index.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.baseadmn/doc/baseadmndita/excluseprocrecset.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.cmds/doc/aixcmds2/execrset.htm
http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/understanding_mem_mapping.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/load.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.aixassem/doc/alangref/idalangref_sync_dcs_instrs.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.cmds/doc/aixcmds3/mkrset.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.cmds/doc/aixcmds3/mkrset.htm

� Multiprocessing, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.prftungd/doc/prftungd/intro_mulitproc.htm

� Oracle Database and 1 TB Segment Aliasing, found at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD105761

� pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and pollset_query Subroutines,
found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.basetechref/doc/basetrf1/pollset.htm

� The Performance of Runtime Data Cache Prefetching in a Dynamic Optimization System,
found at:

http://www.microarch.org/micro36/html/pdf/lu-PerformanceRuntimeData.pdf

� POWER6 Decimal Floating Point (DFP), found at:

http://www.ibm.com/developerworks/wikis/display/WikiPtype/Decimal+Floating+Poin
t

� POWER7 Virtualization Best Practice Guide, found at:

https://www.ibm.com/developerworks/wikis/download/attachments/53871915/P7_virtu
alization_bestpractice.doc?version=1

� ra_attach Subroutine, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=%2Fcom.ibm.aix.basetechref%2Fdoc%2Fbasetrf2%2Fra_attach.htm

� Shared library memory footprints on AIX 5L, found at:

http://www.ibm.com/developerworks/aix/library/au-slib_memory/index.html

� Simultaneous multithreading, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.i
bm.aix.genprogc/doc/genprogc/smt.htm

� splat Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.cmds/doc/aixcmds5/splat.htm

� trace Daemon, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.cmds/doc/aixcmds5/trace.htm

� thread_post Subroutine, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.basetechref/doc/basetrf2/thread_post.htm

� thread_post_many Subroutine, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.basetechref/doc/basetrf2/thread_post_many.htm

� thread_wait Subroutine, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.basetechref/doc/basetrf2/thread_wait.htm
108 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/intro_mulitproc.htm
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD105761
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf1/pollset.htm
http://www.microarch.org/micro36/html/pdf/lu-PerformanceRuntimeData.pdf
http://www.ibm.com/developerworks/wikis/display/WikiPtype/Decimal+Floating+Point
https://www.ibm.com/developerworks/wikis/download/attachments/53871915/P7_virtualization_bestpractice.doc?version=1
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=%2Fcom.ibm.aix.basetechref%2Fdoc%2Fbasetrf2%2Fra_attach.htm
http://www.ibm.com/developerworks/aix/library/au-slib_memory/index.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/smt.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/splat.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/trace.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf2/thread_post.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf2/thread_post_many.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf2/thread_wait.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf2/thread_wait.htm

� Thread environment variables, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.prftungd/doc/prftungd/thread_env_vars.htm

� Power ISA Version 2.07, found at:

https://www.power.org/documentation/power-isa-v-2-07b/

See the following sections:

– Section 3.1: Program Priority Registers
– Section 3.2: “or” Instruction
– Section 4.3.4: Program Priority Register
– Section 4.4.3: OR Instruction
– Section 5.3.4: Program Priority Register
– Section 5.4.2: OR Instruction
– Book I – 4 Floating Point Facility
– Book I – 5 Decimal Floating Point
– Book I – 6 Vector Facility
– Book I – 7 Vector-Scalar Floating Point Operations (VSX)
– Book I – Chapter 5 Decimal Floating-Point.
– Book II – 4.2 Data Stream Control Register
– Book II – 4.3.2 Data Cache Instructions
– Book II – 4.4 Synchronization Instructions
– Book II – A.2 Load and Reserve Mnemonics
– Book II – A.3 Synchronize Mnemonics
– Book II – Appendix B. Programming Examples for Sharing Storage
– Book III – 5.7 Storage Addressing
Chapter 4. IBM AIX 109

https://www.power.org/documentation/power-isa-v-2-07b/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/thread_env_vars.htm

110 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Chapter 5. IBM i

This chapter describes the optimization and tuning of the POWER8 processor and other
Power Systems processor-based servers running the IBM i operating system. It covers the
following topics:

� 5.1, “Introduction” on page 112
� 5.2, “Using Power features with IBM i” on page 112
� 5.3, “IBM i operating system-specific optimizations” on page 114
� 5.4, “Related publications” on page 116

5

© Copyright IBM Corp. 2014, 2015. All rights reserved. 111

5.1 Introduction

IBM i provides an operating environment that emphasizes integration, security, and ease of
use.

5.2 Using Power features with IBM i

The operating system and most applications for IBM i are built on a Technology Independent
Machine Interface (TIMI) that isolates programs from differences in processor architectures,
and allows the system to automatically capitalize on many new Power Architecture features
without changes to existing programs. For example, TIMI allows a program to use decimal
floating point (DFP) on POWER5 processors (without special hardware support), and that
same program automatically uses hardware support for DFP on POWER6, POWER7, and
POWER8 processors.

IBM Portable Application Solutions Environment for i (PASE for i) is a part of IBM i that allows
some AIX application binary files to run on IBM i with little or no changes, so many
optimizations that are described for AIX are applicable to PASE for i.

5.2.1 Multi-core and multi-thread

Operating system enablement usage of multi-core and multi-thread technology varies by
operating system and release. Table 5-1 shows the maximum processor cores, threads, and
simultaneous multithreading (SMT) level for a (single) logical partition running IBM i.
Customers who need more capacity can contact IBM to request more processor cores than
are shown in Table 5-1. IBM Systems Lab Services works with clients to determine whether
IBM i can support the customer workload in a partition with a larger number of cores.

Table 5-1 Maximum processor cores, threads, and SMT level for a (single) logical partition running IBM i

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.1, “Multi-core and multi-thread” on page 28 (processor)
� 4.2.1, “Multi-core and multi-thread” on page 72 (AIX)
� 6.2.1, “Multi-core and multi-thread” on page 119 (Linux)

Simultaneous multithreading
Smultaneous multithreading (SMT) is a feature of the Power Architecture and is described in
“Simultaneous multithreading” on page 29.

Release POWER6 processor-based
systems

POWER7 processor-based
systems

POWER8 processor-based
systems

IBM i 6.1 32 Cores / 64 Threads / SMT2 Not supported Not supported

IBM i 6.1.1 32 Cores / 64 Threads / SMT2 32 Cores / 128 Threads / SMT4 Not supported

IBM i 7.1 TR8 32 Cores / 64 Threads / SMT2 32 Cores / 128 Threads / SMT4 32 Cores / 256 Threads / SMT8

IBM i 7.2 32 Cores / 64 Threads / SMT2 32 Cores / 128 Threads / SMT4 48 Cores / 384 Threads / SMT8
112 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Simultaneous multithreading dispatch control
IBM i 7.2 adds a job attribute named Processor Resources Priority (PRCRSCPTY) to
influence how threads for the job are dispatched. The PRCRSCPTY attribute can request that
the system isolate threads for the job on processors that are running fewer threads
concurrently, or that the system run threads for the job on processors that are running as
many concurrent threads as possible.

For more information about the topic of SMT, from the processor and OS perspectives, see:

� “Simultaneous multithreading” on page 29 (processor)
� “Simultaneous multithreading” on page 73 (AIX)
� “Simultaneous multithreading” on page 119 (Linux)

5.2.2 Multipage size support on IBM i

Most of IBM i uses 4 KB pages, but select system functions automatically use 64 KB pages.
Applications running on IBM i 6.1 or later can create shared memory objects that use 64 KB
pages (typically by using shmctl with SHM_PAGESIZE). IBM technology for Java programs
running on IBM i 6.1 or later can use 64 KB pages for Java heap. PASE for i programs running
on IBM i 7.1 or later automatically use 64 KB pages for shared library text and data, and can
request 64 KB pages for program text, stack, and data.

IBM Power Systems Firmware does not support 64 KB pages for all configurations. For
example, 64 KB pages are not available in a logical partition that is configured for Active
Memory Sharing (AMS).

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.2, “Multipage size support (page sizes (4 KB, 64 KB, 16 MB, and 16 GB))” on page 32
(processor)

� 4.2.2, “Multipage size support on AIX” on page 83

� 6.2.2, “Multipage size support on Linux” on page 123

5.2.3 Vector Scalar eXtension

IBM i 7.2 automatically uses POWER8 vector instructions to improve the performance of
some cryptographic operations. PASE for i applications running on IBM i 7.2 on POWER7 or
newer processors can use Vector Scalar eXtension (VSX).

For more information about the topic of VSX, from the processor, OS, and compiler
perspectives, see:

� 2.2.5, “Vector Scalar eXtension” on page 45 (processor)
� 4.2.5, “Vector Scalar eXtension” on page 91 (AIX)
� 6.2.5, “Vector Scalar eXtension” on page 125 (Linux)
� 7.3.2, “Compiler support for Vector Scalar eXtension” on page 151 (XL and GCC compiler

families)

5.2.4 Decimal floating point

IBM i 6.1 and later supports DFP in select programming languages and in DB2 for i. DFP
operations (outside of PASE for i) automatically use DFP instructions when running on
POWER6 or newer processors, and use software support on older architectures. IBM i 7.2
improves the performance of many DFP operations (compared to prior releases) by the
increased use of DFP instructions.
Chapter 5. IBM i 113

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.6, “Decimal floating point” on page 47 (processor)
� 4.2.6, “Decimal floating point” on page 92 (AIX)
� 6.2.6, “Decimal floating point” on page 126 (Linux)

5.3 IBM i operating system-specific optimizations

This section describes optimization methods that are specific to IBM i.

5.3.1 IBM i advanced optimization techniques

Optimization methods specific to the creation of IBM i programs and service programs include
the following methods:1

� 8-byte pointers in C and C++ code: The performance of C and C++ code that uses
pointers can be improved when the code is compiled to use 8-byte pointers, rather than
16-byte pointers (default). To take full advantage of 8-byte pointers, specify
STGMDL(*TERASPACE) and DTAMDL(*LLP64) when you compile code.

� Program profiling: Program profiling is an advanced optimization technique to reorder
procedures, or code within procedures, and to direct code generation decisions in ILE
programs and service programs based on statistical data that is gathered while running
the program. The reordering can improve instruction cache utilization and reduce the
paging that is required by the program, improving performance.

� Argument optimization: The Argument optimization parameter, with ARGOPT(*YES), is
available with the CRTPGM and CRTSRVPGM commands to support advanced argument
optimization, where an analysis across modules that are bound to the program is
performed. In general, this improves the performance of most procedure calls within the
program. Argument optimization is a technique for passing arguments (parameters) to ILE
procedures to improve performance of call-intensive applications.

� Interprocedural analysis: Interprocedural analysis that is performed by the IPA(*YES)
option on CRTPGM or CRTSRVPGM performs optimizations across function bodies in the entire
program during program creation. In particular, this occurs across the modules that are
bound into the program and that were compiled with the MODCRTOPT(*KEEPILDTA) option. In
contrast, intraprocedural is a mechanism for performing optimization for each function
within a compilation unit, by using only the information that is available for that function
and compilation unit.

� Licensed Internal Code Options (LICOPTs): LICOPTs are compiler options that are
passed to the Licensed Internal Code to affect how code is generated or packaged. You
can use some of the options to fine-tune the optimization of your code.

The TargetProcessorModel LICOPT instructs the translator to perform optimizations that
are tuned for the specified processor model. Programs that are created with this option run
on all supported hardware models, but run faster on the specified processor model. For
IBM i 7.2, a TargetProcessorModel value can be specified so that the code is tuned to run
optimally on the POWER8 processor.

The CodeGenTarget LICOPT specifies the creation target model for a program or module
object. The creation target model indicates the hardware features that the code that is
generated for that object can use. For IBM i 7.2, a CodeGenTarget model of the POWER8
processor can be specified.

1 ILE Concepts, SC41-5606
114 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

CodeGenTarget features and their associated Power Systems hardware include:

– CodeGenTarget features that are associated with POWER6 processor-based systems:

• A hardware decimal floating point unit

• Efficient hardware support for ILE pointer handling

– CodeGenTarget features associated with POWER7 processor-based systems: A
number of new instructions that might speed up certain computations, such as
conversions between integer and floating-point values.

– CodeGenTarget features associated with POWER8 hardware: New move instructions
between floating point and general-purpose registers.

The TargetProcessorModel and CodeGenTarget LICOPTs are two of several factors,
including Adaptive Code Generation, which determine the processor model to which code
should be tuned and targeted when creating a module, changing a module or program, or
re-creating a module or program. The default behavior is to use all features available on
the current machine. For more information, see ILE Concepts, SC41-5606.

� Adaptive Code Generation (ACG): ACG allows you to take advantage of all of the
processor features on your systems, regardless of whether those features are present on
other system models that are supported by the same release. Furthermore, programs can
be moved from one system model to another and continue to run correctly, even if the new
machine does not have all of the processor features that were available on the original
machine. The technology for achieving this task is ACG. ACG can work without user
intervention in most scenarios. However, if you build and distribute software to run on
various system models, you might want to exercise some control over which processor
features are used by ACG.

The first time a program object is activated on a system to which it is moved, the system
performs a compatibility check to ensure that your program does not use any features that
are unavailable on your system. If the program requires any processor feature that is not
supported by the system to which it was moved, then the system automatically calls the
optimizing translator to convert the program to be compatible. Options that are associated
with restoring objects exist to cause incompatible module and program objects that are
restored to be immediately converted, rather than on the first activation.

For more information about these optimizations in an IBM i environment, see ILE Concepts,
SC41-5606. In particular, see Chapter 13, "Advanced Optimization Techniques".

5.3.2 Performance management on IBM i

For links to general performance resources, performance education resources, performance
papers, and articles for IBM i, see the Performance management on IBM i, found at:

http://www.ibm.com/systems/power/software/i/management/performance/resources.html

For a basic understanding of IBM i on Power Systems performance concepts, workloads and
benchmarks on Power Systems, capacity planning, performance monitoring and analysis,
frequently asked questions, and guidelines addressing common performance issues, see
IBM i on Power - Performance FAQ, found at:

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=S
TGE_PO_PO_USEN&htmlfid=POW03102USEN&attachment=POW03102USEN.PDF
Chapter 5. IBM i 115

http://www.ibm.com/systems/power/software/i/management/performance/resources.html
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=STGE_PO_PO_USEN&htmlfid=POW03102USEN&attachment=POW03102USEN.PDF
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=STGE_PO_PO_USEN&htmlfid=POW03102USEN&attachment=POW03102USEN.PDF

For more information about the topic of operating system-specific optimizations, from the AIX
and Linux perspectives, see:

� 4.3, “AIX operating system-specific optimizations” on page 95 (AIX)
� 6.3, “Linux operating system-specific optimizations” on page 129 (Linux)

5.4 Related publications

� Advanced Optimization Techniques, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/iseries/v7r1m0/topic
/ilec/sc415606206.htm

� IBM i on Power - Performance FAQ, available found at:

http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appnam
e=STGE_PO_PO_USEN&htmlfid=POW03102USEN&attachment=POW03102USEN.PDF

� ILE Concepts, SC41-5606

� Performance management on IBM i, found at:

http://www.ibm.com/systems/power/software/i/management/performance/resources.ht
ml
116 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/iseries/v7r1m0/topic/ilec/sc415606206.htm
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=STGE_PO_PO_USEN&htmlfid=POW03102USEN&attachment=POW03102USEN.PDF
http://www.ibm.com/systems/power/software/i/management/performance/resources.html

Chapter 6. Linux

This chapter describes the optimization and tuning of the POWER8 and other Power Systems
processor-based servers running the Linux operating system. It covers the following topics:

� 6.1, “Introduction” on page 118
� 6.2, “Using Power features with Linux” on page 118
� 6.3, “Linux operating system-specific optimizations” on page 129
� 6.4, “Little Endian” on page 138
� 6.5, “Related publications” on page 139

6

© Copyright IBM Corp. 2014, 2015. All rights reserved. 117

6.1 Introduction

When you work with POWER7, POWER7+, or POWER8 processor-based servers and
solutions, a solid choice for running enterprise-level workloads is Linux. Red Hat Enterprise
Linux (RHEL), SUSE Linux Enterprise Server (SLES), and Ubuntu provide operating systems
that are optimized and targeted for the Power Architecture. These operating systems run
natively on the Power Architecture and are designed to take full advantage of the specialized
features of Power Systems.

RHEL and SLES support both POWER7 and POWER8 processor-based systems. Ubuntu is
supported on POWER8 processor-based systems only (starting with Ubuntu Version 14.04).
Unless otherwise stated, the references to the POWER8 processor or POWER8
processor-based systems in this chapter applies to all three Linux distributions, and
references to POWER7 or POWER7 processor-based systems applies only to RHEL or
SLES.

All of these Linux distributions provide the tools, kernel support, optimized compilers, and
tuned libraries for Power Systems to achieve excellent performance. For advanced users,
more application and customer-specific tuning approaches are also available.

Additionally, IBM provides a number of added value packages, tools, and extensions that
provide for more tunings, optimizations, and products for the best possible performance on
POWER8 processor-based systems. The typical Linux open source performance tools that
Linux users are comfortable with are available on Linux on Power systems.

The IBM Linux on Power Tools repository enables the use of standard Linux package
management tools (such as yum and zypper) to provide easy access to IBM recommended
tools:

� IBM Linux on Power hardware diagnostic aids and productivity tools
� IBM Software Development Toolkit for Linux on Power servers
� IBM Advance Toolchain for Linux on Power Systems servers

The IBM Linux on Power Tools repository is found at:

http://www.ibm.com/support/customercare/sas/f/lopdiags/yum.html

Under a PowerVM hypervisor, Linux on Power supports small virtualized Micro-Partitioning
partitions up through large dedicated partitions containing all of the resources of a high-end
server. Under a PowerKVM hypervisor, the Linux on Power supports running as a KVM guest
on POWER8 processor-based systems.

IBM premier products, such as IBM XL compilers, IBM Java products, IBM WebSphere, and
IBM DB2 database products, all provide Power Systems optimized support with the RHEL,
SLES, and Ubuntu operating systems.

For more information about this topic, see 6.5, “Related publications” on page 139.

6.2 Using Power features with Linux

Some of the significant features of POWER with POWER7 and POWER8 extensions in a
Linux environment are described in this section.
118 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/support/customercare/sas/f/lopdiags/yum.html

6.2.1 Multi-core and multi-thread

Operating system enablement usage of multi-core and multi-thread technology varies by
operating system and release. Linux defines a logical CPU as any schedulable entity. So,
every core/thread in a multi-core/thread processor is a logical CPU. Table 6-1 shows the
maximum number of logical cores for a (single) logical partition/guest running Linux on Power
that is supported by each distribution. However, the maximum number of hardware threads
per LPAR (see Table 2-1 on page 28) for a POWER generation, limits the maximum number
of logical CPUs on a POWER server of that generation.

Table 6-1 Maximum logical CPUs by single LPAR scaling

Information about multi-thread per core features by POWER generation is available in
Table 2-1 on page 28.

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.1, “Multi-core and multi-thread” on page 28 (processor)
� 4.2.1, “Multi-core and multi-thread” on page 72 (AIX)
� 5.2.1, “Multi-core and multi-thread” on page 112 (IBM i)

Simultaneous multithreading
Simultaneous multithreading (SMT) is a feature of the Power Architecture and is described in
“Simultaneous multithreading” on page 29.

On a POWER8 processor-based system, with a properly enabled Linux distribution, or distro,
the Linux operating system supports up to eight hardware threads per core (SMT=8).

With the POWER8 processor cores, the SMT hardware threads are more equal in the
execution implementation, which allows the system to support flexible SMT scheduling and
management.

Application throughput and SMT scaling from SMT=1 to SMT=2, to SMT=4, and to SMT=8 is
highly application-dependent. With additional hardware threads that are available for
scheduling, the ability of the processor cores to switch from a waiting (stalled) hardware
thread to another thread that is ready for processing can improve overall system effectiveness
and throughput.

High SMT modes are best for maximizing total system throughput, and lower SMT modes
might be appropriate for high performance threads and low latency applications. For code
with low levels of instruction-level parallelism (often seen in Java code, for example), high
SMT modes are preferred.

Single LPAR scaling Linux release

128 SLES 10

256 RHEL 5

1024 RHEL 6
SLES 11

2048 RHEL 7
SLES 12
Ubuntu 14.04
Chapter 6. Linux 119

For more information about the topic of SMT, from the processor and OS perspectives, see:

� “Simultaneous multithreading” on page 29 (processor)
� “Simultaneous multithreading” on page 73 (AIX)
� “Simultaneous multithreading” on page 112 (IBM i)

Boot-time enablement of simultaneous multithreading
When starting a Linux distro, SMT=8 is the default boot mode. To disable SMT at start time,
simply add the ppc64_cpu --smt=off command to the systemd start script.

Dynamically selecting different simultaneous multithreading modes
Linux enables Power SMT capabilities. By default, the system runs at the highest SMT level.

Changing SMT settings remains a dynamic (runtime) option in the operating system. The
ppc64_cpu command is provided in the powerpc_utils package. Running this command
requires root access. The ppc64_cpu command can be used to force the system kernel to use
lower SMT levels (ST, SMT2, or SMT4 mode). For example:

� ppc64_cpu --smt=1 sets the SMT mode to ST.
� ppc64_cpu --smt shows the current SMT mode.

POWER8 processor-based systems support up to 8 SMT hardware threads per core. The
ppc64_cpu command can specify hardware threads from a single thread per core, two
threads, four threads, or eight threads.

When using the ppc64_cpu command to control SMT settings, the normal Linux approach of
holes in the CPU numbering continues as it was in previous POWER generations, such as
POWER7 processor-based systems.

In different POWER8 SMT modes, CPUs are numbered as follows:

SMT=8: 0,1,2,3,4,5,6,7, 8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23, ...
SMT=4: 0,1,2,3, 8,9,10,11, 16,17,18,19, ...
SMT=2: 0,1, 8,9, 16,17, ...
SMT=1: 0, 8, 16, ...

The setaffinity application programming interface (API) allows processes and threads to have
affinity to specific logical processors, as described in “Affinitization and binding” on page 121.
Because the POWER8 processor supports running up to eight threads per core, the CPU
numbering is different than in POWER7 processor-based systems, which supported only up
to four threads per core. Therefore, an application that specifically binds processes to threads
must be aware of the new CPU numbering to ensure that the binding is correct because there
are now more threads available for each core.

For more information about this topic, see 6.5, “Related publications” on page 139.

Querying the simultaneous multithreading setting
The command for querying the SMT setting is ppc64_cpu --smt. A programmable API is not
available.

Simultaneous multithreading priorities
Simultaneous multithreading (SMT) priorities in the POWER hardware are introduced in
“Simultaneous multithreading priorities” on page 30. Linux supports selecting SMT priorities
by using the Priority Nop mechanism or by writing to the PPR, as described in that section.
120 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The current GLIBC (from Version 2.16) provides the system header sys/platform/ppc.h,
which contains a wrapper for setting the PPR by using the Priority Nop mechanism, as shown
in Example 6-1.

Example 6-1 GLIBC PPR set functions

void __ppc_set_ppr_med (void)
void __ppc_set_ppr_med_low (void)
void __ppc_set_ppr_low (void)

Earlier versions of RHEL and SLES do not provide this header; however, it is supported on
IBM Advance Toolchain for Linux on Power Version 6.0 and later.

Where to use
SMT thread priority can be used to improve the performance of a workload by lowering the
SMT thread priority that is being used on an SMT thread that is running a particular
process-thread when:

� The thread is waiting on a lock
� The thread is waiting on an event, such as the completion of an I/O event

Alternatively, process-threads that are performance-sensitive can maximize their
performance by ensuring that the SMT thread priority level is set to an elevated level.

For more information about the topic of SMT priorities, from the processor and OS
perspectives, see:

� “Simultaneous multithreading priorities” on page 30 (processor)
� “Simultaneous multithreading priorities” on page 74 (AIX)

Affinitization and binding
Affinity performance effects are explained in “The POWER8 processor and affinity
performance effects” on page 16. Establishing good affinity is accomplished by understanding
the placement of a partition on the underlying cores and memory of a Power Systems server,
and then by using operating system facilities to bind application threads to run on specific
hardware threads or cores.

The numactl --hardware command shows the relative positioning of the underlying cores and
memory, if that information is available from the hypervisor or firmware. In the case of
PowerVM shared LPARS or PowerKVM guests, this information cannot be directly mapped to
the underlying cores and memory.

Flexible simultaneous multithreading support
On POWER7 and POWER7+ processors, there is a correlation between the hardware thread
number (0 - 3) and the hardware resources within the processor. Matching the thread
numbers to the number of active threads is recommended for optimum performance. For
example, if only one thread is active, it should be hardware thread 0. If two threads are active,
they should be hardware threads 0 and 1. The Linux operating system automatically shifts the
threads to those modes.

On the POWER8 processor, any process or thread can run in any SMT mode. The processor
balances the processor core resources according to the number of active hardware threads.
There is no need to match the application thread numbers with the number of active hardware
threads. Hardware threads on the POWER8 processor have equal weight, unlike the
hardware threads under POWER7 processor. Therefore, as an example, a single process
running on thread 7 runs as fast as running on thread 0, presuming nothing else is on the
other hardware threads for that processor core.
Chapter 6. Linux 121

Linux scheduler

The Linux Completely Fair Scheduler (CFS) handles load balancing across CPUs and uses
scheduler modules to make policy decisions. CFS works with multi-core and multi-thread
processors and balances tasks across real processors. CFS also groups and tunes related
tasks together.

The Linux topology considers physical packages, threads, siblings, and cores. The CFS
scheduler domains help to determine load balancing. The base domain contains all sibling
threads of the physical CPU, the next parent domain contains all physical CPUs, and the next
parent domain takes NUMA nodes into consideration.

Because of the specific asymmetrical thread ordering of POWER7 processors, special Linux
scheduler modifications were added for the POWER7 CPU type. With the POWER8
processor, this logic is no longer needed because any of the SMT8 threads can act as the
primary thread by design. This means that the number of threads that are active in the core at
one time determines the dynamic SMT mode (for example, from a performance perspective,
thread 0 can be the same as thread 7). Idle threads should be napping or in a deeper sleep if
they are idle for a period.

CPU sets, cgroups, and scheduler domains
It is possible to target (and limit) processes for a specific set of CPUs or cores. This can
provide Linux applications with more fine-grained control of the cores and characteristics of
application process and thread requirements.

taskset
Use the taskset command to retrieve, set, and verify the CPU affinity information of a
process that running.

numactl
Similar to the taskset command, use the numactl command to retrieve, set, and verify the
CPU affinity information of a process that running. The numactl command, however, provides
additional performance information about local memory allocation.

Using setaffinity to bind to specific logical processors
The setaffinity API allows processes and threads to have affinity to specific logical
processors. The number and numbering of logical processors is a product of the number of
processor cores (in the partition) and the SMT capability of the machine (eight-way SMT for
the POWER8 processor).

For more information about the topic of affinitization and binding, from the processor and OS
perspectives, see:

� “Affinitization and binding to hardware threads” on page 31 (processor)
� “Affinitization and binding” on page 74 (AIX)

Hybrid thread and core
Linux provides facilities to customize SMT characteristics of CPUs running within a partition.

SMT can be enabled or disabled at boot time, as described in “Boot-time enablement of
simultaneous multithreading” on page 120. SMT modes can be dynamically controlled for a
whole partition, as described in “Dynamically selecting different simultaneous multithreading
modes” on page 120.

In Linux, each CPU is associated with a processor core hardware thread.
122 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

When there is no work to be done on a CPU, the scheduler goes into the idle loop, and Linux
calls into the hypervisor to report that the CPU is truly idle. The kernel-to-hypervisor interface
is defined in the Power Architecture Platform Reference (PAPR) found at http://power.org.
In this case, it is the H_CEDE hypervisor call.

For more information about this topic, from the processor and OS perspectives, see:

� “Hybrid thread and core” on page 31 (processor)
� “Hybrid thread and core” on page 80 (AIX)

6.2.2 Multipage size support on Linux

On Power Systems running Linux, the default page size is 64 KB, so most, but not all,
applications are expected to see a performance benefit from this default. There are cases in
which an application uses many small files, which can mean that each file is loaded into a
64 KB page, resulting in poor memory utilization.

Support for 16 MB pages (huge pages in Linux terminology) is available through various
mechanisms and is typically used for databases, Java engines, and high-performance
computing (HPC) applications. The libhugetlbfs package is available in Linux distributions,
and using this package gives you the most benefit from 16 MB pages.

Transparent huge pages (THP) is an alternative means of using huge pages for backing
virtual memory. It does this through the automatic promotion and demotion of pages between
64 K (normal) and 16 MB (huge) page sizes. Unlike libhugetlbfs, huge pages do not need to
be set aside or reserved at boot time to use this feature, and applications do not need to map
them explicitly either. The memory for the SPLPAR partition (under PowerVM) or the guest
(under PowerKVM) must be configured to be explicitly backed by huge pages. THP can be
enabled by running the following command (root privileges needed):

echo always > /sys/kernel/mm/transparent_hugepage/enabled

Although THP is expected to improve the performance of most workloads with large memory
footprints, it is not recommended for database workloads.

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.2, “Multipage size support (page sizes (4 KB, 64 KB, 16 MB, and 16 GB))” on page 32
(processor)

� 4.2.2, “Multipage size support on AIX” on page 83

� 5.2.2, “Multipage size support on IBM i” on page 113

6.2.3 Efficient use of cache

Operating system facilities for controlling hardware prefetching are described in this section.

Controlling DSCR under Linux
DSCR settings on Linux are controlled with the ppc64_cpu command. Controlling DSCR
settings for an application is considered advanced and specific tuning.

Currently, setting the DSCR value is a cross-LPAR setting.
Chapter 6. Linux 123

http://power.org

For more information about the efficient use of cache, from the processor and OS
perspectives, see:

� 2.2.3, “Efficient use of cache and memory” on page 33 (processor)
� 4.2.3, “Efficient use of cache” on page 86 (AIX)

For more information about this topic, see 6.5, “Related publications” on page 139.

6.2.4 Transactional memory

Transactional memory (TM) is a POWER8 shared-memory synchronization construct that
allows a thread to perform a sequence of storage operations that appear to occur atomically
with respect to other threads. One of the main advantages of TM is that it can speed up
lock-based programs through the speculative execution of lock-based, critical sections
because it does this without first acquiring a lock. This allows applications that have not been
carefully tuned for performance to take advantage of the benefits of fine-grain locking. It also
helps simplify programming threaded applications, especially code sections that deal with
synchronizing access to shared data. Transactions are a well-known database concept, and
in the context of TM it is the sequence of storage operations that must be performed
atomically that constitute a transaction. As with databases, the transaction must complete in
its entirety (the speculative execution must complete without another thread attempting to
access the same storage) or the transaction must be failed. Transactions, in short, provide
synchronization guarantees that are similar to what is guaranteed when using a lock to
protect the storage accesses.

Software using TM in general uses one of the following two approaches:

� Lock elision: First, try lock elision by converting a normally locked critical section to run as
a transaction when there is less contention. Some parts of the software can use
transactions, and other parts can still use normal lock acquisition semantics.

� TM aware software: Convert critical sections in software to use transactions as compared
to locks. Add code to fall back to a lock-based method if contention is excessive.

GCC defines several new syntax extensions to support TM-based programming and the
GLIBC library provides runtime support. For more information about GCC support, see the
following website:

http://gcc.gnu.org/wiki/TransactionalMemory

Conflict detection (the fact that two transactions are affecting each other and hence they need
to be failed) is based on cache line granularity on Power Systems. For more information about
the TM implementation on Power Systems, see the following website:

https://www.power.org/documentation/power-isa-transactional-memory/

Although POWER8 processor-based systems support TM, you must explicitly check for
support of TM before using the facility because the processor might be running in a
compatibility mode, or the operating system or hypervisor might not support the use of TM. In
Linux, the preferred API that determines whether TM is supported is to query the
AT_HWCAP2 field in the Auxiliary Vector (AUXV). The libauxv library provides easy
functions for querying the AUXV. For more information, see the following website:

https://github.com/Libauxv/libauxv
124 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://gcc.gnu.org/wiki/TransactionalMemory
https://www.power.org/documentation/power-isa-transactional-memory/
https://github.com/Libauxv/libauxv

Software failure handler
Upon transaction failure, the hardware redirects control to the failure handler that is
associated with the outermost transaction. “Transaction failure” on page 43 explains this
situation and provides details about how control is passed to the software failure handler and
the machine state of the status registers. Section 7.3.5, “Transactional memory” on page 156
describes several built-in functions that the user can use, in addition to various macros in
htmintrin.h, to determine the failure code for an failed transaction.

Transaction failure causes
There are several reasons why a particular transaction might fail. Some failures may be
persistent, meaning retrying the transaction is pointless, and others might be more transitory
in nature and retrying the transaction is fine. Some common reasons why transactions fail are
noted in the following list:

� A tabort. instruction was run by the user program

� Cache line conflicts that are used by other processors

� Context switches

� Signals

Refer to the ISA documentation for a more extensive list of failure causes.

Making syscalls within an active transaction is problematic because some syscall side effects
cannot be rolled back. Syscalls made within a suspended transaction are theoretically
possible, but again, some of the syscall side effects might lead to transaction failure. For an
in-depth description of transaction failures that are caused by the Linux kernel, see the
following website:

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation
/powerpc/transactional_memory.txt

Debugger support
The GDB debugger currently supports only machine-level debugging of TM programs. This
support includes the ability to disassemble the new TM instructions. This support does not
allow the setting of breakpoints within a transaction. Setting a breakpoint inside of a
transaction causes the transaction to unconditionally fail whenever the breakpoint is
encountered. To determine the cause and location of a failing transaction, set a breakpoint on
the transaction failure handler, and then view the TEXASR and TFIAR registers when the
breakpoint is encountered.

For more information about the topic of transactional memory, from the processor, OS, and
compiler perspectives, see:

� 2.2.4, “Transactional memory” on page 42 (processor)
� 4.2.4, “Transactional memory” on page 89 (AIX)
� 7.3.5, “Transactional memory” on page 156 (XL and GCC compiler families)
� 8.4.2, “Transactional memory” on page 182 (Java)

6.2.5 Vector Scalar eXtension

GCC makes an interface available for PowerPC processors to access built-in functions. For
more information about the various revisions of the GCC compiler, see the following website:

http://gcc.gnu.org/onlinedocs
Chapter 6. Linux 125

http://gcc.gnu.org/onlinedocs
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/powerpc/transactional_memory.txt

For more information about the topic of Vector Scalar eXtension (VSX), from the processor,
AIX, IBM i, and compiler perspectives, see:

� 2.2.5, “Vector Scalar eXtension” on page 45 (processor)
� 4.2.5, “Vector Scalar eXtension” on page 91 (AIX)
� 5.2.3, “Vector Scalar eXtension” on page 113 (IBM i)
� 7.3.2, “Compiler support for Vector Scalar eXtension” on page 151 (XL and GCC compiler

families)

6.2.6 Decimal floating point

Decimal (base 10) data is widely used in commercial and financial applications. However,
most computer systems have only binary (base two) arithmetic. There are two binary number
systems in computers: integer (fixed-point) and floating point. Unfortunately, decimal
calculations cannot be directly implemented with binary floating point. For example, the value
0.1 needs an infinitely recurring binary fraction, and a decimal number system can represent
it exactly as 1/10th. So, using binary floating point cannot ensure that results are the same as
those results that use decimal arithmetic.

In general, decimal floating point (DFP) operations are emulated with binary fixed-point
integers. Decimal numbers are traditionally held in a binary-coded decimal (BCD) format.
Although BCD provides sufficient accuracy for decimal calculation, it imposes a heavy cost in
performance because it is implemented in software.

POWER6, POWER7, and POWER8 processor-based systems provide hardware support for
DFP arithmetic. These microprocessor cores include a DFP unit that provides acceleration for
the DFP arithmetic. The IBM POWER instruction set is expanded to include 54 new
instructions that were added to support the DFP unit architecture. DFP can provide a
performance boost for applications that are using BCD calculations.

How to take advantage of a DFP unit on POWER
You can take advantage of the DFP unit on POWER with the following features:1

� Native DFP language support with a compiler

The C draft standard includes the following new data types (these are native data types,
as are int, long, float, double, and so on):

_Decimal32 Seven decimal digits of accuracy
_Decimal64 Sixteen decimal digits of accuracy
_Decimal128 Thirty-four decimal digits of accuracy

– The IBM XL C/C++ Compiler, release 9 or later for AIX and Linux, includes native DFP
language support. Here is a list of the compiler options for IBM XL compilers that are
related to DFP:

• -qdfp: Enables DFP support. This option makes the compiler recognize DFP literal
suffixes, and the _Decimal32, _Decimal64, and _Decimal128 keywords.

1 How to compile DFPAL?, found at: http://speleotrove.com/decimal/dfpal/compile.html

Note: The printf() function uses new options to print these new data types:

� _Decimal32 uses %Hf.
� _Decimal64 uses %Df.
� _Decimal128 uses %DDf.
126 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://speleotrove.com/decimal/dfpal/compile.html

• -qfloat=dfpemulate: Instructs the compiler to use calls to library functions to
handle DFP computation, regardless of the architecture level. You might experience
performance degradation when you use software emulation.

• -qfloat=nodfpemulate (the default when the -qarch flag specifies POWER6,
POWER7, or POWER8): Instructs the compiler to use DFP hardware instructions.

• -D__STDC_WANT_DEC_FP__: Enables the referencing of DFP-defined symbols.

• -ldfp: Enables the DFP function that is provided by the Advance Toolchain on
Linux.

For hardware supported DFP, with -qarch=pwr6, -qarch=pwr7, or -qarch=pwr8, use the
following command:

cc -qdfp

For software emulation of DFP (on earlier processor chips), use the following
command:

cc -qdfp -qfloat=dfpemulate

– The GCC compilers for Power Systems also include native DFP language support.

As of SLES 11 SP1 and RHEL 6, and in accord with the Institute of Electrical and
Electronics Engineers (IEEE) 754R, DFP is fully integrated with compiler and runtime
(printf and DFP math) support. For older Linux distribution releases (RHEL 5/SLES 10
and earlier), you can use the freely available Advance Toolchain compiler and runtime
libraries. The Advance Toolchain runtime libraries can also be integrated with recent
XL (V9+) compilers for DFP exploitation.

The latest Advance Toolchain compiler and run times can be downloaded from the
following website:

ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at/

Advance Toolchain is a self-contained toolchain that does not rely on the base system
toolchain for operability. In fact, it is designed to coexist with the toolchain that is
shipped with the operating system. You do not have to uninstall the regular GCC
compilers that come with your Linux distribution to use the Advance Toolchain.

The latest Enterprise distributions and Advance Toolchain run time use the Linux CPU
tune library capability to select automatically hardware DFP or software
implementation library variants, which are based on the hardware platform.

Here is a list of GCC compiler options for Advance Toolchain that are related to DFP:

• -mhard-dfp (the default when -mcpu=power6, -mcpu=power7 or -mcpu=power8 is
specified): Instructs the compiler to take direct advantage of DFP hardware
instructions for decimal arithmetic.

• -mno-hard-dfp: Instructs the compiler to use calls to library functions to handle DFP
computation, regardless of the architecture level. If your application is dynamically
linked to the libdfp variant and running on POWER6, POWER7, or POWER8
processors, then the run time automatically binds to the libdfp variant that is
implemented with hardware DFP instructions. Otherwise, the software DFP library
is used. You might experience performance degradation when you use software
emulation.

• -D__STDC_WANT_DEC_FP__: Enables the reference of DFP defined symbols.

• -ldfp: Enables the DFP function that is provided by recent Linux Enterprise
Distributions or the Advance Toolchain run time.
Chapter 6. Linux 127

ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at/

� Decimal Floating Point Library (libdfp) is an implementation of the joint efforts of the
International Organization for Standardization and the International Electrotechnical
Commission (ISO/IEC). ISO/IEC technical report ISO/IEC TR 247322 describes the
C-Language library routines that are necessary to provide the C library runtime support for
decimal floating point data types, as introduced in IEEE 754-2008, namely _Decimal32,
_Decimal64, and _Decimal128.

The library provides functions, such as sin and cos, for the decimal types that are
supported by GCC. Current development and documentation can be found at
https://github.com/libdfp/libdfp, and RHEL6 and SLES11 provide this library as a
supplementary extension. Advance Toolchain also ships with the library.

Determining whether your applications are using DFP
The Linux operf tool is used for application performance profiling. The PM_MRK_DFU_FIN
performance counter event indicates that the Decimal Floating Point Unit finished a marked
instruction. To profile an application for PM_MRK_DFU_FIN samples, use operf to set the
event name and sample count and run the application:

operf -e PM_MRK_DFU_FIN:1000 application

To view the results and see what symbols the event samples are associated with, run the
following command:

opreport --symbols

If you see this message, there were no samples found for the event that is specified when
running the application:

opreport error: No sample file found

For more information about this topic, from the processor and OS perspectives, see:

� 2.2.6, “Decimal floating point” on page 47 (processor)
� 4.2.6, “Decimal floating point” on page 92 (AIX)
� 5.2.4, “Decimal floating point” on page 113 (IBM i)

For more information, see 6.5, “Related publications” on page 139.

6.2.7 Event-based branches

The event-based branching (EBB) facility is a new Power Architecture ISA 2.07 hardware
facility, under [Category:Server], that generates event-based exceptions when a certain event
criteria is met. Currently, ISA 2.07 (on POWER8 hardware) defines only one type of EBB: the
performance monitoring unit (PMU) EBB. Following an EBB exception, the branch event
status and control register (BESCR) tells which kind of event triggered the exception.

The EBB facility is a per-hardware-thread problem-state facility with access to the PMU and
initialization under privileged-state. A problem-state application with direct access to the
facility registers a callback function as an EBB handler by setting the handler address into the
EBBHR register.

When a specified or requested PMU overflows, an exception is generated and as a result, the
problem-state application EBB handler is started. Execution continues in event-based
exception context until the handler returns control to the address in the event-based branch
return register (EBBRR) by using the rfebb instruction.

2 Information technology -- Programming languages, their environments, and system software interfaces --
Extension for the programming language C to support decimal floating-point arithmetic, found at:
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38842
128 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38842
https://github.com/libdfp/libdfp

There are interoperability considerations with the Power Architecture Executable File and
Linkable format (ELF) application binary interface (ABI), and these can complicate the usage
of this facility to remain ABI compliant. As a result, user applications should use an API that is
provided by libpaf-ebb that handles the ABI implications consistently and correctly and
provides a handler by proxy.

For more information about this topic, from the processor perspective, see 2.2.12,
“Event-based branches (or user-level fast interrupts)” on page 52 (processor).

For more information about EBB, see the following website:

https://github.com/paflib/paflib/wiki/Event-Based-Branching----Overview,-ABI,-and-
API

6.3 Linux operating system-specific optimizations

This section describes optimization methods that are specific to Linux.

6.3.1 GCC, toolchain, and IBM Advance Toolchain

This section describes 32-bit and 64-bit modes and CPU-tuned libraries.

Linux support for 32-bit and 64-bit modes
The compiler and run time can support either 32-bit or 64-bit mode applications
simultaneously. The compilers can select the target mode through the -m32 or -m64 compiler
options.

For the SLES, Ubuntu, and RHEL distributions, the shared libraries have both 32-bit and
64-bit versions. The toolchain (compiler, assembly language, linker, and dynamic linker)
selects the correct libraries based on the -m32 or -m64 option or the mode of the application
program.

The Advance Toolchain defaults to 64-bit, as do SLES 11, RHEL 6, and RHEL7. POWER
Little Endian distributions support only 64-bit mode, such as SLES 12, RHEL 7, and Ubuntu
14.04.

Applications can use 32-bit and 64-bit execution modes, depending on their specific
requirements, if their dependent libraries are available for the wanted mode.

The 32-bit mode is lighter with a simpler function call sequence and smaller footprint for stack
and C++ objects, which can be important for some dynamic language interpreters and
applications with many small functions.

The 64-bit mode has a larger footprint because of the larger pointer and general register size,
which can be an asset when you handle large data structures or text data, where larger
(64-bit) general registers are used for high bandwidth in the memory and string functions.

Linux on Power also supports 64-bit direct memory access (DMA), which can have a
significant impact on I/O performance. For more information, see Taking Advantage of 64-bit
DMA capability on PowerLinux, found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4d
fd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%2064-bit%20DMA%20capability
%20on%20PowerLinux
Chapter 6. Linux 129

https://github.com/paflib/paflib/wiki/Event-Based-Branching----Overview,-ABI,-and-API
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%2064-bit%20DMA%20capability%20on%20PowerLinux
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Taking%20Advantage%20of%2064-bit%20DMA%20capability%20on%20PowerLinux

The handling of floating point and vector data is the same (registers size and format and
instructions) for 32-bit and 64-bit modes. Therefore, for these applications, the key decision
depends on the address space requirements. For 32-bit POWER applications (32-bit mode
applications that are running on 64-bit POWER hardware with a 64-bit kernel), the address
space is limited to 4 GB, which is the limit of a 32-bit address. 64-bit applications are limited to
16 TB of application program or data per process. This limitation is not a hardware one, but is
a restriction of the shared Linux virtual memory manager implementation. For applications
with low latency response requirements, using the larger, 64-bit addressing to avoid I/O
latencies that use memory mapped files or large local caches is a good trade-off.

CPU-tuned libraries
If an application must support only one POWER hardware platform (such as POWER7 and
later processor-based systems), then compiling the entire application with the appropriate
-mcpu= and -mtune= compiler flags might be the best option.

For example, -mcpu=power7 allows the compiler to use all the POWER7 instructions, such as
the VSR category. The -mcpu=power7 option also implies -mtune=power7 if it is not explicitly
set.

The GCC compiler does not have any specific POWER7+ optimizations, so use -mcpu=power7
or -mtune=power7.

The -mcpu=power8 option allows the compiler to use instructions that were added for the
POWER8 processor, such as cryptography built-in functions, direct move instructions that
allow data movement between the general-purpose registers and the floating point or floating
vector registers, and additional vector scalar instructions that were introduced.

-mcpu generates code for a specific machine. If you specify -mcpu=power7, the code also runs
on a POWER8 processor-based system, but not on a POWER6 processor-based system.
-mcpu=power6x generates instructions that are not implemented on POWER7 or POWER8
processor-based systems, and -mcpu=power6 generates code that runs on POWER7 and
POWER8 processor-based systems. The -mtune option focuses on optimizing the order of
the instructions.

Most applications do need to run on more than one platform, for example, in POWER7 mode
and POWER8 mode. For applications composed of a main program and a set of shared
libraries or applications that spend significant execution time in other (from the Linux run time
or extra package) shared libraries, you can create packages that automatically select the best
optimization for each platform.

Linux also supports automatic CPU tuned library selection. There are a number of
implementation options for CPU tuned library implementers as described here. For more
information, see Optimized Libraries, found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#/wiki/W51a7ffcf4df
d_4b40_9d82_446ebc23c550/page/Optimized%20Libraries

The Linux Technology Center works with the SUSE, Canonical, and Red Hat Linux
Distribution Partners to provide some automatic CPU-tuned libraries for the C/POSIX runtime
libraries. However, these libraries might not be supported for all platforms or have the latest
optimization.
130 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.ibm.com/developerworks/community/wikis/home?lang=en#/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Optimized%20Libraries

One advantage of the Advance Toolchain is that the runtime RPMs for the current release do
include CPU-tuned libraries for all the supported POWER processors and the latest
processor-specific optimization and capabilities, which are constantly updated. Additional
libraries are added as they are identified. The Advance Toolchain run time can be used with
either Advance Toolchain GCC or XL compilers and includes configuration files to simplify
linking XL compiled programs with the Advance Toolchain runtime libraries.

These techniques are not restricted to systems libraries, and can be easily applied to
application shared library components. The dynamic code path and processor tuned libraries
are good starting points. With this method, the compiler and dynamic linker do most of the
work. You need only some additional build time and extra media for the multiple library
images.

In this example, the following conditions apply:

� Your product is implemented in your own shared library, such as libmyapp.so.

� You want to support Linux running on POWER5, POWER6, POWER7, and POWER8
processor-based systems.

� DFP and Vector considerations:

– Your oldest supported platform is a POWER5 processor-based system, which does not
have a DFP or the Vector unit.

– The POWER6 processor has DFP and a Vector Unit implementing the older Vector
Multimedia eXtension (VMX) (vector float but no vector double) instructions.

– POWER7 and POWER8 processors have DFP and the new VSX (the original VMX
instructions plus Vector Double and more).

– Your application benefits greatly from both Hardware Decimal and high performance
vector, but if you compile your application with -mcpu=power7 -O3, it does not run on
POWER5 (no hardware DFP instructions) or POWER6 (no vector double instructions)
processor-based systems.

You can optimize all three Power platforms if you build and install your application and
libraries correctly by completing the following steps:

1. Build the main application binary file and the default version of libmyapp.so for the oldest
supported platform (in this case, use -mcpu=power5 -O3). You can still use decimal data
because the Advance Toolchain and the newest SLES 11 and RHEL 6 include a DFP
emulation library and run time.

2. Install the application (myapp) into the appropriate ./bin directory and libmyapp.so into
the appropriate ./lib64 directory. The following paths provide the application main and
default run time for your product:

– /opt/ibm/myapp1.0/bin/myapp
– /opt/ibm/myapp1.0/lib64/libmyapp.so

3. Compile and link libmyapp.so with -mcpu=power6 -O3, which enables the compiler to
generate DFP and VMX instructions for POWER6 processor-based systems.

4. Install this version of libmyapp.so in to the appropriate ./lib64/power6 directory. For
example:

/opt/ibm/myapp1.0/lib64/power6/libmyapp.so
Chapter 6. Linux 131

5. Compile and link the fully optimized version of libmyapp.so for POWER7 processors with
-mcpu=power7 -O3, which enables the compiler to generate DFP and all the VSX
instructions. Install this version of libmyapp.so in to the appropriate ./lib64/power7
directory. For example:

/opt/ibm/myapp1.0/lib64/power7/libmyapp.so

6. Compile and link the fully optimized version of libmyapp.so for the POWER8 processor
with -mcpu=power8 -O3, which enables the compiler to generate DFP and all the VSX
instructions. Install this version of libmyapp.so into the appropriate ./lib64/power8
directory. For example:

/opt/ibm/myapp1.0/lib64/power8/libmyapp.so

By simply running some extra builds, your myapp1.0 is fully optimized for the current and
N-1/N-2 POWER hardware releases. When you start your application with the appropriate
LD_LIBRARY_PATH (including /opt/ibm/myapp1.0/lib64), the dynamic linker automatically
searches the subdirectories under the library path for names that match the current
platform (POWER5, POWER6, POWER7, or POWER8 processor-based systems). If the
dynamic linker finds the shared library in the subdirectory with the matching platform
name, it loads that version; otherwise, the dynamic linker looks in the base lib64 directory
and uses the default implementation. This process continues for all directories in the
library path and recursively for any dependent libraries.

Using the Advance Toolchain
The latest Advance Toolchain compilers and run time can be downloaded from the following
link:

ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at

The Advance Toolchain V7.0 was the first release with full Power ISA-2.07 POWER8 support,
in addition to improved POWER7 optimization. Advance Toolchain V7.0 supports RHEL6,
SLES11, and the Big Endian RHEL7 releases.

The Advance Toolchain V7.1 was the first release with full POWER8 Little Endian support,
including the new ELF V2 64-bit ABI. Advance Toolchain V7.1 supports the Little Endian
RHEL7.1 and Ubuntu-14.04 (Trusty) releases.

The Advance Toolchain V8.0 supports both Big and Little Endian POWER8 processor-based
systems with a number of enhancements, including a GCC-4.9 compiler. Advance Toolchain
V8.0 supports Big Endian RHEL7 and Little Endian RHEL7.1, SLES12, and Ubuntu 14.04
releases.

In addition, all the latest Advance Toolchain releases (starting with Advance Toolchain V5.0)
add multi-core runtime libraries to enable you to take advantage of application level
multi-cores. The toolchain currently includes a POWER port of the open source version of
Intel Threading Building Blocks, the Concurrent Building Blocks software transactional
memory library, the Userspace RCU library (the application level version of the Linux kernel’s
Read-Copy-Update concurrent programming technique), and the Shared Persistent Heap
Data Environment library, which provides mechanisms to create persistent storage in a
shared address space. Additional libraries are added to the Advance Toolchain run time as
needed and if resources allow it.

Linux on Power Enterprise Distributions default to 64 KB pages, so most applications
automatically benefit from large pages. Larger (16 MB) segments can be best used with the
libhugetlbfs API, which is provided with Advance Toolchain. Large segments can be used to
back shared memory, malloc storage, and (main) program text and data segments
(incorporating large pages for shared library text or data is not supported).
132 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

ftp://ftp.unicamp.br/pub/linuxpatch/toolchain/at

6.3.2 Tuning and optimizing malloc

Methods for tuning and optimizing malloc are described in this section.

Linux malloc
Generally, tuning malloc invocations on Linux systems is an application-specific focus.

Improving malloc performance
Linux is flexible regarding the system and application tuning of malloc usage.

By default, Linux manages malloc memory to balance the ability to reuse the memory pool
against the range of default sizes of memory allocation requests. Small chunks of memory
are managed on the sbrk heap. This sbrk heap is labeled as [heap] in /proc/self/maps.

When you work with Linux memory allocation, there are a number of tunables available to
users. These tunables are coded and used in the Linux malloc.c program. Our examples
(“Malloc environment variables” on page 133 and “Linux malloc considerations” on page 133)
show two of the key tunables, which force the large sized memory allocations away from
using mmap, to using the memory on the program stack by using the sbrk system directive.

When you control memory for applications, the Linux operating system automatically makes a
choice between using the stack for mallocs with the sbrk command, or mmap regions. mmap
regions are typically used for larger memory chunks. When you use mmap for large mallocs,
the kernel must zero the newly mmapped chunk of memory.

Malloc environment variables
Users can define environment variables to control the tunables for a program. The
environment variables that are shown in the following examples caused a significant
performance improvement across several real-life workloads.

To disable the usage of mmap for mallocs (which includes Fortran allocates), set the max
value to zero:

MALLOC_MMAP_MAX_=0

To disable the trim threshold, set the value to negative one:

MALLOC_TRIM_THRESHOLD_=-1

Trimming and using mmap are two different ways of releasing unused memory back to the
system. When used together, they change the normal behavior of malloc across C and
Fortran programs, which in some cases can change the performance characteristics of the
program. You can run one of the following commands to use both actions:

� # ./my_program
� # MALLOC_MMAP_MAX_=0 MALLOC_TRIM_THRESHOLD_=-1 ./my_program

Depending on your application's behavior regarding memory and data locality, this change
might do nothing or might result in performance improvement.

Linux malloc considerations
The Linux GNU C run time includes a default malloc implementation that is optimized for
multi-threading and medium-sized allocations. For smaller allocations (less than the
MMAP_THRESHOLD), the default malloc implementation allocates blocks of storage with sbrk()
called arenas, which are then suballocated for smaller malloc requests. Larger allocations
(greater than MMAP_THRESHOLD) are allocated by an anonymous mmap, one per request.
Chapter 6. Linux 133

The default values are listed here:

DEFAULT_MXFAST 64 (for 32-bit) or 128 (for 64-bit)
DEFAULT_TRIM_THRESHOLD 128 * 1024
DEFAULT_TOP_PAD 0
DEFAULT_MMAP_THRESHOLD 128 * 1024
DEFAULT_MMAP_MAX 65536

Storage within arenas can be reused without kernel intervention. The default malloc
implementation uses trylock techniques to detect contentions between POSIX threads, and
then tries to assign each thread its own arena. This action works well when the same thread
frees storage that it allocates, but it does result in more contention when malloc storage is
passed between producer and consumer threads. The default malloc implementation also
tries to use atomic operations and more granular and critical sections (lock and unlock) to
enhance parallel thread execution, which is a trade-off for better multi-thread execution at the
expense of a longer malloc path length with multiple atomic operations per call.

Large allocations (greater than MMAP_THRESHOLD) require a kernel syscall for each malloc()
and free(). The Linux Virtual Memory Management (VMM) policy does not allocate any real
memory pages to an anonymous mmap() until the application touches those pages. The
benefit of this policy is that real memory is not allocated until it is needed. The downside is
that, as the application populates the new allocation with data, the application experiences
multiple page faults, on first touch to allocate and zero fill the page. This situation means that
on the initial touching of memory, there is more processing then, as opposed to the earlier
timing when the original mmap is done. In addition, this first touch timing can impact the
NUMA placement of each memory page.

Such storage is unmapped by free(), so each new large malloc allocation starts with a flurry
of page faults. This situation is partially mitigated by the larger (64 KB) default page size of
the RHEL and SLES on Power Systems; there are fewer page faults than with 4 KB pages.

Malloc tuning parameters
The default malloc implementation provides a mallopt() API to allow applications to adjust
some tuning parameters. For some applications, it might be useful to adjust the
MMAP_THRESHOLD, TOP_PAD, and MMAP_MAX limits. Increasing MMAP_THRESHOLD so that most
(application) allocations fall below that threshold reduces syscall and page fault impact, and
improves application start time. However, this situation can increase fragmentation within the
arenas and sbrk() storage. Fragmentation can be mitigated to some extent by also
increasing TOP_PAD, which is the extra memory that is allocated for each sbrk().

Reducing MMAP_MAX, which is the maximum number of chunks to allocate with mmap(), can
also limit the use of mmap() when MMAP_MAX is set to 0. Reducing MMAP_MAX does not always
solve the problem. The run time reverts to mmap() allocations if sbrk() storage, which is the
gap between the end of program static data (bss) and the first shared library, is exhausted.

Linux malloc and memory tools
There are several readily available tools in the Linux open source community:

� A website that describes the heap profiler that is used at Google to explore how C++
programs manage memory, found at the following website:

http://gperftools.googlecode.com/svn/trunk/doc/heapprofile.html

� Massif: a heap profiler, found at:

http://valgrind.org/docs/manual/ms-manual.html

For more information about memory management tools, see “Empirical performance
analysis by using the IBM Software Development Kit for Linux on Power” on page 233.
134 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://gperftools.googlecode.com/svn/trunk/doc/heapprofile.html
http://valgrind.org/docs/manual/ms-manual.html

For more information about tuning malloc parameters, see Malloc Tunable Parameters, found
at:

http://www.gnu.org/software/libtool/manual/libc/Malloc-Tunable-Parameters.html

Thread-caching malloc
Under some circumstances, an alternative malloc implementation can prove beneficial for
improving application performance. Packaged as part of Google's Perftools package
(http://code.google.com/p/gperftools/?redir=1), and in the IBM Advance Toolchain, this
specialized malloc implementation can improve performance across a number of C and C++
applications.

Thread-caching malloc (TCMalloc) uses a thread-local cache for each thread and moves
objects from the memory heap into the local cache as needed. Small objects with less than
32 KB are mapped into allocatable size-classes. A thread cache contains a singly linked list of
free objects per size-class. Large objects are rounded up to a page size (4 KB) and handled
by a central page heap, which is an array of linked lists.

For more information about how TCMalloc works, see TCMalloc: Thread-Caching Malloc,
found at:

http://gperftools.googlecode.com/svn/trunk/doc/tcmalloc.html

The TCMalloc implementation is part of the gperftools project. For more information about
this topic, go to the following website:

http://code.google.com/p/gperftools/

Usage
To use TCMalloc, link TCMalloc in to your application by using the -ltcmalloc linker flag by
running the following command:

$ gcc [...] -ltcmalloc

You can also use TCMalloc in applications that you did not compile yourself by using
LD_PRELOAD as follows:

$ LD_PRELOAD="/usr/lib/libtcmalloc.so"

These examples assume that the TCMalloc library is in /usr/lib. With the Advance Toolchain
V5.0.4, the 32-bit and 64-bit libraries are in /opt/at5.0/lib and /opt/at5.0/lib64.

Using TCMalloc with huge pages
To use large pages with TCMalloc, complete the following steps:

1. Set the environment variables for libhugetlbfs.
2. Allocate the number of large pages from the system.
3. Set up the libugetlbfs mount point.
4. Monitor large pages usage.

TCmalloc backs up the heap allocation on the large pages only.

Here is a more detailed version of these steps:

1. Set the environment variables for libhugetlbfs by running the following commands:

– # export TCMALLOC_MEMFS_MALLOC_PATH=/libhugetlbfs/

– # export HUGETLB_ELFMAP=RW

– # export HUGETLB_MORECORE=yes
Chapter 6. Linux 135

http://www.gnu.org/software/libtool/manual/libc/Malloc-Tunable-Parameters.html
http://code.google.com/p/gperftools/?redir=1
http://gperftools.googlecode.com/svn/trunk/doc/tcmalloc.html
http://code.google.com/p/gperftools/

Where:

– TCMALLOC_MEMFS_MALLOC_PATH=/libhugetlbfs/ defines the libhugetlbfs mount point.

– HUGETLB_ELFMAP=RW allocates both RSS and BSS (text/code and data) segments on the
large pages, which is useful for codes that have large static arrays, such as Fortran
programs.

– HUGETLB_MORECORE=yes allows heap usage on the large pages.

2. Allocate the number of large pages from the system by running one of the
following commands:

– # echo N > /proc/sys/vm/nr_hugepages

– # echo N > /proc/sys/vm/nr_overcommit_hugepages

Where:

– N is the number of large pages to be reserved. A peak usage of 4 GB by your program
requires 256 large pages (4096/16).

– nr_hugepages is the static pool. The kernel reserves N * 16 MB of memory from the
static pool to be used exclusively by the large pages allocation.

– nr_overcommit_hugepages is the dynamic pool. The kernel sets a maximum usage of N
large pages and dynamically allocates or deallocates these large pages.

3. Set up the libhugetlbfs mount point by running the following commands:

– # mkdir -p /libhugetlbfs

– # mount -t hugetlbfs hugetlbfs /libhugetlbfs

4. Monitor large pages usage by running the following command:

cat /proc/meminfo | grep Huge

This command produces the following output:

HugePages_Total:
HugePages_Free:
HugePages_Rsvd:
HugePages_Surp:
Hugepagesize:

Where:

– HugePages_Total is the total pages that are allocated on the system for LP usage.

– HugePages_Free is the total free memory available.

– HugePages_Rsvd is the total of large pages that are reserved but not used.

– Hugepagesize is the size of a single LP.

You can monitor large pages by NUMA nodes by running the following command:

watch -d grep Huge /sys/devices/system/node/node*/meminfo

MicroQuill SmartHeap
MicroQuill SmartHeap is an optimized malloc that is used for SPECcpu2006 publishes for
optimizing performance on selected benchmark components. For more information, see
SmartHeap for SMP: Does your app not scale because of heap contention?, found at:

http://www.microquill.com/smartheapsmp/index.html
136 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.microquill.com/smartheapsmp/index.html

6.3.3 Large TOC -mcmodel=medium optimization

The Linux ABI on the Power Architecture is enhanced to optimize larger programs. This ABI
both simplifies an application build and improves overall performance.

Previously, the TOC (-mfull-toc) defaulted to a single instruction access form that restricts
the total size of the TOC to 64 KB. This configuration can cause large programs to fail at
compile or link time. Previously, the only effective workaround was to compile with the
-mminimal-toc option (which provides a private TOC for each source file). The minimal TOC
strategy adds a level of indirection that can adversely impact performance.

The -mcmodel=medium option extends the range of the TOC addressing to +/-2 GB. This setup
eliminates most TOC-related build issues. Also, as the Linux ABI TOC includes Global Offset
Table (GOT) and local data, you can enable a number of compiler- and linker-based
optimizations, including TOC pointer relative addressing for local static and constant data.
This setup eliminates a level of indirection and improves the performance of large programs.

Currently, this optimization is available on SLES 11 and RHEL 6 when you are using the
system compilers if you use the -mcmodel=medium option (it is not on by default with those
compilers). This optimization is on by default when using Advance Toolchain V4.0 and later.

The medium and large code models are 64-bit only. If you use medium or large code models,
you must not use the -mminimal-toc option.

6.3.4 POWER7 based distro considerations

For distros that do not recognize the POWER8 processor core, the processor appears as a
POWER7 processor, and normal SMT=4 rules apply. This includes the RHEL 6.5 and
SLES 11 SP3 releases.

Applications running in this mode still benefit from the efficiencies of the newer processor
core, improved cache and memory characteristics, and I/O performance improvements.

6.3.5 Microthreading considerations

Microthreading is an POWER8 feature that enables each POWER8 core with eight hardware
threads to be split into four subcores (each with two hardware threads per subcore). This
feature is supported only on Linux systems running under the PowerKVM hypervisor.

The individual subcores can run as separate virtual cores in the same VM (guest) or in
different VMs at the same time. Each virtual core can run in single-threaded or SMT2 mode.
PowerKVM requires that all cores on the system be either full cores or split into four smaller
subcores each. Therefore, only VMs that are configured to run with a maximum of two
threads per virtual core can be activated with split-core enabled.

The key benefits of microthreading are that it improves CPU resource usage and increases
the number of virtual machines that can be concurrently supported per physical core.
Chapter 6. Linux 137

The PowerKVM host runs in single-threaded (or SMT off) mode. Enabling microthreading
requires first switching to SMT on mode on the host, then setting the number of subcores per
core, and finally switching back to SMT off mode with the following commands in this specific
order:

ppc64_cpu --smt=on
ppc64_cpu --subcores-per-core=4
ppc64_smt --smt=off

CPU numbering on a POWER8 host is usually 0, 8, 16, 24, and so on (in multiples of 8)
because the other seven threads of each core (1 - 7, 9 - 15, 17 - 23, and so on) are disabled
in SMT off mode. When switching to multithreading mode, CPUs 2, 4, and 6 (of the first core),
CPUs 10, 12, and 14 (of the second core), and so on, also become active.

For more information about multithreading, see 5.3.2, “Microthreading”, in IBM PowerKVM
Configuration and Use, SG24-8231.

6.4 Little Endian

Endianness is an operating mode of the processor that determines how multi-byte objects are
arranged in memory. When memory objects are stored on physical media, this arrangement
is also reflected there. In Big Endian systems, the most significant byte is stored first in
memory, and in a Little Endian system, the least significant byte is stored first.

Power Architecture processors can support both Big Endian and Little Endian modes, but
have used the Big Endian mode.

Applications that are written in an interpreted language (such as Java, Python, and Ruby)
usually work on Little or Big Endian platforms with minimal to no changes required. However,
applications that are compiled for one endian mode will not run on the other endian mode
without at least a recompile. More work is needed if the code has made any assumptions
about the order in which data has been stored (for example, code that manipulates data
through pointer casting or bit fields, code that passes data to network without converting it to
network byte order, or devices that require or assume a specific endian mode).

The Linux distributions on Power historically supported Big Endian mode, and recent releases
run in Little Endian mode (ppc64le), as shown in the following list:

� SLES 11 - Big Endian only
� SLES 12 - Little Endian only
� RHEL 7.0 - Big Endian only
� RHEL 7.1 - Big Endian and Little Endian
� Ubuntu 14.04, 14.10, 15.04 - Little Endian only
� All Little Endian versions of Linux support only POWER8 processor-based systems

Open source applications now support Little Endian mode also on Power Systems. Many
third-party and most IBM applications have migrated to Little Endian and work continues in
optimizing them to run efficiently.

A new more efficient ABI has also been introduced for Little Endian mode, which is described
in the next section.

Important: No guests must be active when running these commands.
138 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

6.4.1 Application binary interface

The POWER8 platform supports two application binary interfaces (ABIs) for processors
running in 64-bit mode. The traditional ABI that is used with previous POWER processors
remains in use with POWER8 processor-based systems operating in Big Endian mode
(providing full compatibility with existing applications). POWER8 processor-based systems
operating in Little Endian mode use the new Power Architecture 64-bit Executable and Linking
Format (ELF) V2 ABI. Because POWER8 processor-based systems are the first to use the
Little Endian capability, there are no existing applications with which compatibility must be
maintained.

The new ELF V2 ABI differs from the traditional ABI in many ways. Some of those highlights
are noted in the following list:

� The ELF V2 ABI improves the efficiency of function call sequences in the follow ways:

– It streamlines passing and returning of homogeneous aggregates of floating-point and
vector values. For example, a small array of floating-point values may now be passed in
registers rather than memory.

– It removes a level of indirection from the calculation of the address of the target
function.

– It defines local entry points within functions so that calls occurring within a single
compilation unit are more efficient.

� The ELF V2 ABI provides explicit support for Little Endian operation in the following ways:

– It specifies the layout of Little Endian data in memory, including data that is aggregated
into structures and unions.

– It defines the layout of vector elements within vector registers on Little Endian systems.

– It defines a unified vector programming interface that is appropriate for use on both Big
Endian and Little Endian systems.

In addition, the thread-local storage (TLS) ABI has now been integrated into the ELF V2 ABI,
rather than remaining a separate document.

The ELF V2 ABI is available from the OpenPOWER Connect website:

https://www-03.ibm.com/technologyconnect/tgcm/TGCMServlet.wss?alias=OpenPOWER

6.5 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� Getting started with OProfile on PowerLinux (contains references to the operf command):

http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/topic
/liacf/oprofgetstart.htm

� IBM PowerKVM Configuration and Use, SG24-8231

� POWER6 Decimal Floating Point (DFP), found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power+Sy
stems/page/POWER6+Decimal+Floating+Point+%28DFP%29

� Power ISA Version 2.07, found at:

https://www.power.org/documentation/power-isa-v-2-07b/
Chapter 6. Linux 139

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power+Systems/page/POWER6+Decimal+Floating+Point+%28DFP%29
https://www-03.ibm.com/technologyconnect/tgcm/TGCMServlet.wss?alias=OpenPOWER

http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/topic/liacf/oprofgetstart.htm
https://www.power.org/documentation/power-isa-v-2-07b/

Refer to the following sections:

– Section 3.1: Program Priority Registers
– Section 3.2: “or” Instruction
– Section 4.3.4: Program Priority Register
– Section 4.4.3: OR Instruction
– Section 5.3.4: Program Priority Register
– Section 5.4.2: OR Instruction
– Book I – 4 Floating Point Facility
– Book I – 5 Decimal Floating Point
– Book I – 6 Vector Facility
– Book I – 7 Vector-Scalar Floating Point Operations (VSX)
– Book I – Chapter 5 Decimal Floating-Point.
– Book II – 4.2 Data Stream Control Register
– Book II – 4.3.2 Data Cache Instructions
– Book II – 4.4 Synchronization Instructions
– Book II – A.2 Load and Reserve Mnemonics
– Book II – A.3 Synchronize Mnemonics
– Book II – Appendix B. Programming Examples for Sharing Storage
– Book III – 5.7 Storage Addressing

� Red Hat Enterprise Linux 6 Performance Tuning Guide, Optimizing subsystem throughput
in Red Hat Enterprise Linux 6, Edition 4.0, found at:

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Perfor
mance_Tuning_Guide/index.html

� SMT settings, found at:

http://www.ibm.com/support/knowledgecenter/POWER7/p7hc3/iphc3attributes.htm?cp=
POWER7%2F1-8-3-7-2-0-3

� Simultaneous multithreading, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/index
.jsp?topic=%2Fliaai.hpctune%2Fsmtsetting.htm

� SUSE Linux Enterprise Server System Analysis and Tuning Guide (Version 11 SP3),
found at:

http://www.suse.com/documentation/sles11/pdfdoc/book_sle_tuning/book_sle_tuning
.pdf
140 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/index.jsp?topic=%2Fliaai.hpctune%2Fsmtsetting.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/index.jsp?topic=%2Fliaai.hpctune%2Fsmtsetting.htm
http://www.ibm.com/support/knowledgecenter/POWER7/p7hc3/iphc3attributes.htm?cp=POWER7%2F1-8-3-7-2-0-3
http://www.suse.com/documentation/sles11/pdfdoc/book_sle_tuning/book_sle_tuning.pdf
http://www.suse.com/documentation/sles11/pdfdoc/book_sle_tuning/book_sle_tuning.pdf
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html

Chapter 7. Compilers and optimization tools
for C, C++, and Fortran

This chapter describes the optimization and tuning of the POWER8 processor-based servers
by using compilers and tools. It covers the following topics:

� 7.1, “Compiler versions and optimization levels” on page 142
� 7.2, “Advanced compiler optimization techniques” on page 143
� 7.3, “Capitalizing on POWER8 features with the XL and GCC compilers” on page 148
� 7.4, “IBM Feedback Directed Program Restructuring” on page 160
� 7.5, “Using the Advance Toolchain with IBM XLC and XLF” on page 169
� 7.7, “Related publications” on page 171

7

© Copyright IBM Corp. 2014, 2015. All rights reserved. 141

7.1 Compiler versions and optimization levels

The IBM XL compilers are updated periodically to improve application performance and add
processor-specific tuning and capabilities. The XLC13 and XLF15 compilers for AIX and
Linux are the first versions to include the capabilities of the POWER8 processor, and are the
preferred version for projects that target current generation systems.

For the GNU GCC, G++, and gfortran compilers on Linux, the IBM Advance Toolchain V7.0
(GCC 4.8) has the POWER8 processor enabled. The normal distribution version of GCC 4.8
does not have POWER8 support. Recent Enterprise Linux distributions with GCC 4.8 or later
compilers are fully enabled for the POWER8 processor. GCC and POWER8 support are
continuously being improved, so additional POWER8 optimizations are expected in later
versions of GCC (for example, the IBM Advance Toolchain V8.0 based on GCC 4.9). XLF is
preferred over gfortran for its high floating point performance characteristics.

For all production codes, it is imperative to enable a minimum level of compiler optimization by
adding the -O2 option for the XL compilers (-0 is equivalent to -02) and for the GNU compilers
(-03 is the preferred option for GNU). Without optimization, the focus of the compiler is on
faster compilation and debug ability, and it generates code that performs poorly at run time. In
practice, many projects set up a dual build environment, with a development build without
optimization for use during development and debugging, and a production build with
optimization to be used for performance verification and production delivery.

For projects with increased focus on runtime performance, take advantage of the more
advanced compiler optimization. For numerical or compute-intensive codes, the XL compiler
options -O3 or -qhot -O3 enable loop transformations, which improve program performance
by restructuring loops to make their execution more efficient by the target system. These
options perform aggressive transformations that can sometimes cause minor differences on
precision of floating point computations. If that is a concern, the original program semantics
can be fully recovered with the -qstrict option.

For GCC, the minimum suggested level of optimization is -O3. The GCC default is a strict
mode, but the -ffast-math option disables strict mode. The -Ofast option combines -O3 with
-ffast-math in a single option. Other important options include -fpeel-loops,
-funroll-loops, -ftree-vectorize, -fvect-cost-model, and -mcmodel=medium.

By default, these compilers generate code that run on various Power Systems. Options
should be added to exclude older processor chips that are not supported by the target
application. This configuration might enable better code generation as the compiler takes
advantage of capabilities not available on those older systems.

There are two major XL compiler options to control this support:

� -qarch: Indicates the oldest processor chip generation that the binary file supports.
� -qtune: Indicates the processor chip generation of most interest for performance. It allows

specification of a target SMT mode to direct optimizations for best performance in that
mode.

For example, for an application that must run on POWER7 processor-based systems, but for
which most users are on a POWER8 processor-based system, the appropriate combination is
-qarch=pwr7 -qtune=pwr8. For an application that must run well across both POWER7 and
POWER8 processor-based systems in current common usage, consider using
-qtune=balanced.
142 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

On GCC, the equivalent options are -mcpu and -mtune. So, for an application that must run on
a POWER7 processor-based system, but that is usually run on a POWER8 processor-based
system, the options are -mcpu=power7 and -mtune=power8.

The XLC13 and XLF15 compilers for AIX and Linux introduce an extension to -qtune to
indicate the SMT mode in which the application will most often run. For example, for an
application that must run on POWER8 processor-based systems and will most often run in
SMT4 mode (for example, four hardware threads per core), use -qarch=pwr8
-qtune=pwr8:smt4. If the same application might run in several different SMT modes, consider
using -qarch=pwr8 -qtune=pwr8:balanced.

The POWER8 processor supports the Vector Scalar eXtension (VSX) instruction set, which
improves performance for numerical applications over regular data sets. These performance
features can increase the performance of some computations, and can be accessed
manually by using the Altivec vector extensions, or automatically by the XL compiler by using
-O3 or above with -qarch=pwr7 or -qarch=pwr8. By default, these options implicitly enable
-qsimd, which allows the XL compilers to transform loops in an application to use VSX
instructions. The POWER8 processor includes several extensions to the Vector Multimedia
eXtension (VMX) and VSX instruction sets, which can improve performance of applications by
using 64-bit integer types and single-precision floating point.

The GCC compiler equivalents are the -maltivec and -mvsx options, which you should
combine with -ftree-vectorize and -fvect-cost-model. On GCC, the combination of -O3
and -mcpu=power7 or -mcpu=power8 implicitly enables Altivec and VSX code generation with
auto-vector (-ftree-vectorize) and -mpopcntd. Other important options include
-mrecip=rsqrt and -mveclibabi=mass (which require -ffast-math or -Ofast to be effective).
If the compiler uses optimizations that depend on the MASS libraries, the link command must
explicitly name the MASS library directories and library names.

For more information about this topic, see 7.7, “Related publications” on page 171.

7.2 Advanced compiler optimization techniques

This section describes some of the more advanced compiler optimization techniques.

7.2.1 Common prerequisites

Compiler analysis and transformations improve runtime performance by changing the
translation of the program source into assembly code. Changes in these translations might
cause the application to behave differently, possibly even causing it to produce incorrect
results.

Compilers follow rules and assumptions that are part of the programming language to
perform this transformation. If the programmer breaks some of these rules, it is possible for
the application to malfunction, and it might do so only at higher optimization levels, where it is
more difficult for the problem to be diagnosed.

To put this situation into perspective, imagine a C program with three variables: “int a[4], b, c;”.
These variables are normally placed contiguously in memory. If the user runs a statement of
the form a[5]=0, this statement breaks the language rules, but if variable b is unused, the
statement might overwrite variable b and the program might continue to behave correctly.
However, if, at a higher optimization level, variable b is eliminated, as the compiler determines
it is unused, the incorrect statement might overwrite variable c, triggering a runtime failure.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 143

It is critical, then, to eliminate programming errors as higher optimization is applied. Testing
the application thoroughly without optimization is a good initial step, but it is not required or
sufficient. The application must be tested at the optimization level to be used in production.

7.2.2 XL compiler family

The XL compilers provide static analysis and runtime checking to allow users to detect and
correct source code problems.

Prerequisites
The XL compilers assist with identifying certain programming errors that are outlined 7.2.1,
“Common prerequisites” on page 143:

� Static analysis/warnings: The XL compilers can identify suspicious code constructs, and
provide some information about these constructs through the -qinfo=all option. Examine
the output of this option to identify suspicious code constructs and validate that the
constructs are correct.

� Runtime analysis or warning: The XL compilers can cause the application to perform
runtime checks to validate program correctness by using the -qcheck option. This option
triggers a program abort when an error condition (such as a null pointer dereference or
out-of-bounds array access) is run, identifying a problem and making it easier for you to
identify it. This option has a significant performance cost, so use it only during functional
verification, not on a production environment.

� Aliasing compliance: The C, C++, and Fortran languages specify rules that govern the
access of data through overlapping pointers. These rules are brought into play
aggressively by optimization techniques, but they can lead to incorrect results if they are
broken. The compiler can be instructed not to take advantage of these rules, at a cost of
runtime performance. This situation can be useful for older code that is written without
following these rules. The options to request this optimization are -qalias=noansi for
C/C++ and -qalias=nostd for Fortran.

The XLC13 and XLF15 compilers include enhancements to -qinfo and -qcheck to detect
accesses to uninitialized variables and stack corruption or stack clobbering.

High-order transformations
The XL compilers have sophisticated optimizations to improve the performance of numeric
applications. These applications often contain regular loops that process large amounts of
data. The high-order transformation (HOT) optimizations in these compilers analyze these
loops, identify opportunities for restructuring them to improve cache usage, improve data
reuse, and expose more instruction-level parallelism to the hardware. For these types of
applications, the performance impact of this option can be substantial.

There are two levels of aggressiveness to the HOT optimization framework in these
compilers:

� Level 0, which is the default at optimization level -O3, performs a minimal amount of loop
optimization, focusing on simple opportunities and minimizing compilation time.

� Level 1, which is the default at optimization levels -O4 and up, performs full loop analysis
and transformation of loops.

The HOT optimizations can be explicitly requested through the -qhot=level=0 and
-qhot=level=1 options. The -qhot option alone enables -qhot=level=1. The -O3 -qhot
options are preferred for numerical applications.
144 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

OpenMP
The OpenMP API is an industry specification for shared-memory parallel programming. The
latest XL Compilers provide a full implementation of the OpenMP 3.1 specification and partial
support of the OpenMP4.0 specification in C, C++, and Fortran. You can program with
OpenMP to capitalize on the incremental introduction of parallelism in an existing application
by adding pragmas or directives to specify how the application can be parallelized.

For applications with available parallelism, OpenMP can provide a simple solution for parallel
programming without requiring low-level thread manipulation. The OpenMP implementation
on the XL compilers is available by using the -qsmp=omp option.

Whole-program analysis
Traditional compiler optimizations operate independently on each application source file.
Inter-procedural optimizations operate at the whole-program scope by using the interaction
between parts of the application on different source files. It is often effective for large-scale
applications that are composed of hundreds or thousands of source files.

On the XL compilers, these capabilities are accessed by using the -qipa option. It is also
implied when you use optimization levels -O4 and -O5. In this phase, the compiler saves a
high-level representation of the program in the object files during compilation, and reoptimizes
it at the whole-program scope during the link phase. For this situation to occur, the compiler
driver must be used to link the resulting binary file instead of starting the system linker
directly.

Whole-program analysis (IPA) is effective on programs that use many global variables,
overflowing the default AIX limit on global symbols. If the application requires the use of the
-bbigtoc option to link successfully on AIX, it is likely a good candidate for IPA optimization.

There are three levels of IPA optimization on the XL compilers (0, 1, and 2). By default, -qipa
implies ipa=level=1, which performs basic program restructuring. For more aggressive
optimization, apply -qipa=level=2, which performs full program restructuring during the link
step. The time that it takes to complete the link step can increase significantly.

Optimization that is based on Profile Directed Feedback
Profile-based optimization allows the compiler to collect information about the program
behavior and use that information when you make code generation decisions. It involves
compiling the program twice: first, to generate an instrumented version of the application that
collects program behavior data when run, and a second time to generate an optimized binary
file by using information that is collected by running the instrumented binary file through a set
of typical inputs for the application.

Profile-based optimization in the XL compiler is accessed through the -qpdf1 and -qpdf2
options, on top of -O or higher optimization levels. The instrumented binary file is generated
by using -qpdf1 on top of all other options, and the resulting binary file generates the profile
data on a file, named ._pdf by default.

The Profile Directed Feedback (PDF) framework on the XL compilers is built on top of the IPA
infrastructure, with -qpdf1 and -qpdf2 implying -qipa=level=0. For the PDF2 step, it is
possibly to reuse the object files from the -qpdf1 compilation step, and relink only the
application with the -qpdf2 option.

For PDF optimizations to be successful, the instrumented workload must be run with common
workloads that reflect common usage of the application. Use multiple workloads that can
exercise the program in different ways. The data for all instrumentation runs is aggregated
into a single PDF file and used during optimization.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 145

For the PDF profile data to be written out at the end of execution, the program must either
implicitly or explicitly call the exit() library subroutine. Using exit() causes code that is
introduced as part of the PDF instrumentation to be run and write out the PDF profile data. In
contrast, running the _exit() system call skips the writing of the PDF profile data file, which
results in inaccurate profile data being recorded.

7.2.3 GCC compiler family

The information in this section applies specifically to the GCC compiler family.

Prerequisites
The GCC compiler assists with identifying certain programming errors that are outlined in
7.2.1, “Common prerequisites” on page 143:

� Static analysis and warnings. The -pedantic and -pedantic-errors options warn of
violations of ISO C or ISO C++ standards.

� The language standard to enforce and the aliasing compliance requirements are specified
by the -std, -ansi, and -fno-strict-aliasing options. For example:

– ISO C 1990 level: -std=c89, -std=iso9899:1990, and -ansi
– ISO C 1998 level: -std=c99 and -std=iso9899:1999
– Do not assume strict aliasing rules for the language level: –fno-strict-aliasing

The GCC compiler documentation contains more details about these options.1, 2, 3

High-order transformations (HOTs)
The GCC compilers have sophisticated additional optimizations beyond -O3 to improve the
performance of numeric applications. These applications often contain regular loops that
process large amounts of data. These optimizations, when enabled, analyze these loops,
identify opportunities for restructuring them to improve cache usage, improve data reuse, and
expose more instruction-level parallelism to the hardware. For these types of applications, the
performance impact of this option can be substantial. The key compiler options include:

� -fpeel-loops
� -funroll-loops
� -ftree-vectorize
� -fvect-cost-model
� -mcmodel=medium

Specifying the -mveclibabi=mass option and linking to the MASS libraries enables more loops
for -ftree-vectorize. The MASS libraries support only static archives for linking, and so they
require explicit naming and library search order for each platform/mode:

� POWER8 32-bit: -L<MASS-dir>/lib -lmassvp8 -lmass_simdp8 -lmass -lm
� POWER8 64-bit: -L<MASS-dir>/lib64 -lmassvp8_64 -lmass_simdp8_64 -lmass_64 -lm
� POWER7 32-bit: -L<MASS-dir>/lib -lmassvp7 -lmass_simdp7 -lmass -lm
� POWER7 64-bit: -L<MASS-dir>/lib64 -lmassvp7_64 -lmass_simdp7_64 -lmass_64 -lm
� POWER6 32-bit: -L<MASS-dir>/lib -lmassvp6 -lmass -lm
� POWER6 64-bit: -L<MASS-dir>/lib64 -lmassvp6_64 -lmass_64 -lm

1 Language Standards Supported by GCC, found at:
http://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/Standards.html#Standards
2 Options Controlling C Dialect, found at:
http://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/C-Dialect-Options.html#C-Dialect-Options
3 Options That Control Optimization, and specifically the discussion of -fstrict-aliasing, found at:
http://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/Optimize-Options.html#Optimize-Options
146 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/Standards.html#Standards
http://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/C-Dialect-Options.html#C-Dialect-Options
http://gcc.gnu.org/onlinedocs/gcc-3.4.2/gcc/Optimize-Options.html#Optimize-Options

ABI improvements
The -mcmodel={medium|large} option implements important ABI improvements that are
further optimized in hardware for future generations of the POWER processor. This
optimization extends the Table-Of-Content (TOC) to 2 GB and eliminates the previous
requirement for -mminimal-toc or multi-TOC switching within a single a program or library.
The default for newer GCC compilers (including Advance Toolchain V4.0 and later) is
-mcmodel=medium. This model logically extends the TOC to include local static data and
constants and allows direct data access relative to the TOC pointer.

OpenMP
The OpenMP API is an industry specification for shared-memory parallel programming. The
current GCC compilers, starting with GCC- 4.4 (Advance Toolchain V4.0 and later), provide a
full implementation of the OpenMP 3.0 specification in C, C++, and Fortran. Programming
with OpenMP allows you to benefit from the incremental introduction of parallelism in an
existing application by adding pragmas or directives to specify how the application can
be parallelized.

For applications with available parallelism, OpenMP can provide a simple solution for parallel
programming, without requiring low-level thread manipulation. The GNU OpenMP
implementation on the GCC compilers is available under the -fopenmp option. GCC also
provides auto-parallelization under the -ftree-parallelize-loops option.

Whole-program analysis
Traditional compiler optimizations operate independently on each application source file.
Inter-procedural optimizations operate at the whole-program scope, by using the interaction
between parts of the application on different source files. It is often effective for large-scale
applications that are composed of hundreds or thousands of source files.

Starting with GCC- 4.6 (Advance Toolchain V5.0), there is the Link Time Optimization (LTO)
feature. LTO allows separate compilation of multiple source files but saves additional (an
abstract program description) information in the resulting object file. Then, at application link
time, the linker can collect all the objects (with additional information) and pass them back to
the compiler (GCC) for whole program whole-program analysis (IPA) and final code
generation.

The GCC LTO feature is enabled during the compile and link phases by the -flto option. A
simple example follows:

gcc -flto -O3 -c a.c
gcc -flto -O3 -c b.c
gcc -flto -o program a.o b.o

Additional options that can be used with -flto include:

� -flto-partition={1to1|balanced|none}
� -flto-compression-level=n

Detailed descriptions about -flto and its related options are in Options That Control
Optimization, found at:

http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/Optimize-Options.html#Optimize-Options
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 147

http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/Optimize-Options.html#Optimize-Options

Profiled-based optimization
Profile-based optimization allows the compiler to collect information about the program
behavior and use that information when you make code generation decisions. It involves
compiling the program twice: first, to generate an instrumented version of the application that
collects program behavior data when run, and a second time to generate an optimized binary
by using information that is collected by running the instrumented binary file through a set of
typical inputs for the application.

Profile-based optimization in the GCC compiler is accessed through the -fprofile-generate
and -fprofile-use options on top of -O2 optimization levels. The instrumented binary file is
generated by using -fprofile-generate on top of all other options, and the resulting binary
file generates the profile data in a file, named ._pdf by default. For example:

gcc -fprofile-generate -O3 -c a.c
gcc -fprofile-generate -O3 -c b.c
gcc -fprofile-generate -o program a.o b.o
program < sample1
program < sample2
program < sample3
gcc -fprofile-use -O3 -c a.c
gcc -fprofile-use -O3 -c b.c
gcc -fprofile-use -o program a.o b.o

Additional options that are related to GCC PDF include:

-fprofile-correction Corrects for missing counter-samples from multi-threaded
applications.

-fprofile-dir=PATH Specifies the directory for generating and using profile data.

-fprofile-generate=PATH Combines -fprofile-generate and -fprofile-dir.

-fprofile-use=PATH Combines -fprofile-use and -fprofile-dir.

Detailed descriptions about -fprofile-generate and its related options can be found in
Options That Control Optimization, found at:

http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/Optimize-Options.html#Optimize-Options

For more information about this topic, see 7.7, “Related publications” on page 171.

7.3 Capitalizing on POWER8 features with the XL and GCC
compilers

This section describes built-in functions that are provided by the XL and GCC compiler
families for high-level language access to new POWER8 features and instructions.

7.3.1 In-core cryptography

The GCC, XL C/C++, and XL Fortran compilers provide built-in functions for the in-core
cryptography instructions. For GCC, the following built-in functions require -mcpu=power8 or
-mcrypto. For the XL compiler family, -qarch=pwr8 is required.
148 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://gcc.gnu.org/onlinedocs/gcc-4.6.3/gcc/Optimize-Options.html#Optimize-Options

AES
The following built-in functions are provided for the implementation of the AES algorithm:

� vsbox

– GCC: vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long)

– XL C/C++: vector unsigned char __vsbox (vector unsigned char) XLF: VSBOX (ARG1),
where ARG1 and result are unsigned vector types of kind 1

� vcipher

– GCC: vector unsigned long long __builtin_crypto_vcipher (vector unsigned long
long, vector unsigned long long)

– XL C/C++: vector unsigned char __vcipher (vector unsigned char, vector unsigned
char)

– XLF: VCIPHER (ARG1,ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 1

� vcipherlast

– GCC: vector unsigned long long __builtin_crypto_vcipherlast (vector unsigned
long long, vector unsigned long long)

– XL C/C++: vector unsigned char __vcipherlast (vector unsigned char, vector unsigned
char)

– XLF: VCIPHERLAST (ARG1,ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 1

� vncipher

– GCC: vector unsigned long long __builtin_crypto_vncipher (vector unsigned long
long, vector unsigned long long)

– XL C/C++: vector unsigned char __vncipher (vector unsigned char, vector unsigned
char)

– XLF: VNCIPHER (ARG1,ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 1

� vncipherlast

– GCC: vector unsigned long long __builtin_crypto_vncipherlast (vector unsigned
long long, vector unsigned long long)

– XL C/C++: vector unsigned char __vncipherlast (vector unsigned char, vector
unsigned char)

– XLF: VNCIPHERLAST (ARG1,ARG2), where ARG1, ARG2, and result are unsigned
vector types of kind 1

For more information, see “AES” on page 47.

AES Galois Counter Mode
The following built-in functions are provided for the implementation of the Galois Counter
Mode (GCM) of AES:

vpmsumd:

� GCC: vector unsigned long long __builtin_crypto_vpmsum (vector unsigned long long,
vector unsigned long long)

� XL C/C++: vector unsigned long long __vpmsumd (vector unsigned long long, vector
unsigned long long)
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 149

� XLF: VPMSUMD (ARG1, ARG2), where ARG1, ARG2, and result are unsigned vector types
of kind 8

For more information, see “AES special mode of operation: Galois Counter Mode” on
page 48.

SHA-2
The following built-in functions are provided for the implementation of SHA-2 hash functions:

� vshasigmad

– GCC: vector unsigned long long __builtin_crypto_vshasigmad (vector unsigned long
long, int, int)

– XL C/C++: vector unsigned long long __vshasigmad (vector unsigned long long, int, int)

– XLF: VSHASIGMAD (ARG1,ARG2,ARG3), where ARG1 and result are unsigned vector
types of kind 8, and ARG2 and ARG3 are integer types

� vshasigmaw

– GCC: vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int, int, int)

– XL C/C++: vector unsigned int __vshasigmaw (vector unsigned int, int, int)

– XLF: VSHASIGMAW (ARG1,ARG2,ARG3), where ARG1 and result are unsigned vector
types of kind 4, and ARG2 and ARG3 are integer types

For more information, see “SHA-2” on page 48.

CRC
The following built-in functions are provided for the implementation of the CRC algorithm:

� vpmsumd

– GCC: vector unsigned long long __builtin_crypto_vpmsum (vector unsigned long long,
vector unsigned long long)

– XL C/C++: vector unsigned long long __vpmsumd (vector unsigned long long, vector
unsigned long long)

– XLF: VPMSUMD (ARG1, ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 8

� vpmsumw

– GCC: vector unsigned int __builtin_crypto_vpmsum (vector unsigned int, vector
unsigned int)

– XL C/C++: vector unsigned int __vpmsumw (vector unsigned int, vector unsigned int)

– XLF: VPMSUMW (ARG1, ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 4

� vpmsumh

– GCC: vector unsigned short __builtin_crypto_vpmsum (vector unsigned short, vector
unsigned short)

– XL C/C++: vector unsigned short __vpmsumh (vector unsigned short, vector unsigned
short)

– XLF: VPMSUMH (ARG1, ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 2
150 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

� vpmsumb

– GCC: vector unsigned char __builtin_crypto_vpmsum (vector unsigned char, vector
unsigned char)

– XL C/C++: vector unsigned char __vpmsumb (vector unsigned char, vector unsigned
char)

– XLF: VPMSUMB (ARG1, ARG2), where ARG1, ARG2, and result are unsigned vector
types of kind 1

For more information about the topic of in-core cryptography, from the processor and OS
perspectives, see:

� 2.2.7, “In-core cryptography and integrity enhancements” on page 47 (processor)
� 4.2.7, “On-chip encryption accelerator” on page 94 (AIX)

7.3.2 Compiler support for Vector Scalar eXtension

XLC supports vector processing technologies through language extensions on both AIX and
Linux. GCC supports using the VSX engine on Linux. XL, and GCC. C implements and
extends the AltiVec Programming Interface specification. In the extended syntax, type
qualifiers and storage class specifiers can precede the keyword vector (or its alternative
spelling, __vector) in a declaration.

Also, the XL compilers can automatically generate VSX instructions from scalar code when
they generate code that targets the POWER7 processor or later at -03 or higher. GCC also
automatically generates VSX instructions from scalar code when generating code for a
POWER7 or later processor. This is accomplished by specifying -O3 (or -ftree-vectorize).

Table 7-1 lists the supported vector data types and the size and possible values for each type.

Table 7-1 Vector data types

Type Interpretation of content Range of values

vector unsigned char 16 unsigned char 0..255

vector signed char 16 signed char -128..127

vector bool char 16 unsigned char 0, 255

vector unsigned short 8 unsigned short 0..65535

vector unsigned short int

vector signed short 8 signed short -32768..32767

vector signed short int

vector bool short 8 unsigned short 0, 65535

vector bool short int

vector unsigned int 4 unsigned int 0..2^32-1

vector unsigned long 4 unsigned int (32-bit)

2 unsigned long int (64-bit)

0..2^32-1

0..2^64-1vector unsigned long int

vector signed int 4 signed int -2^31..2^31-1
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 151

The hardware does not have instructions for supporting vector unsigned long long, vector
bool long long, or vector signed long long. In GCC, you can declare these types, but the only
hardware operation that you can use these types for is vector floating point convert. In 64-bit
mode, vector long is the same as vector long long. In 32-bit mode, these types are not
permitted.

All vector types are aligned on a 16-byte boundary. An aggregate that contains one or more
vector types is aligned on a 16-byte boundary, and padded, if necessary, so that each
member of vector type is also 16-byte aligned. Vector data types can use some of the unary,
binary, and relational operators that are used with primitive data types. All operators require
compatible types as operands unless otherwise stated. For more information about the
operator’s usage, see the XLC online publications.4, 5, 6

Individual elements of vectors can be accessed by using the VMX or the VSX built-in
functions. For more information about the VMX and the VSX built-in functions, see the
“Built-in functions” section of Vector Built-in Functions.7

vector signed long 4 signed int (32-bit)

2 signed long int (64-bit)

-2^31..2^31-1

-2^63..2^63-1vector signed long int

vector bool int 4 unsigned int 0, 2^32-1

vector bool long 4 unsigned int (32-bit)

2 unsigned long int (64-bit)

0, 2^32-1

0, 2^64-1vector bool long int

vector float 4 float IEEE-754 single (32-bit)
precision floating point values

vector double 2 double IEEE-754 double (64-bit)
precision floating point values

vector pixel 8 unsigned short 1/5/5/5 pixel

Vector types: The vector double type requires architectures that support the VSX
instruction set extensions, such as the POWER7 processor. You must specify the XL
-qarch=pwr7 -qaltivec compiler options when you use this type, or the GCC
-mcpu=power7 or -mvsx options.

4 Support for POWER7 processors, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ib
m.xlc111.aix.doc/getstart/architecture.html

5 Vector built-in functions, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ib
m.xlc111.aix.doc/compiler_ref/vec_intrin_cpp.html

6 Initialization of vectors (IBM extension), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=%2Fcom.
ibm.xlcpp111.aix.doc%2Flanguage_ref%2Fvector_init.html

7 Vector built-in functions, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=%2Fcom.
ibm.xlcpp111.aix.doc%2Fcompiler_ref%2Fvec_intrin_cpp.html
152 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ibm.xlc111.aix.doc/getstart/architecture.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=/com.ibm.xlc111.aix.doc/compiler_ref/vec_intrin_cpp.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=%2Fcom.ibm.xlcpp111.aix.doc%2Flanguage_ref%2Fvector_init.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=%2Fcom.ibm.xlcpp111.aix.doc%2Fcompiler_ref%2Fvec_intrin_cpp.html

Vector initialization
A vector type is initialized by a vector literal or any expression that has the same vector type.
For example:8

vector unsigned int v1;
vector unsigned int v2 = (vector unsigned int)(10);// XL only, not GCC
v1 = v2;

The number of values in a braced initializer list must be less than or equal to the number of
elements of the vector type. Any uninitialized element is initialized to zero.

Here are examples of vector initialization that use initializer lists:

vector unsigned int v1 = {1};// initialize the first 4 bytes of v1 with 1

// and the remaining 12 bytes with zeros

vector unsigned int v2 = {1,2};// initialize the first 8 bytes of v2 with 1 and 2

// and the remaining 8 bytes with zeros

vector unsigned int v3 = {1,2,3,4};// equivalent to the vector literal

// (vector unsigned int) (1,2,3,4)

How to use vector capability in the POWER8 processor
When you target a POWER processor that supports VMX or VSX, you can request the
compiler to transform code into VMX or VSX instructions. These machine instructions can run
up to 16 operations in parallel. This transformation mostly applies to loops that iterate over
contiguous array data and perform calculations on each element. You can use the NOSIMD
directive to prevent the transformation of a particular loop:9

� Using a compiler: Compiler versions that recognize the POWER8 architecture are XL
C/C++ 13.1 and XLF Fortran 15.1 or recent versions of GCC, including the Advance
Toolchain, and the SLES 11SP1 or Red Hat RHEL6 GCC compilers:

– For C:

• xlc -qarch=pwr8 -qtune=pwr8 -O3 -qhot
• gcc -mcpu=power8 -mtune=power8 -O3

– For Fortran

• xlf -qarch=pwr8 -qtune=pwr8 -O3 -qhot
• gfortran -mcpu=power8 -mtune=power8 -O3

� Using Engineering and Scientific Subroutine (ESSL) libraries with vectorization support:

– Select routines have vector analogs in the library.

– Key FFT, BLAS routines.

For more information about the topic of VSX, from the processor and OS perspectives, see:

� 2.2.5, “Vector Scalar eXtension” on page 45 (processor)
� 4.2.5, “Vector Scalar eXtension” on page 91 (AIX)
� 5.2.3, “Vector Scalar eXtension” on page 113 (IBM i)
� 6.2.5, “Vector Scalar eXtension” on page 125 (Linux)

8 Vector types (IBM extension), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=%2Fcom.
ibm.xlc111.aix.doc%2Flanguage_ref%2Faltivec_types.html

9 Ibid
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 153

http://www-01.ibm.com/support/knowledgecenter/api/redirect/comphelp/v111v131/index.jsp?topic=%2Fcom.ibm.xlc111.aix.doc%2Flanguage_ref%2Faltivec_types.html

7.3.3 Built-in functions for storage synchronization

The XL C/C++ compiler provides built-in functions for direct usage of the storage
synchronization load/store operations, as described in 2.2.9, “Storage synchronization (sync,
lwsync, lwarx, stwcx., and eieio)” on page 49. New functions for the POWER8 processor are
indicated and require -qarch=pwr8.

Each pair of built-ins is used to implement a read-modify-write operation on a memory
location of a given size, where the load built-in (beginning with __l) returns the loaded value,
and the store built-in (beginning with __st) returns 1 if the store succeeds, 0 otherwise. The
functions work together to ensure that if the store succeeds, then no other processor or
mechanism can modify the target between the time of the load execution and store
completion.

� char __lbarx(volatile char* addr)
� int __stbcx(volatile char* addr, char data)

Load and store, respectively, the byte value at addr. Requires -qarch=pwr8.

� short __lharx(volatile short* addr)
� int __sthcx(volatile short* addr, short data)

Load and store, respectively, the halfword value at addr. addr must be aligned on a
halfword boundary. Requires -qarch=pwr8.

� int __lwarx(volatile int* addr)
� int __stwcx(volatile int* addr, int data)

Load and store, respectively, the word value at addr. addr must be aligned on a word
boundary.

� long __ldarx(volatile long* addr)
� long __stdcx(volatile long* addr, long data)

Load and store, respectively, the doubleword value at addr. addr must be aligned on a
doubleword boundary. Only valid in 64-bit mode.

� void __lqarx(volatile long* addr, long data[2])
� long __stqcx(volatile long* addr, long data[2])

__lqarx loads the quadword value at addr into the quadword location that is specified by
data. __stqcx stores the quadword value in data to the quadword location that is specified
by addr. Both addr and data must be aligned on a quadword boundary. Only valid in 64-bit
mode, and requires -qarch=pwr8.

7.3.4 Data Streams Control Register controls

The XL C/C++ and XL Fortran compilers provide the following built-in functions to modify the
DSCR setting. The -qarch=pwr8 option is required to use the following built-in functions. For
descriptions of the DSCR fields, see Table 2-4 on page 40.

� C/C++: void __software_transient_enable(int)

� Fortran: SOFTWARE_TRANSIENT_ENABLE(flag), where flag is a scalar of type logical

Set the SWTE bit to the provided value (0 or 1).

� C/C++: void __hardware_transient_enable(int)

� Fortran: HARDWARE_TRANSIENT_ENABLE(flag), where flag is a scalar of type logical

Set the HWTE bit to the provided value (0 or 1).
154 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

� C/C++: void __store_transient_enable(int)

� Fortran: STORE_TRANSIENT_ENABLE(flag), where flag is a scalar of type logical

Set the STE bit to the provided value (0 or 1).

� C/C++: void __load_transient_enable(int)

� Fortran: LOAD_TRANSIENT_ENABLE(flag), where flag is a scalar of type logical

Set the LTE bit to the provided value (0 or 1),

� C/C++: void __software_unit_count_enable(int)

� Fortran: SOFTWARE_UNIT_COUNT_ENABLE(flag), where flag is a scalar of type logical

Set the SWUE bit to the provided value (0 or 1).

� C/C++: void __hardware_unit_count_enable(int)

� Fortran: HARDWARE_UNIT_COUNT_ENABLE(flag), where flag is a scalar of type logical

Set the HWUE bit to the provided value (0 or 1).

� C/C++: void __set_prefetch_unit_count(int)

� Fortran: SET_PREFETCH_UNIT_COUNT(cnt), where cnt is a scalar of type integer

Set the UNITCNT field to the provided value (in range [0,1023]).

� C/C++: void __depth_attainment_urgency(int)

� Fortran: DEPTH_ATTAINMENT_URGENCY(cnt), where cnt is a scalar of type integer

Set the URG field to the provided value (in range [0,7]).

� C/C++: void __load_stream_disable(int)

� Fortran: LOAD_STREAM_DISABLE(flag), where flag is a scalar of type logical

Set the LSD bit to the provided value (0 or 1).

� C/C++: void __stride_n_stream_enable(int)

� Fortran: STRIDE_N_STREAM_ENABLE(flag), where flag is a scalar of type logical

Set the SNSE bit to the provided value (0 or 1).

� C/C++: void __default_prefetch_depth(int)

� Fortran: DEFAULT_PREFETCH_DEPTH(cnt), where cnt is a scalar of type integer

Set the DPFD field to the provided value (in range [0,7]).

� C/C++: unsigned long long __prefetch_get_dscr_register(void)

� Fortran: PREFETCH_GET_DSCR_REGISTER(), with return type integer*8

Get the current 64-bit DSCR register value.

� C/C++: void __prefetch_set_dscr_register(void)

� Fortran: PREFETCH_SET_DSCR_REGISTER(val), where value is a scalar of type integer*8

Set the DSCR value to the provided 64-bit value.

The topic of DSCR is described from a processor perspective in “Data prefetching using
d-cache instructions and the Data Streams Control Register (DSCR)” on page 39.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 155

7.3.5 Transactional memory

Transactional memory (TM) is a new approach that simplifies concurrent programming,
specifically in the accessing of shared data across multiple threads. Previous to TM,
accesses to shared data were synchronized by the use of locks. Threaded code that needed
access to shared data first had to acquire the data lock, then access the shared data, and
then release the lock. On many systems, acquiring locks can be expensive, making accessing
shared data vastly more expensive than accessing non-shared data. This additional locking
can be especially burdensome when the shared data has low contention between the multiple
threads.

Using TM, shared data accesses are placed into blocks of code called transactions. When
using hardware transactional memory (HTM), these transactions are run without locking, and
the results are seen by other threads atomically.

The POWER8 processor supports the HTM instructions that are defined in Power ISA
Version 2.07, found at:

https://www.power.org/documentation/power-isa-v-2-07b/

Users have three options when writing code to use the POWER8 HTM features:

� The first option to use HTM is through the low-level GCC built-in functions, which are
enabled with the GCC -mcpu=power8 or -mhtm compiler options. The HTM built-in
functions (with the exception of __builtin_tbegin) return the full 4-bit condition register
value that is set by their associated hardware instruction. The header, htmintrin.h,
defines some macros that can be used to decipher the return value. The
__builtin_tbegin built-in returns a simple true or false value, depending on whether a
transaction was successfully started or unsuccessful. The arguments to the HTM built-in
functions match exactly the type and order of the associated hardware instruction
operands (except for the __builtin_tcheck built-in, which does not take any input
arguments), as shown in Example 7-1.

Example 7-1 GCC HTM built-in functions

unsigned int __builtin_tbegin (unsigned int)
unsigned int __builtin_tend (unsigned int)

unsigned int __builtin_tabort (unsigned int)
unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)

unsigned int __builtin_tcheck (void)
unsigned int __builtin_treclaim (unsigned int)
unsigned int __builtin_trechkpt (void)
unsigned int __builtin_tsr (unsigned int)

unsigned long __builtin_get_texasr (void)
unsigned long __builtin_get_texasru (void)
unsigned long __builtin_get_tfhar (void)
unsigned long __builtin_get_tfiar (void)

void __builtin_set_texasr (unsigned long);
void __builtin_set_texasru (unsigned long);
156 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/power-isa-v-2-07b/

void __builtin_set_tfhar (unsigned long);
void __builtin_set_tfiar (unsigned long);

In addition to Example 7-1 on page 156, in this book we have added built-in functions for
some common extended mnemonics of the HTM instructions, as shown in Example 7-2.

Example 7-2 GCC HTM built-in functions for extended mnemonics

unsigned int __builtin_tendall (void)
unsigned int __builtin_tresume (void)
unsigned int __builtin_tsuspend (void)

Common usage of these HTM built-in functions might produce results similar to those
shown in Example 7-3.

Example 7-3 Simple use of HTM built-in functions

#include <htmintrin.h>
if (__builtin_tbegin (0))

 {
 /* Transaction State Initiated. */
 if (is_locked (lock))

__builtin_tabort (0);
 a = b + c;
 __builtin_tend (0);
 }
 else
 {
 /* Transaction State Failed, Use Locks. */
 acquire_lock (lock);
 a = b + c;
 release_lock (lock);
 }

A slightly more complicated example is shown in Example 7-4. This example shows an
attempt to retry the transaction a specific number of times before falling back to using
locks.

Example 7-4 Complex use of HTM built-in functions

#include <htmintrin.h>
int num_retries = 10;
while (1)

 {
 if (__builtin_tbegin (0))

{
 /* Transaction State Initiated. */
 if (is_locked (lock))

__builtin_tabort (0);
 a = b + c;
 __builtin_tend (0);
 break;
 }
 else
 {
 /* Transaction State Failed. Use locks if the transaction
 failure is "persistent" or we've tried too many times. */
 if (num_retries-- <= 0
 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 157

 {
 acquire_lock (lock);
 a = b + c;
 release_lock (lock);
 break;
 }
 }
 }

In some cases, it can be useful to know whether the code that is being run is in the
transactional state or not. Unfortunately, that cannot be determined by analyzing the HTM
Special Purpose Registers (SPRs). That specific information is contained only within the
Machine State Register (MSR) Transaction State (TS) bits, which are not accessible by
user code. To allow access to that information, we have added one final built-in function
and some associated macros to help the user to determine what the transaction state is at
a particular point in their code:

unsigned int __builtin_ttest (void)

Usage of the built-in function and its associated macro might look like the code that is
shown in Example 7-5.

Example 7-5 Determine the transaction state

#include <htmintrin.h>

 unsigned char tx_state = __builtin_ttest ();

 if (_HTM_STATE (tx_state) == _HTM_TRANSACTIONAL)
 {
 /* Code to use in transactional state. */
 }
 else if (_HTM_STATE (tx_state) == _HTM_NONTRANSACTIONAL)
 {
 /* Code to use in non-transactional state. */
 }
 else if (_HTM_STATE (tx_state) == _HTM_SUSPENDED)
 {
 /* Code to use in transaction suspended state. */
 }

� A second option for using HTM is by using the slightly higher-level inline functions that are
common to GCC and the IBM XL compilers on both POWER and System z®. These sets
of common HTM built-in functions are defined in the htmxlintrin.h header file and can be
used to write code that can be compiled on POWER or System z by using either the IBM
XL or GCC compilers. See Example 7-6.

Example 7-6 HTM intrinsic functions common to IBM XL and GCC compilers

long __TM_simple_begin (void)
 long __TM_begin (void* const TM_buff)
 long __TM_end (void)
 void __TM_abort (void)
 void __TM_named_abort (unsigned char const code)
 void __TM_resume (void)
 void __TM_suspend (void)

 long __TM_is_user_abort (void* const TM_buff)
 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
158 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

 long __TM_is_illegal (void* const TM_buff)
 long __TM_is_footprint_exceeded (void* const TM_buff)
 long __TM_nesting_depth (void* const TM_buff)
 long __TM_is_nested_too_deep(void* const TM_buff)
 long __TM_is_conflict(void* const TM_buff)
 long __TM_is_failure_persistent(void* const TM_buff)
 long __TM_failure_address(void* const TM_buff)
 long long __TM_failure_code(void* const TM_buff)

Using these built-in functions, you can create a more portable version of the code that is
shown in Example 7-4 on page 157 so that it works on POWER and on System z, by using
either GCC or the XL compilers. This more portable version is shown in Example 7-7.

Example 7-7 Complex HTM usage using portable HTM intrinsics

#ifdef __GNUC__
include <htmxlintrin.h>
#endif

 int num_retries = 10;
 TM_buff_type TM_buff;

 while (1)
 {
 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)

{
 /* Transaction State Initiated. */
 if (is_locked (lock))

 __TM_abort ();
 a = b + c;
 __TM_end ();
 break;
 }
 else
 {
 /* Transaction State Failed. Use locks if the transaction
 failure is "persistent" or we've tried too many times. */
 if (num_retries-- <= 0
 || __TM_is_failure_persistent (TM_buff))
 {
 acquire_lock (lock);
 a = b + c;
 release_lock (lock);
 break;
 }
 }
 }

� The third and most portable option uses a high-level language interface that is
implemented by GCC and the GNU Transactional Memory Library (LIBITM), which is
described at the following website:

http://gcc.gnu.org/wiki/TransactionalMemory
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 159

http://gcc.gnu.org/wiki/TransactionalMemory

This high-level language option is enabled by using the -fgnu-tm option (-mcpu=power8
and -mhtm are not needed), and it provides a common transactional model across multiple
architectures and multiple compilers by using the __transaction_atomic {...} language
construct. The LIBITM library, which is included with the GCC compiler, can determine, at
run time, whether it is running on a processor that supports HTM instructions, and, if so, it
uses them in running the transaction. Otherwise, it automatically falls back to using
software TM, which relies on locks. LIBITM also can retry a transaction by using HTM if
the initial transaction begin failed, similar to the complicated example (Example 7-4 on
page 157). An example of the third option that is equivalent to the complicated examples
(Example 7-4 on page 157 and Example 7-7 on page 159) is simple and is shown in
Example 7-8.

Example 7-8 GNU Transactional Memory Library (LIBITM) Usage

__transaction_atomic
 {
 a = b + c;
 }

Support for the HTM built-in functions, the XL HTM built-in functions, and LIBITM support will
be in an upcoming Free Software Foundation (FSF) version of GCC. However, it is also
available in the GCC 4.8-based compiler that is shipped in Advance Toolchain (AT) V7.0.

For more information about the topic of TM, from the processor, OS, and compiler
perspectives, see:

� 2.2.4, “Transactional memory” on page 42 (processor)
� 4.2.4, “Transactional memory” on page 89 (AIX)
� 6.2.4, “Transactional memory” on page 124 (Linux)
� 8.4.2, “Transactional memory” on page 182 (Java)

7.4 IBM Feedback Directed Program Restructuring

Feedback Directed Program Restructuring (FDPR) is a feedback-based, directed, and
post-link optimization tool.

7.4.1 Introduction

FDPR optimizes the executable binary file of a program by collecting information about the
behavior of the program while the program is used for a typical workload, and then creates a
new version of the program that is optimized for that workload. Both main executable and
dynamically linked libraries (DLLs) are supported.

FDPR performs global optimizations at the level of the entire executable library, including
statically linked library code. Because the executable library to be optimized by FDPR is not
relinked, the compiler and linker conventions do not need to be preserved, thus allowing
aggressive optimizations that are not available to optimizing compilers.

The main advantage that is provided by FDPR is the reduced footprint of both code and data,
resulting in more effective cache usage. The principal optimizations of FDPR include global
code reordering, global data reordering, function inlining, and loop unrolling, along with
various tuning options that are tailored for the specific POWER target. The effectiveness of
the optimization depends largely on how representative the collected profile is regarding the
true workload.
160 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

FDPR runs on both AIX and Linux and produces optimized code for all versions of the Power
Architecture. The POWER7 processor is its default target architecture.

Figure 7-1 shows how FDPR is used to optimize executable programs.

Figure 7-1 FDPR operation

FDPR builds an optimized executable program in three distinct phases:

1. Instrumentation (Yellow)

– Creates an instrumented version of the input program and an empty profile file.
– The input program can be an executable file or a dynamically linked shared library.

2. Profiling (Green)

– Runs the instrumented program on a representative workload.
– The profile file is filled with count data at run time.

3. Optimization (Red)

FDPR receives the original input program along with the filled profile file to create an
optimized version of the input.

Optimized
executable

1. Instrumentation
Instrumented
executable

3. Optimization

Input
executable

2. Running the
instrumented
profile collection

Profile
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 161

7.4.2 Feedback Directed Program Restructuring supported environments

FDPR is available on the following platforms:

� AIX and Power Systems: Part of the AIX 5L V5 operating system and later for both 32-bit
and 64-bit applications. For more information, see AIX 5L Performance Tools Handbook,
SG24-6039.

� Software Development Toolkit for Linux on Power: Available for use through the IBM SDK
for Linux on Power. Linux distributions of RHEL5 and later, Ubuntu 14.04.2 and later, and
SLES10 and later are supported. For more information, see the following website:

http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/sdklop.html

In these resources, detailed online help, including manuals, is provided for each of these
environments.

7.4.3 Acceptable input formats

The input binary can be a main executable program or a shared library, originally written in
any language (for example, C, C++, or Fortran), if it is statically compiled. Thus, Java byte
code is not acceptable. Code that is written in assembly language is acceptable, but must
follow the Power ABI convention. For more information, see 64-bit PowerPC ELF Application
Binary Interface Supplement 1.9, found at:

http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.pdf

It is important that the file includes relocation information. Although this is the default in AIX,
on Linux you must add -Wl,-q, or -Wl,--emit-relocs to the command that is used for linking
the program (or -q if the ld command is used directly).

The input binary can include debug information. FDPR correctly processes line number
information so that the optimized output can be debugged.

7.4.4 General operation

FDPR is started by running the fdprpro program as follows:

$ fdprpro -a action [-p] in -o out -f prof [opt …]

The action indicates the specific processing that is requested. The most common ones are
instr for the instrumentation step and opt for the optimization step.

The in, out, and prof items indicate the input and output binary files and profile files.

FDPR comes also with a wrapper command, named fdpr, which performs the
instrumentation, profiling, and optimization under one roof. Run man fdpr for more information
about this wrapper.
162 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www14.software.ibm.com/webapp/set2/sas/f/lopdiags/sdklop.html
http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.pdf

Special input and output files
FDPR has a number of options that control input and output files. One option that controls the
input files is --ignored-function-list file (-ifl file).

In some cases, the structure of some functions confuses FDPR, which can result in bad code
generation. The file that is specified by --ignored-function-list file (-ifl file) contains
a list of functions that are considered unsafe for optimization. This configuration prevents the
potential bad code generation that might otherwise occur.

In addition to the profile and the instrumented and output optimized files, FDPR can optionally
produce various secondary files to help you understand the static and dynamic nature of the
input binary program. These secondary files have the same base name as the output file and
a special extension. The options that control important output files are:

� --disassemble_text (-d) and --dump-mapper (-dm): The -d option creates a disassembly
of (the code segment) of the program (extension .dis_text). The disassembly is useful to
understand the structure of program as analyzed or created by FDPR. The -dm option
produces a mapping of basic-blocks from their original address to their address in the
optimized code. This mapping can be used, for example, to understand how a specific
piece of code was broken, or for user-specific post-processing tools.

� --dump-ascii-profile (-dap): This option dumps the profile file in a human readable
ASCII format (extension .aprof). The .aprof file is useful for manual inspection or
user-defined post-processing of the collected profile.

� --verbose n (-v n), --print-inlined-funcs (-pif), and --journal file (-j file):
These options generate different analyses of the optimized file. -v n generates general
and optimization-specific statistics (.stat extension). The amount of verbosity is set by n.
Basic statistics are provided by -v 1. Optimization-specific statistics are added in level 2
and the instruction mix is added in level 3. The list of inlining and inlined functions is
produced with the -pif option (.inl_list extension). The -j file produces a journal of
the main optimizations, in an XML formal, with detailed information about each
optimization site, including the corresponding source file and line information. This
information can be used by GUI tools to display optimizations in the context of the source
code.

Controlling output to the console
The amount of progress information that is printed to the console can be controlled by two
options. The default progress information is as follows:

fdprpro (FDPR) Version vvv for IBM PowerLinux™
fdprpro -a opt -O3 in -o out -f prof
> reading_exe ...
> adjusting_exe ...
> analyzing ...
> building_program_infrastructure ...
> building_profiling_cfg ...
> add_profiling ...
>> reading_profile ...
>> building_control_flow_transfer_profiling ...
> pre_reorder_optimizations ...
>> derat_optimization ...
...

This information might also be interspersed with warning and debugging messages. Use the
-quiet (-q) option to avoid progress information. To limit the warning information, use the
-warning l (-w l) option.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 163

7.4.5 Instrumentation and profiling

FDPR instrumentation is performed by running the following command:

$ fdprpro -a instr in [-o out] [-f prof] [opts…]

If out is not specified, the output file is in in.instr. If the profile is not specified, in.nprof
is used.

Two files are created: the instrumented program and an empty profile. The instrumented
program (or shared library), when run on a representative workload, fills the profile with
execution counts of nodes and edges of the binary control flow graph (CFG). A node in this
CFG is a basic block (piece of code with single entry and exit points). An edge indicates a
control transfer between two basic blocks through a branch (regular branch, call, or
return instruction).

To run the instrumented program, use the same command parameters as with the original
program. As indicated in 7.4.1, “Introduction” on page 160, the workload that is exercised
during the instrumented run should be representative, making the optimization step more
effective. Because of the instrumentation code, the program is slower.

Successive runs of the instrumented program accumulate the counts in the same profile.
Similarly, if the instrumented program is a shared library, each time the shared library
participates in a process, the corresponding profile is updated with added counts.

Profiling shared libraries
When the dynamic linker searches for and links a shared library during execution, it looks for
the original name that is used for the command that is used for linking the program. To ensure
that the instrumented library is run, ensure that the following items are true:

1. The instrumented library should have the same name as the original library. The user can
rename the original or place the libraries in different folders.

2. The folder that contains the library must be in the library search path: LIBPATH on AIX and
LD_LIBRARY_PATH on Linux.

Moving and renaming the profile file
The location of the profile file is specified in the instrumented program, as indicated by the -f
option. However, the profile file might be moved, or if its original specification is relative, the
real location can change before execution.

Use the -fdir option to set the profile directory if it is known at instrumentation time and is
different from the one implied or specified by the -f option.

Use the FDPR_PROF_DIR environment variable to specify the profile directory if the profile file is
not present in the relative or absolute location where it was created in the instrumentation
step (or where specified originally by -fdir).

Use the FDPR_PROF_NAME environment variable to specify the profile file name if the profile file
name changed.
164 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Profile file descriptor
When the instrumented binary file is run, the profile file is mapped to shared memory. The
process is using a default file descriptor (FD) number (1023 on Linux and 1999 on AIX) for the
mapping. If the application uses this specific FD, an error can occur during the profiling phase
because of this conflict of use. Use the -fd option to change the default FD that is used by
FDPR:

$ fdprpro -a instr my_prog -fd <fd num>

The FD can also be controlled by using the FDPR_PROF_FD environment variable by changing
the FD at run time:

$ export FDPR_PROF_FD=fd_num

FDPR can be used to profile several binary executable files in a single run of an application. If
so, you must specify a different FD for each binary. For example:

� $ fdprpro -a instr in/libmy_lib1 -o out/libmy_lib1 -f out/libmy_lib1.prof -fd
1023

� $ fdprpro -a instr in/libmy_lib2 -o out/libmy_lib2 -f out/libmy_lib2.prof -fd
1022

Because environment variables are global in nature, when profiling several binary files at the
same time, use explicit instrumentation options (-f, -fd, and -fdir) to differentiate between
the profiles rather than using the environment variables (FDPR_PROF_FD and FDPR_PROF_NAME).

Instrumentation stack
The instrumentation is using the stack for saving registers by dynamically allocating space on
the stack at a default location below the current stack pointer. On AIX, this default is at offset
-10240, and on Linux it is -1800. In some cases, especially in multi-threaded applications
where the stack space is divided between the threads, following a deep calling sequence, the
application can be quite close to the end of the stack, which can cause the application to fail.
To allocate the instrumentation closer to the current stack pointer, use the -iso option:

$ fdprpro -a instr my_prog -iso -300

7.4.6 Optimization

The optimization step is performed by running the following command:

$ fdprpro -a opt in [-o out] -f prof [opts…]

If out is not specified, the output file is in.fdpr. No profile is provided by default. If none is
specified or if the profile is empty, the resulting output binary file is not optimized.

Code reordering
Global code reordering works in two phases: making chains and reordering the chains.

The initial chains are sequentially ordered basic blocks, with branch conditions inverted where
necessary, so that branches between the basic blocks are mostly not taken. This
configuration makes instruction prefetching more efficient. Chains are terminated when the
heat (that is, execution count) goes below a certain threshold relative to the initial heat.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 165

The second phase orders chains by successively merging the more strongly linked two
chains, based on how frequent the calls between the chains are. Combining chains crosses
function boundaries. Thus, a function can be broken into multiple chunks in which different
pieces of different functions are placed closely if there is a high frequency of call, branch, and
return between them. This approach improves code locality and thus i-cache and page
table efficiency.

You use the following options for code reordering:

� --reorder-code (-RC): This component is the hard-working component of the global code
reordering. Use --rcaf to determine the aggressiveness level:

– 0: no change
– 1: Standard (default)
– 2: Most aggressive.

Use --rcctf to lower the threshold for terminating chains. Use -pp to preserve function
integrity and -pc to preserve CSECT integrity (AIX only). These two options limit global
code reordering and might be requested for ease of debugging.

� --branch-folding (-bf) and --branch-prediction (-bp): These options control important
parts of the code reordering process. The -bf folds branch to branch into a single branch.
The -bp sets the static branch prediction bit when taken or not taken statistics justify it.

Function inlining
FDPR performs function inlining of function bodies into their respective calling sites if the call
site is selected by one of a number of user-selected filters:

� Dominant callers (--selective-inlining (-si), -sidf f, and -siht f): The filter criteria
here is that the site is dominant regarding other callers of the called function (the callee). It
is controlled by two attributes. The -sidf option sets the domination percentage threshold
(default 80). The -siht option further restricts the selection to functions hotter than the
threshold, which is specified in percents relative to the average (default 100).

� Hot functions (--inline-hot-functions f (-ihf f)): This filter selects inlining for all call
sites where the call is hotter than the heat threshold (in percent, relative to the average).

� Small functions (--inline-small-functions f (-isf f)): This filter selects for inlining all
functions whose size, in bytes, is smaller than or equal to the parameter.

� Selective hot code (--selective-hot-code-inline f (-shci f)): The filter computes how
much execution count is saved if the function is inlined at a call site and selects those sites
where the relative saving is above the percentage.

De-virtualization
De-virtualization is addressed by the --ptrgl-optimization (-pto) option. Its call by a pointer
mechanism (ptrgl) sets a new TOC anchor, loads the function address, moves it to the
counter register (CTR), and jumps indirectly through the CTR. The -pto option optimizes this
mechanism in cases where there are few hot targets from a calling site. In terms of C++, it
de-virtualizes the virtual method calls by calling the actual targets directly. The optimized
code compares the address of the function descriptor, which is used for the indirect call,
against the address of a hot candidate, as identified in the profile, and conditionally calls such
a target directly. If none of the hot targets match, the code starts the original indirect call
mechanism. The idea is that most of the time the conditional direct branches are run instead
of the ptrgl mechanism. The impact of the optimization on performance depends heavily on
the function call profile.
166 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The following thresholds can help to tune the optimization and to adjust it to different
workloads:

� Use -ptoht thres to set the frequency threshold for indirect calls that will be optimized
(thres can be 0 - 1, with 0.8 by default).

� Use -ptosl n to set the limit of the number of hot functions to optimize in a given indirect
call site (the default for n is 3).

Loop-unrolling
Most programs spend their time in loops. This statement is true regardless of the target
architecture or application. FDPR has one option to control the unrolling optimization for
loops: --loop-unrolling factor (-lu factor).

FDPR optimizes a loop by using a technique that is called loop-unrolling. By unrolling a loop
n times, the number of back branches is reduced n times, so code prefetch efficiency can be
improved. The downside with loop-unrolling is code inflation, which results in increased code
footprint and increased i-cache misses. Unlike traditional loop-unrolling, FDPR can mitigate
this problem by unrolling only the hottest paths in the loop. The factor parameter determines
the aggressiveness of the optimization. With -O3, the optimization is started with -lu 9.

By default, loops are unrolled two times. Use -lu factor to change that default.

Architecture-specific optimizations
Here are some architecture-specific optimizations:

� --machine tgt (-m tgt): FDPR optimizations include general optimizations that are based
on a high-level program representation as a control and data flow, in addition to peephole
optimizations, relying on different architecture features. Those optimizations can perform
better when they are tuned for specific platforms. The -m flag allows the user to specify the
target machine model cases where the program is not intended for use on multiple target
platforms. The default target is the POWER7 processor.

� --align-code code (-A code): Optimizing the alignment and the placement of the code is
crucial to the performance of the program. Correct alignment can improve instruction
fetching and dispatching. The alignment algorithm in FDPR uses different techniques that
are based on the target platform. Some techniques are generic for the Power Architecture,
and others are considered dispatch rules of the specific machine model. If code is 1 (the
default), FDPR applies a standard alignment algorithm that is adapted for the selected
target machine (see -m in the previous bullet point). If code is 2, FDPR applies a more
advanced version, by using dispatch rules and other heuristics to decide how the program
code chunks are placed relatively to i-cache sectors, again based on the selected target. A
value of 0 disables the alignment algorithm.

Function optimization
FDPR includes a number of function level optimizations that are based on detailed data flow
analysis (DFA). With DFA, optimizations can determine the data that is contained in each
register at each point in the function and whether this value is used later.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 167

Here are the function optimizations:

� --killed-regs (-kr): A register is considered killed at a point (in the function) if its value is
not used in any ensuing path. FDPR uses the Power ABI convention that defines which
registers are non-volatile (NV) across function calls. NV registers that are used inside a
function are saved in its prologue and restored in its epilogue. The -kr optimization
analyzes called functions that are looking for save and restore instructions of killed NV
registers. If the register is killed at the calling site, then the save and restore instructions
for this register are removed. The optimization considers all calls to this function because
an NV might be alive when the function is called. When needed, the optimization might
also reassign (rename) registers at the calling side to ensure that an NV is indeed killed
and can be optimized.

� --hco-reschedule (-hr): The optimization analyzes the flow through hot basic blocks and
looks for instructions that can be moved to dominating colder basic blocks (basic block b1
dominates b2 if all paths to b2 first go through b1). For example, an instruction that loads a
constant to a register is a candidate for such a motion.

� --simplify-early-exit factor (-see factor): Sometimes a function starts with an early
exit condition so that if the condition is met, the whole body of the function is ignored. If the
condition is commonly taken, it makes sense to avoid saving the registers in the prologue
and restoring them in the epilogue. The -see optimization detects such a condition and
provides a reduced epilogue that restores only registers that aqre modified by computing
the condition. If factor is 1, a more aggressive optimization is performed where the
prologue is optimized.

Peephole optimization
Peephole optimizations require a small context around the specific site in the code, which is
problematic. The more important optimizations that FDPR performs are -las, -tlo, and -nop.

� --load-after-store (-las): In recent Power Architectures, when a load instruction from
address A closely follows a store to that address, it can cause the load to be rejected. The
instruction is then tried in a slower mode, which produces a large performance penalty.
This behavior is also called Load-Hit-Store (LHS). With the -las optimization, the load is
pushed further from the store, thus avoiding the reject condition.

� --toc-load-optimization (-tlo): The TOC is a data section in programs where pointers
are kept to avoid the lengthy address computation at run time. Loading an address (a
pointer) is a costly operation and FDPR can reduce the amount of processing if the
address is close enough to the TOC anchor (R2). In such cases, the load from TOC is
replaced by addi Rt,R2,offset, where R2+offset equals a loaded address. The
optimization is performed after data is reordered so that commonly accessed data is
placed closer to R2, increasing the potential of this optimization. A TOC is used in 32-bit
and 64-bit programs on AIX, and in 64-bit programs on Power Systems running Linux.
Linux 32-bit uses a GOT, but this optimization is not relevant here.

� --nop-removal (-nop): The compiler (or the linker) sometimes inserts no-operation (NOP)
instructions in various places to create some necessary space in the instruction stream.
The most common place is following a function call in code. Because the call might have
modified the TOC anchor register (R2), the compiler inserts a load instruction that resets
R2 to its correct value for the current function. Because FDPR has a global view of the
program, the optimization can remove the NOP if the called function uses the same TOC
(the TOC anchor is used in AIX and in Linux 64-bit).
168 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Data reordering
The profile that is collected by FDPR provides important information about the running of
branch instructions, thus enabling efficient code reordering. The profile does not provide
direct information about whether to put specific objects one after the other. Nevertheless,
FDPR can infer such a placement by using the collected profile.

Here are the relevant options:

� --reorder-data (-RD): This optimization reorders data by placing pointers and data closer
to the TOC anchor, depending on their hotness. FDPR uses a heuristic where the hotness
is computed as the total count of basic blocks where the pointer to the data was retrieved
from the TOC.

� --reduce-toc thres (-rt thres): The optimization removes from the TOC entries that are
colder than the threshold. Their access, if any, is replaced by computing the address (see
-tlo optimization in “Peephole optimization” on page 168). Typically, you use -rt 0, which
removes only the entries that are never accessed.

Combination optimizations
FDPR has predefined optimization sets that provide a good starting point for
performance tuning:

� -O: Performs code reordering (-RC) with the branch prediction bit setting (-bp), branch
folding (-bf), and NOOP instructions removal (-nop).

� -O2: Adds to -O function de-virtualization (-pto), TOC-load optimization (-tlo), function
inlining (-isf 8), and some function optimizations (-hr, -see 0, and -kr).

� -O3: Turns on data reordering (-RD and -rt 0), loop-unrolling (-lu), more aggressive
function optimization (-see 1 and -vro), and employs more aggressive inlining (-lro and
-isf 12). This set provides an aggressive but still stable set of optimizations that are
beneficial for many benchmarks and applications.

� -O4: Essentially turns on more aggressive inlining (-sidf 50, -ihf 20, and -shci 90). As a
result, the number of branches is reduced, but at the cost of increasing the code footprint.
This option works well with large i-caches or with small to medium programs/threads.

7.5 Using the Advance Toolchain with IBM XLC and XLF

For XLC13 and XLF15, there is a new feature in the existing new_install script, which is
shipped with the Linux package.

Run this script with one option, and it detects whether AT has been installed in the
environment. If yes, it automatically generates a configuration file with the AT information
specified, and generates a new invocation that is named xlc_at, which uses the generated
configuration file. Then, you can use this xlc_at invocation to get the XLC + AT usage.

7.6 Using GPU accelerators with C/C++

One way to speed up in a C/C++ program is to offload large computations to an onboard
graphics processing unit (GPU). NVIDIA makes a set of GPUs specifically for POWER8
processor-based systems that are enabled with a Linux kernel in LE mode. Using the GPU
from C/C++ has never been easier with the introduction of NVIDIA Compute Unified Device
Architecture (CUDA). CUDA is a programming model that uses GPU devices that are
produced by NVIDIA.
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 169

For more information about CUDA, go to this website:

https://developer.nvidia.com/cuda-zone

Functions that run on the GPU are called kernels, and are written in C syntax. The CUDA
development kit includes a precompiler that can automatically start the C/C++ compiler.

Here is some example C/C++ and CUDA code:

#include <cuda.h>
__global__ void grayscaleKernel(uchar3* bgr, int width, int height)
{
 int row = (blockIdx.y * blockDim.y) + threadIdx.y; // builtin CUDA thread-
 int col = (blockIdx.x * blockDim.x) * threadIdx.x; // specific indexes
 if((row < height) && (col < width))
 {
 int idx = (row * width) + col; // each call addresses a single pixel
 float blue = (float)bgr[idx].x; // a pixel is 3 bytes: blue,green,red
 float green = (float)bgr[idx].y;
 float red = (float)bgr[idx].z;
 float gray = (.299f * red) + (.587 * green) + (.114f * blue);
 if(gray > 255.0)
 gray = 255.0;
 bgr[idx].x = gray;
 bgr[idx].y = gray;
 bgr[idx].z = gray;
 }
}

void grayscale(unsigned char* bgr, int width, int height)
{
 uchar3* d_bgr; // 3-byte structure: x=Blue, y=Green, z=Red
 int bytes = width * height * sizeof(uchar3);
 cudaMalloc(&d_bgr, bytes); // allocate GPU device memory
 cudaMemcpy(d_bgr, bgr, bytes, cudaMemcpyHostToDevice); // copy data to GPU
 dim3 block(16,16,1), grid(((width-1)/16)+1,((height-1)/16)+1,1);
 grayscaleKernel<<<block,grid>>>(d_bgr,width,height); // invoke kernel(s)
 cudaMemcpy(bgr, d_bgr, bytes, cudaMemcpyDeviceToHost); // result from GPU
 cudaFree(d_bgr);
}

This example converts an uncompressed color (BGR) image into gray scale. The kernel
function is identified by the __global__ specifier. The function works on a single 3-byte pixel.
However, the GPU's many cores can run this kernel on many pixels simultaneously. The
C-function below the kernel function shows an example of how to run the kernel on the default
GPU device. In this example, the image must be copied completely into the GPU's device
memory. The kernel function replaces each pixel with its gray-scale equivalent in the device
memory. When control is returned from the kernel executions, the device memory is then
copied back into regular host CPU memory.

These two functions can be coded in the same source file. The CUDA precompiler (nvcc)
processes the kernel functions and then calls the C/C++ compiler automatically.

Here is an example of calling the precompiler from a command line interface:

nvcc -c grayscale.cu -o grayscale.o
170 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://developer.nvidia.com/cuda-zone

NVIDIA also provides a set of CUDA libraries that include highly optimized kernels for various
purposes. Some of these libraries and tools can be found at the following website:

https://developer.nvidia.com/gpu-accelerated-libraries

One of these libraries is NVBLAS, which is a CPU implementation that automatically uses the
cuBLAS library GPU kernels to accelerate some BLAS calls. For more information about
NVBLAS, go to the following website:

http://docs.nvidia.com/cuda/nvblas/index.html

CUDA kernels are written as C functions. NVIDIA also provides a C++ library that is called
Thrust to better integrate with existing C++ applications. Here is a Thrust example:

void sortVector(int* values, int count)
{
 thrust::device_vector<int> d_vec(count); // create device memory
 thrust::copy(values, values+count, d_vec.begin()); // copy data to GPU
 thrust::sort(d_vec.begin(), d_vec.end()); // call builtin sort kernel
 thrust::copy(d_vec.begin(), d_vec.end(), values); // copy result from GPU
}

The Thrust library also supports functions and integrates well with the C++ standard template
libraries. For more information about the Thrust library, see the following website

https://developer.nvidia.com/thrust

For more information about CUDA and POWER8 processor-based systems, see NVIDIA
CUDA on IBM POWER8: Technical Overview, Software Installation, and Application,
REDP-5169.

7.7 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� C/C++ Cafe (IBM Rational®), found at:

http://www.ibm.com/rational/cafe/community/ccpp

� FDPR, Post-Link Optimization for Linux on Power, found at:

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communi
tyview?communityUuid=5a116d75-b560-4152-9113-7515fa73e67a

� Feedback Directed Program Restructuring (FDPR), found at:

https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/

� GCC online documentation

– All versions: http://gcc.gnu.org/onlinedocs/
– Advance Toolchain V6.0: https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gcc/
– Advance Toolchain V7.0 and V7.1: https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/
– Advance Toolchain V8.0: https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/
Chapter 7. Compilers and optimization tools for C, C++, and Fortran 171

https://developer.nvidia.com/thrust
https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/
https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gcc/
http://www.ibm.com/rational/cafe/community/ccpp
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=5a116d75-b560-4152-9113-7515fa73e67a
https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/
http://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/
https://developer.nvidia.com/gpu-accelerated-libraries
http://docs.nvidia.com/cuda/nvblas/index.html

� XL Compiler Documentation:

– C and C++ Compilers

• C and C++ Compilers family, found at:

http://www.ibm.com/software/awdtools/xlcpp/

• Optimization and Programming Guide - XL C/C++ for AIX, V12.1, found at:

http://www.ibm.com/support/docview.wss?uid=swg27024208

– Fortran compilers

• Fortran Compilers family, found at:

http://www.ibm.com/software/awdtools/fortran/

• Optimization and Programming Guide - XL Fortran for AIX, V14.1, found at:

http://www.ibm.com/support/docview.wss?uid=swg27024219
172 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/software/awdtools/xlcpp/
http://www.ibm.com/support/docview.wss?uid=swg27024208
http://www.ibm.com/software/awdtools/fortran/
http://www.ibm.com/support/docview.wss?uid=swg27024219

Chapter 8. Java

This chapter describes the optimization and tuning of Java based applications that are
running on a POWER8 processor-based system. It covers the following topics:

� 8.1, “Java levels” on page 174
� 8.2, “32-bit versus 64-bit Java” on page 174
� 8.3, “Memory and page size considerations” on page 175
� 8.4, “Capitalizing on POWER8 features with IBM Java” on page 181
� 8.5, “Java garbage collection tuning” on page 183
� 8.6, “Application scaling” on page 186
� 8.8, “Related publications” on page 192

8

© Copyright IBM Corp. 2014, 2015. All rights reserved. 173

8.1 Java levels

For POWER8 processor-based systems, the preferred Java level is Java 8 where possible, or
the latest service refresh of Java 7.1 if Java 7 compatibility is still required. Java 7.1 is the only
release of Java 7 that is optimized for POWER8 processor-based systems, and takes
advantage of POWER8 specific hardware features for performance. Java 8 contains the latest
performance improvements for POWER8 processor-based systems and is therefore
preferred. For Java 7 compatibility, any version of Java 7.1 is acceptable, but SR1 and later
contain additional POWER8 usage and tuning and are therefore preferred.

For POWER7 processor-based systems, Java 8 is also preferred where possible, but it is
acceptable to use Java 6 SR7 or later on POWER7. As of Java 6 SR7, the Java virtual
machine (JVM) defaults to using 64 KB pages on AIX. Earlier versions defaulted to 4 KB
pages, which is the default page size on AIX. For more information, see “Tuning to capitalize
on hardware performance features” on page 14 and 8.3.1, “Medium and large pages for Java
heap and code cache” on page 175.

The JIT compiler automatically detects on what platform it is running and generates binary
code most suitable to, and performing best on, that platform. Java 7.1 and later can recognize
the POWER8 processor and best use its hardware features.

Java 8 is the latest major release of IBM Java. This release brings with it improved runtime
performance, improved compilation heuristics (to reduce compilation time and improve
application ramp-up time), and additional exploitation of POWER8 hardware.

8.2 32-bit versus 64-bit Java

64-bit applications that do not require large amounts of memory typically run slower than
32-bit applications. This situation occurs because of the larger data types, such as 64-bit
pointers instead of 32-bit pointers, which increase the demand on memory throughput.

The exception to this situation is when the processor architecture has more processor
registers in 64-bit mode than in 32-bit mode and 32-bit application performance is negatively
impacted by this configuration. Because of fewer registers, the demand on memory
throughput can be higher in 32-bit mode than in 64-bit mode. In such a situation, running an
application in 64-bit mode is required to achieve the best performance.

The Power Architecture does not require running applications in 64-bit mode to achieve best
performance because 32-bit and 64-bit modes have the same number of processor registers.

Consider the following items:

� Applications with a small memory requirement typically run faster as 32-bit applications
than as 64-bit applications.

� 64-bit applications have a larger demand on memory because of the larger data types,
such as pointers being 64-bit instead of 32-bit, which leads to the following circumstances:

– The memory foot print increases because of the larger data types.
– The memory alignment of application data contributes to memory demand.
– More memory bandwidth is required.

For best performance, use 32-bit Java unless the memory requirement of the application
requires running in 64-bit mode. For more information, see 8.3.4, “Compressed references”
on page 177 and “32-bit or 64-bit JDK” on page 240.
174 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

For more information about this topic, see 8.8, “Related publications” on page 192.

8.2.1 Little Endian support

A Little Endian version of the SDK and runtime environment is available for Java 7.1 SR1 or
later. Unlike the Big Endian version, which has a 32-bit version, the Little Endian version of
Java has only 64-bit versions. Otherwise, the Little Endian version of Java maintains all of the
same capabilities as the Big Endian version. All of the optimization and tuning techniques in
the Java section apply to the Little Endian version of Java and can be used to accelerate the
performance of Java based applications running on a Little Endian system.

8.3 Memory and page size considerations

IBM Java can take advantage of medium (64 KB) and large (16 MB) page sizes that are
supported by the current AIX versions and POWER processors. Using medium or large
pages instead of the default 4 KB page size can improve application performance. The
performance improvement of using medium or large pages is a result of a more efficient use
of the hardware translation caches, which are used when you translate application page
addresses to physical page addresses. Applications that are frequently accessing a vast
amount of memory benefit most from using pages sizes that are larger than 4 KB.

Table 8-1 shows the hardware and software requirements for 4 KB, 64 KB, and 16 MB pages.

Table 8-1 Page sizes that are supported by AIX and Linux on POWER processors

8.3.1 Medium and large pages for Java heap and code cache

Medium and large pages can be enabled for the Java heap and JIT code cache
independently of other memory areas. IBM JVM supports at least three page sizes,
depending on the platform:

� 4 KB (default)
� 64 KB
� 16 MB

Large pages, specifically 16 MB pages, do have some processing impact and are best suited
for long-running applications with large memory requirements. The -Xlp64k option provides
many of the benefits of 16 MB pages with less impact and can be suitable for workloads that
benefit from large pages but do not take full advantage of 16 MB pages.

Starting with IBM Java 6 SR7, the default page size is 64 KB.

Page size Platform Linux version AIX version Requires user
configuration

4 KB All RHEL 5, SLES 10
and earlier

All No

64 KB POWER5+
processor-based
systems or later

RHEL 6, SLES 11 AIX 5L V5.3 and later No

16 MB POWER4
processor-based
system or later

RHEL 5, SLES11 AIX 5L V5.3 and later Yes
Chapter 8. Java 175

Starting with IBM Java 7 SR4 (and Java 6.2.6 SR5), there are more command-line options to
specify pagesize for java heap and code cache. The -Xlp:objectheap:pagesize=<size> and
-Xlp:codecache:pagesize=<size> options are supported. To obtain the large page sizes
available and the current setting, use the -verbose:sizes option. The current settings are the
requested sizes and not the sizes that are obtained.

8.3.2 Configuring large pages for Java heap and code cache

In an AIX environment, to use large pages with Java requires both configuring the large
pages and setting the v_pinshm tunable to a value of one by running vmo. The following
example demonstrates how to configure dynamically 1 GB of 16 MB pages and set the
v_pinshm tunable:

vmo -o lgpg_regions=64 -o lgpg_size=16777216 -o v_pinshm=1

To configure permanently large pages, the -r option must be specified with the vmo
command. Run bosboot to configure the large pages at boot time:

� # vmo -r -o lgpg_regions=64 -o lgpg_size=16777216 -o v_pinshm=1

� # bosboot -a

Non-root users must have the CAP_BYPASS_RAC_VMM capability on AIX enabled to use large
pages. The system administrator can add this capability by running chuser:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE <user_id>

On Linux, 1 GB of 16 MB pages are configured by running echo:

echo 64 > /proc/sys/vm/nr_hugepages

8.3.3 Prefetching

Prefetching is an important strategy to reduce memory latency and take full advantage of
on-chip caches. The -XtlhPrefetch option can be specified to enable aggressive prefetching
of thread-local heap memory shortly before objects are allocated. This option ensures that
the memory that is required for new objects that are allocated from the TLH is fetched into the
cache ahead of time if possible, reducing latency and increasing overall object allocation
speed.

A POWER8 processor-based system has increased cache sizes compared to POWER7 and
POWER7+ processor-based systems, and also features an additional L4 cache. Therefore, it
is important to conduct thorough performance evaluations with TLH prefetching to determine
whether it is beneficial to the application being run. The -XnotlhPrefetch option can be used
to disable explicitly TLH prefetching if it is enabled by default. This option can provide
noticeable gains for workloads that frequently allocate objects, such as transactional
workloads, but it can also hurt performance if prefetching causes more important data to be
thrown out of the cache.

In addition to the TLH prefetching, POWER processors feature a hardware prefetching engine
that can detect certain memory allocation patterns and effectively prefetch memory.
Applications that access memory in a linear, predictable fashion can benefit from enabling
hardware prefetching, but this must be done in cooperation with the operating system. For a
brief description of the dscrctl and ppc64_cpu commands that can be used to affect hardware
prefetching on AIX and Linux respectively, see 1.5.1, “Lightweight tuning and optimization
guidelines” on page 7.
176 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

8.3.4 Compressed references

For huge workloads, 64-bit IBM JVMs might be necessary to meet application needs. The
64-bit processes primarily offer a much larger address space, allowing for larger Java heaps,
JIT code caches, and reducing the effects of memory fragmentation in the native heap.
However, 64-bit processes also must deal with the increased processing impact. The impact
comes from the increased memory usage and decreased cache usage. This impact is
present with every object allocation, as each object must now be referred to with a 64-bit
address rather than a 32- bit address.

To alleviate this impact, use the -Xcompressedrefs option. When this option is enabled, IBM
JVM uses 32-bit references to objects instead of 64-bit references wherever possible. Object
references are compressed and extracted as necessary at minimal cost. The need for
compression and decompression is determined by the overall heap size and the platform on
which IBM JVM is running; smaller heaps can do without compression and decompression,
eliminating even this impact. To determine the compression and decompression impact for a
heap size on a particular platform, run the following command:

java -Xcompressedrefs -verbose:gc -version ...

The resulting output has the following content:

<attribute name="compressedRefsDisplacement" value="0x0" />
<attribute name="compressedRefsShift" value="0x0" />

Values of 0 for the named attributes essentially indicate that no work must be done to convert
between 32-bit and 64-bit references for the invocation. Under these circumstances, 64-bit
IBM JVMs running with -Xcompressedrefs can reduce the impact of 64-bit addressing even
more and achieve better performance.

With -Xcompressedrefs, the maximum size of the heap is much smaller than the theoretical
maximum size that is allowed by a 64-bit IBM JVM, although greater than the maximum heap
under a 32-bit IBM JVM. Currently, the maximum heap size with -Xcompressedrefs is around
31 GB on both AIX and Linux.

Linux problem: Combination of compressed references and large pages
The prelink utility can interfere with using large pages. The problem is reflected as large
pages not being used to back the heap if compressed references are used. The request for
backing the heap of a size approximately 3.5 GB or larger (such as -Xmx4g -Xms4g options)
with large pages (-Xlp option) might not be accepted with compressed references
(-Xcompressedrefs; default on Java 7.0 SR4 and later). This problem is seen on some Linux
distributions with the prelink utility (for example, RHEL 6). This is expected to cause an impact
in performance (the actual extent depends on the workload).

The problem occurs because the prelink utility can relink shared libraries that are dynamically
linked by the JVM to the particular virtual memory segment that is required by compressed
references for the memory mapping of the heap segment. The memory mapping of shared
libraries occurs earlier than that of the heap segment, and uses conventional pages, which
restrict its entire virtual memory segment to conventional pages. Later, during the heap
memory initialization by the JVM, the memory mapping of the heap segment with a different
page size (large pages) on that virtual memory segment fails because of that restriction.
Then, when the JVM cannot accept the request for backing the heap with large pages, it thus
starts falling back to conventional pages.

To verify the problem, you can compare the values of the requestedPageSize and pageSize
attributes in the verbose garbage collection (GC) log.
Chapter 8. Java 177

Example 8-1 depicts the failure. For a heap size of 4 GB, large pages are requested
(requestedPageSize is 0x1000000, or 16 MB), but conventional pages are obtained (pageSize
is 0x10000, or 64 kB); the problem does not occur without compressed references (the
-Xnocompressedrefs option).

Example 8-1 The requestPageSize and pageSize attributes in the verbose GC log (failure)

java -Xlp -Xmx4g -Xms4g -verbose:gc -version 2>&1 | grep -i pagesize
 <attribute name="pageSize" value="0x10000" />
 <attribute name="requestedPageSize" value="0x1000000" />

java -Xnocompressedrefs -Xlp -Xmx4g -Xms4g -verbose:gc -version 2>&1 | grep -i pagesize
 <attribute name="pageSize" value="0x1000000" />
 <attribute name="requestedPageSize" value="0x1000000" />

To resolve the problem, you can choose one of the following methods:

1. Disable prelink completely.

This can be accomplished by removing the prelink settings and package. Consider its
applicability and requirement in your environment before proceeding. To accomplish this
task, for example, on RHEL 6, run the following commands:

prelink --undo --all
yum remove prelink

2. Disable prelink selectively for the affected shared libraries.

This can be accomplished by discovering the shared libraries that are relinked to the
conflicting virtual memory segment, then reverting, and then disabling the prelink setting
for those shared libraries in the configuration files of the prelink utility. Use the following
steps to perform this action:

a. Create and compile a Java program that simply waits for some time (5 minutes). It
allows you to examine the shared libraries in the memory map of the JVM. See
Example 8-2.

Example 8-2 Java program for waiting 5 minutes

cat <<EOF > SleepFiveMinutes.java
public class SleepFiveMinutes {
 public static void main(String[] args)
 throws InterruptedException {
 Thread.sleep(5 * 60 * 1000);
 }
}
EOF

javac SleepFiveMinutes.java

date; java SleepFiveMinutes; date
Mon May 4 08:41:29 EDT 2015
Mon May 4 08:46:29 EDT 2015

b. Run the Java program and extract from its memory map the shared libraries in the
virtual memory segment between 4 GB (nine hexadecimal digits, inclusive) and 1 TB
(11 hexadecimal digits, exclusive). Example 8-3 on page 179 demonstrates those
steps, and lists the relevant shared libraries and their load address as defined by the
prelink utility (which matches that list of virtual memory addresses that are present in
the memory map).
178 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Example 8-3 Discover shared libraries in the JVM 4 GB - 1 TB virtual memory segment

java SleepFiveMinutes &
[1] 3154

libs="$(grep '^[0-9a-z]\{9,10\}-' /proc/3154/smaps | sort -u -k6 | awk '{ print $6 }')"

grep '^[0-9a-z]\{9,10\}-' /proc/3154/smaps | sort -u -k6
8001230000-8001240000 rw-p 00000000 00:00 0
8001000000-8001030000 r-xp 00000000 fd:00 524686 /lib64/ld-2.12.so
8001050000-8001210000 r-xp 00000000 fd:00 524687 /lib64/libc-2.12.so
8001240000-8001250000 r-xp 00000000 fd:00 524689 /lib64/libdl-2.12.so
8001470000-8001490000 r-xp 00000000 fd:00 524696
/lib64/libgcc_s-4.4.7-20120601.so.1
8001330000-8001410000 r-xp 00000000 fd:00 524695 /lib64/libm-2.12.so
8001270000-8001290000 r-xp 00000000 fd:00 524697
/lib64/libpthread-2.12.so
8001e00000-8001e20000 r-xp 00000000 fd:00 524704
/lib64/libresolv-2.12.so
80012b0000-80012c0000 r-xp 00000000 fd:00 524386 /lib64/librt-2.12.so

for lib in $libs; do objdump -p $lib | grep -m1 LOAD | awk '{ printf $5 }'; echo " $lib";
done
0x0000008001000000 /lib64/ld-2.12.so
0x0000008001050000 /lib64/libc-2.12.so
0x0000008001240000 /lib64/libdl-2.12.so
0x0000008001470000 /lib64/libgcc_s-4.4.7-20120601.so.1
0x0000008001330000 /lib64/libm-2.12.so
0x0000008001270000 /lib64/libpthread-2.12.so
0x0000008001e00000 /lib64/libresolv-2.12.so
0x00000080012b0000 /lib64/librt-2.12.so

kill -9 3154

c. Revert the prelink setting to the shared libraries (which has an immediate effect), and
configure the ibm-java.conf prelink configuration file so that it does not relink those
shared libraries anymore (by using the -b option). These steps are described in
Example 8-4.

Example 8-4 Revert and disable the prelink setting to the shared libraries

for lib in $libs; do prelink --undo $lib; echo "-b $lib" >>
/etc/prelink.conf.d/ibm-java.conf; done

for lib in $libs; do objdump -p $lib | grep -m1 LOAD | awk '{ printf $5
}'; echo " $lib"; done
0x0000000000000000 /lib64/ld-2.12.so
0x0000000000000000 /lib64/libc-2.12.so
0x0000000000000000 /lib64/libdl-2.12.so
0x0000000000000000 /lib64/libgcc_s-4.4.7-20120601.so.1
0x0000000000000000 /lib64/libm-2.12.so
0x0000000000000000 /lib64/libpthread-2.12.so
0x0000000000000000 /lib64/libresolv-2.12.so
0x0000000000000000 /lib64/librt-2.12.so

cat /etc/prelink.conf.d/ibm-java.conf
-b /lib64/ld-2.12.so
-b /lib64/libc-2.12.so
-b /lib64/libdl-2.12.so
-b /lib64/libgcc_s-4.4.7-20120601.so.1
-b /lib64/libm-2.12.so
-b /lib64/libpthread-2.12.so
Chapter 8. Java 179

-b /lib64/libresolv-2.12.so
-b /lib64/librt-2.12.so

After performing one of these methods, the problem should be resolved.

You can verify the equality between the values of the requestedPageSize and pageSize
attributes, and inspect the virtual memory segment between 4 GB - 1 TB to verify that there
are no shared libraries. Example 8-5 describes that verification for equal values and lists the
memory map of the heap segment of 4 GB size (0x800000000 - 0x700000000 = 0x100000000
bytes = 4 GB) with 16 MB pages.

Example 8-5 The requestPagesize and pageSize attributes in the verbose GC log (success)

java -Xlp -Xmx4g -Xms4g -verbose:gc -version SleepFiveMinutes 2>&1 | grep -i
pagesize &
 <attribute name="pageSize" value="0x1000000" />
 <attribute name="requestedPageSize" value="0x1000000" />
[1] 4072

grep '^[0-9a-z]\|^KernelPageSize:' /proc/4072/smaps | grep -A1
'^[0-9a-z]\{9,10\}-'
700000000-800000000 rw-s 00000000 00:0c 983040
/SYSV00000000 (deleted)
KernelPageSize: 16384 kB

8.3.5 JIT code cache

JIT compilation is an important factor in optimizing performance. Because compilation is
carried out at run time, it is complicated to estimate the size of the program or the number of
compilations that are carried out. The JIT compiler has a cap on how much memory it can
allocate at run time to store compiled code. For most applications, the default cap is more
than sufficient.

However, certain programs, especially those programs that take advantage of certain
language features, such as reflection, can produce a number of compilations and use up the
allowed amount of code cache. After the limit of code cache is consumed, no more
compilations are performed. This situation can have a negative impact on performance if the
program calls many interpreted methods that cannot be compiled as a result. The
-Xjit:codetotal=<nnn> (where nnn is a number in KB units) option can be used to specify
the cap of the JIT code cache. The default is 64 MB or 128 MB for 32-bit and 64-bit IBM
JVMs.

As of Java 7 SR6, the -Xcodecachetotal<size> option is the preferred way to specify the total
amount of memory that is dedicated to the compiled code.

Another consideration is how the code caches are allocated. If they are allocated far apart
from each other (more than 32 MB away), calls from one code cache to another carry a
higher processing impact. The -Xcodecache<size> option can be used to specify how large
each allocation of code cache is. For example, -Xcodecache4m means 4 MB is allocated as
code cache each time the JIT compiler needs a new one until the cap is reached. Typically,
there are multiple pieces (for example, four) of code cache that are found at start time to
support multiple compilation threads. It is important to alter the default code cache size only if
it is insufficient, as a large but empty code cache needlessly consumes resources.
-Xcodecachetotal<size> is the preferred option in Java 7.1. Java 7 SR6 and later, and Java 6
SR15 and later and are fully documented and supported.
180 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Two techniques can be used to determine whether the code cache allocation sizes or total
limit must be altered. First, a Java core file can be produced by running kill -3 <pid> at the
end/stable state of your application. The core file shows how many pieces of code cache are
allocated. The active amount of code cache can be estimated by summing all of the pieces.

For example, if 20 MB is needed to run the application, -Xcodecache5m (four pieces of 5 MB
each) typically allocates 20 MB code caches at start time, and they are likely close to each
other and have better performance for cross-code cache calls. Second, to determine whether
the total code cache is sufficient, the -Xjit:verbose option can be used to print method
names as they are compiled. If compilation fails because the limit of code cache is reached,
an error to that effect is printed.

8.3.6 Shared classes

IBM JVM supports class data sharing between multiple IBM JVM instances. The
-Xshareclasses option can be used to enable class data sharing, and the -Xscmx<size>
option can be used to specify the maximum cache size of the stored data, where <size> can
be <nnn>K, <nnn>M, or <nnn>G for sizes in KB, MB, or GB.

The shared class data is stored in a memory-mapped cache file on disk. Sharing reduces the
overall virtual storage consumption when more than one IBM JVM shares a cache. Sharing
also reduces the start time for an IBM JVM after the cache is created. The shared class cache
is independent of any running IBM JVM and persists until it is deleted.

A shared cache can contain:

� Bootstrap classes
� Application classes
� Metadata that describes the classes
� Ahead-of-time (AOT) compiled code

8.4 Capitalizing on POWER8 features with IBM Java

The following sections describe how to maximize POWER8 features for encryption,
transactional memory (TM), and runtime instrumentation by using IBM Java.

8.4.1 In-core Advanced Encryption Standard and Secure Hash Algorithm
acceleration and instructions

Ensuring confidentiality through encryption is a computationally intensive aspect of workloads
that is becoming increasingly important. POWER8 processor-based systems introduce
in-core Advanced Encryption Standard (AES) and Secure Hash Algorithm (SHA) instructions
that are compliant with the FIPS 197: AES Specification, and FIPS 180: Secure Hash
Standard.

Starting with IBM Java 7.1, AES is accelerated by using POWER8 in-core AES instructions by
specifying -Dcom.ibm.crypto.provider.doAESInHardware=true on the JVM command line.
In-core AES instructions can increase speed, as compared with equivalent JIT-generated
code.
Chapter 8. Java 181

Starting with IBM Java 8, SHA2 (for example, SHA224, SHA256, SHA384, and SHA512) is
accelerated by using POWER8 in-core SHA instructions. SHA2 is enabled by default and no
command-line parameter is required. In-core SHA instructions can increase speed, as
compared with equivalent JIT-generated code.

8.4.2 Transactional memory

POWER8 Hardware Transaction Memory (HTM) is used by IBM JVM in two aspects, both of
which are intended to be transparent to Java application programmers and JVM users:

� Transactional Lock Elision (TLE)
� Targeted class exploitation

Starting with IBM Java V7.1, and while HTM is enabled on the platform (AIX or Linux), this
usage can occur transparently.

The JIT compiler automatically chooses particular Java synchronization blocks to transform
into HTM regions. Only the blocks that are deemed to benefit from the transformation in terms
of performance are chosen. When those blocks behave synergistically with HTM, application
scalability and performance can be improved. Because the transformation is automatic, TLE
is transparent to programmers and users. Concurrently, certain classes, including
ConcurrentHashMap and ConcurrentLinkedQueue, were rewritten to take advantage of HTM
in IBM JVM. These classes work on processors that do not support HTM, but they can take
advantage of HTM running on POWER8 processor-based systems transparently.

However, application programmers can modify applications to take advantage of TLE or HTM
by targeting the applications specifically for POWER8 processor-based systems. Because
they are data structures of dispersing nature, which are less likely to be accessed in the same
cache line and therefore conflict with each other, HashTable/HashMap/Map behaves well with
HTM and TLE. When the application is modified to use more of the classes that are
mentioned (ConcurrentHashMap and ConcurrentLinkedQueue), the application is more likely
to benefit from TLE.

For more information about the topic of transactional memory, from the processor, OS, and
compiler perspectives, see:

� 2.2.4, “Transactional memory” on page 42 (processor)
� 4.2.4, “Transactional memory” on page 89 (AIX)
� 6.2.4, “Transactional memory” on page 124 (Linux)
� 7.3.5, “Transactional memory” on page 156 (XL and GCC compiler families)

Note: Using more of the classes that are mentioned (ConcurrentHashMap and
ConcurrentLinkedQueue) might adversely affect performance on POWER7 or older
processors that do not support HTM.
182 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

8.4.3 Runtime instrumentation

IBM Java 7 SR1 and later uses the POWER8 event-based branching facility and enhanced
performance monitoring unit (PMU) to enable runtime instrumentation of compiled code.
Runtime instrumentation allows the JIT compiler to collect detailed performance information
directly from the hardware, without any kernel or system call impact, and in turn, use this
information to further optimize compiled code. The PMU is the same unit that is used by
external profiling tools, such as tprof and hpmcount on AIX, and perf and OProfile on Linux.
The POWER8 processor allows the PMU to be used for application self-profiling. JIT profiling,
and optimization focus on collecting information that otherwise is difficult to collect without
hardware assistance and better utilization of cache and TLB resources, and on reducing
function call impact and branch mispredicts, among others.

For Java 8, runtime instrumentation is used to help guide compilation heuristics, which
reduces warm-up time and improves ramp-up by allowing the JIT compiler to be more
selective. This selectivity is with regard to the Java methods it chooses to compile and the
optimization level at which it compiles those methods. This results in less CPU time being
spent on compilation and faster compilation turnaround times, which allows the application to
reach peak performance sooner.

On current Linux kernels for each thread, the PMU can be used only by one party at any
given moment. This means that if the JVM is using the PMU to profile one or more application
threads, a system profiler such as perf or OProfile cannot be used to profile the same thread
by using the PMU. To work around this limitation, the system profiler can be configured to use
a timer-based profiling mechanism rather than the PMU. Another option is to disable the
runtime instrumentation on the JVM by using the -XX:-RuntimeInstrumentation option. This
limitation might be fixed in future Linux kernels.

8.5 Java garbage collection tuning

The IBM Java VM supports multiple garbage collection (GC) strategies to allow software
developers an opportunity to prioritize various factors. Throughput, latency, and scaling are
the main factors that are addressed by the different collection strategies. Understanding how
an application behaves regarding allocation frequencies, required heap size, expected
lifetime of objects, and other factors can make one or more of the non-default GC strategies
preferable. The GC strategy can be specified with the -Xgcpolicy:<policy> option.

8.5.1 GC strategy: Optthruput

This strategy prioritizes throughput at the expense of maximum latency by waiting until the
last possible time to do a GC. A global GC of the entire heap is performed, creating a longer
pause time at the expense of latency. After GC is triggered, the GC stops all application
threads and performs the three GC phases:

� Mark
� Sweep
� Compact (if necessary)

Each phase is parallelized to perform GC as quickly as possible.

The optthruput strategy is the default in the original Java 6 that uses the IBM JVM V2.4 J9.
Chapter 8. Java 183

8.5.2 GC strategy: Optavgpause

This strategy prioritizes latency and response time by performing the initial mark phase of GC
concurrently with the running of the application. The application is halted only for the sweep
and compact phases, minimizing the total time that the application is paused. Performing the
mark phase concurrently with the running of the application might affect throughput because
the CPU time that perform out the mark phase. This situation can be acceptable on machines
with many processor cores and relatively few application threads, as idle processor cores can
be put to good use otherwise.

8.5.3 GC strategy: Gencon

This strategy employs a generational GC scheme that attempts to deal with many varying
workloads and memory usage patterns. In addition, gencon also uses concurrent marking to
minimize pause times. The gencon strategy works by dividing the heap into two categories:

� New space
� Old space

The new space is dedicated to short-lived objects that are created frequently and
unreferenced shortly thereafter. The old space is for long-lived objects that survived long
enough to be promoted from the new space. This GC policy is suited to workloads that have
many short-lived objects, such as transactional workloads, because GC in the new space
(carried out by the scavenger) is cheaper per object overall than GC in the old space. By
default, up to 25% of the heap is dedicated to the new space. The division between the new
space and the old space can be controlled with the -Xmn option, which specifies the size of the
new space; the remaining space is then designated as the old space. Alternatively, -Xmns and
-Xmnx can be used to set the starting and maximum new space sizes if a non-constant new
space size is wanted. For more information about constant versus non-constant heaps in
general, see 8.5.5, “Optimal heap size” on page 185.

The gencon strategy is the default in the updated Java 7.1 that uses the IBM JVM V2.6 J9,
and in the later Java 7 version.

8.5.4 GC strategy: Balanced

This strategy evens out pause times across GC operations that are based on the amount of
work that is being generated. This strategy can be affected by object allocation rates, object
survival rates, and fragmentation levels within the heap. This smoothing of pause times is a
best effort rather than a real-time guarantee. A fundamental aspect of the balanced collector's
architecture, which is critical to achieving its goals of reducing the impact of large collection
times, is that it is a region-based garbage collector. A region is a clearly delineated portion of
the Java object heap that categorizes how the associated memory is used and groups related
objects together.

During the IBM JVM start, the garbage collector divides the heap memory into equal-sized
regions, and these region delineations remain static for the lifetime of the IBM JVM. Regions
are the basic unit of GC and allocation operations. For example, when the heap is expanded
or contracted, the memory that is committed or released corresponds to a number of regions.
184 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Although the Java heap is a contiguous range of memory addresses, any region within that
range can be committed or released as required. This situation enables the balanced
collector to contract the heap more dynamically and aggressively than other garbage
collectors, which typically require the committed portion of the heap to be contiguous. Java
heap configuration for the -Xgcpolicy:balanced strategy can be specified through the -Xmn,
-Xmx, and -Xms options.

8.5.5 Optimal heap size

By default, the IBM JVM provides a considerably flexible heap configuration that allows the
heap to grow and shrink dynamically in response to the needs of the application. This
configuration allows the IBM JVM to claim only as much memory as necessary at any time,
thus cooperating with other processes that are running on the system. The starting and
maximum size of the heap can be specified with the -Xms and -Xmx options.

This flexibility comes at a cost, as the IBM JVM must request memory from the operating
system whenever the heap must grow and return memory whenever it shrinks. This behavior
can lead to various unwanted scenarios. If the application heap requirements oscillate, this
situation can cause excessive heap growth and shrinkage.

If the IBM JVM is running on a dedicated machine, the processing impact of heap resizing
can be eliminated by requesting a constant sized heap. This situation can be accomplished
by setting -Xms equal to -Xmx. Choosing the correct size for the heap is highly important, as
GC impact is directly proportional to the size of the heap. The heap must be large enough to
satisfy the application's maximum memory requirements and contain extra space. The GC
must work much harder when the heap is near full capacity because of fragmentation and
other issues, so 20 - 30% of extra space above the maximum needs of the application can
lower the overall GC impact.

If an application requires more flexibility than can be achieved with a constant sized heap, it
might be beneficial to tune the sizing parameters for a dynamic heap. One of the most
expensive GC events is object allocation failure. This failure occurs when there is not enough
contiguous space in the current heap to satisfy the allocation, and results in a GC collection
and a possible heap expansion. If the current heap size is less than the -Xmx size, the heap is
expanded in response to the allocation failure if the amount of free space is below a certain
threshold. Therefore, it is important to ensure that when an allocation fails, the heap is
expanded to allow the failed allocation and many future allocations to succeed, or the next
failed allocation might trigger yet another GC collection. This situation is known as heap
thrashing.

The -Xminf, -Xmaxf, -Xmine, and -Xmaxe group of options can be used to affect when and how
the GC resizes the heap. The -Xminf<factor> option (where factor is a real number
0 - 1) specifies the minimum free space in the heap; if the total free space falls below this
factor, the heap is expanded. The -Xmaxf<factor> option specifies the maximum free space;
if the total free space rises above this factor, the heap is shrunk. These options can be used
to minimize heap thrashing and excessive resizing. The -Xmine and -Xmaxe options specify
the minimum and maximum sizes by which to shrink and grow the heap. These options can
be used to ensure that the heap has enough free contiguous space to allow it to satisfy a
reasonable number of allocations before failure.

Regardless of whether the heap size is constant, it should never be allowed to exceed the
physical memory that is available to the process; otherwise, the operating system might have
to swap data in and out of memory. An application's memory behavior can be determined by
using various tools, including verbose GC logs. For more information about verbose GC logs
and other tools, see “Java (either AIX or Linux)” on page 239.
Chapter 8. Java 185

8.6 Application scaling

Large workloads using many threads on multi-CPU machines face extra challenges regarding
concurrency and scaling. In such cases, steps can be taken to decrease contention on
shared resources and reduce the processing impact.

8.6.1 Choosing the correct simultaneous multithreading mode

AIX and Linux represent each SMT thread as a logical CPU. Therefore, the number of logical
CPUs in an LPAR depends on the SMT mode. For example, an LPAR with four virtual
processors that are running in SMT4 mode has 16 logical CPUs; an LPAR with that same
number of virtual processors that are running in SMT2 mode has only eight logical CPUs.

Table 8-2 shows the number of SMT threads and logical CPUs that are available in ST, SMT2,
SMT4, and SMT8 modes.

Table 8-2 ST, SMT2, SMT4, and SMT8 modes - SMT threads and CPUs available

The default SMT mode on a POWER7 and later processor depends on the AIX version and
the compatibility mode with which the processor cores are running. Table 8-3 shows the
default SMT modes.

Table 8-3 SMT mode on the POWER8 processor depends on the AIX and compatibility mode

Most applications benefit from SMT. However, some applications do not scale with an
increased number of logical CPUs on an SMT-enabled system. One way to address such an
application scalability issue is to make a smaller LPAR or use processor binding, as described
in 8.6.2, “Using resource sets” on page 187.

Additionally, if you need improved performance from your larger new system, there is a
potential alternative. If your application semantics support it, you might be able to run multiple
smaller instances of your application, each bound to exclusive processors/cores. In this way,
the aggregate performance from the multiple instances of your application might be able to
meet your performance expectations. This alternative is one of the WebSphere preferred
practices. For more information about selecting an appropriate SMT mode, see “Scalability
challenges when moving from a POWER5 or POWER6 processor-based system to a
POWER7 or POWER8 processor-based system” on page 208.

SMT mode Number of SMT threads Number of logical CPUs

ST 1 1

SMT2 2 2

SMT4 4 4

SMT8 8 8

AIX version Compatibility mode Default SMT mode

AIX V7.1 TL3 SP3 POWER8 SMT4

AIX V6.1 POWER7 SMT4

AIX V6.1 POWER6/POWER6+ SMT2

AIX 5L V5.3 POWER6/POWER6+ SMT2
186 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

For applications that might benefit from a lower SMT mode with fewer logical CPUs,
experiment with using SMT2 or ST modes. For more information, from the processor and OS
perspectives, see:

� “Simultaneous multithreading” on page 29 (processor)
� “Simultaneous multithreading” on page 73 (AIX)
� “Simultaneous multithreading” on page 112 (IBM i)
� “Simultaneous multithreading” on page 119 (Linux)

Java application scaling on Linux
Java applications scale better on Linux in some cases if the sched_compat_yield scheduler
tunable is set to 1 by running the following command:

sysctl -w kernel.sched_compat_yield=1

For more information about this topic, see:

� “Deployment guidelines” on page 15 (Linux)
� “Simultaneous multithreading” on page 119 (Linux)

8.6.2 Using resource sets

This section describes the use of resource sets (RSETs) in AIX and Linux environments.

AIX environment
In an AIX environment, RSETs allow specifying on which logical CPUs an application can run.
They are useful when an application that does not scale beyond a certain number of logical
CPUs is run on a large LPAR, for example, an application that scales up to eight logical CPUs
but is run on an LPAR that has 64 logical CPUs.

For more information, see “The POWER8 processor and affinity performance effects” on
page 16. An example is included in “Partition sizes and affinity” on page 16.

RSETs can be created with the mkrset command and attached to a process by using the
attachrset command. An alternative way is creating an RSET and attaching it to an
application in a single step by using the execrset command.

The following example demonstrates how to use execrset to create an RSET with CPUs 4 - 7
and run an application that is attached to it:

execrset -c 4-7 -e <application>

In addition to running the application that is attached to an RSET, set the MEMORY_AFFINITY
environment variable to MCM to assure that the application’s private and shared memory is
allocated from memory that is local to the logical CPUs of the RSET:

MEMORY_AFFINITY=MCM
Chapter 8. Java 187

In general, RSETs are created on core boundaries. For example, a partition with four
POWER8 cores that are running in SMT4 mode has 16 logical CPUs. Create an RSET with
four logical CPUs by selecting four SMT threads that belong to one core. Create an RSET
with eight logical CPUs by selecting eight SMT threads that belong to two cores. The smtctl
command can be used to determine which logical CPUs belong to which core, as shown
in Example 8-6.

Example 8-6 Use the smtctl command to determine which logical CPUs belong to which core

smtctl
This system is SMT capable.
This system supports up to 4 SMT threads per processor.
SMT is currently enabled.
SMT boot mode is not set.
SMT threads are bound to the same physical processor.

proc0 has 4 SMT threads.
Bind processor 0 is bound with proc0
Bind processor 1 is bound with proc0
Bind processor 2 is bound with proc0
Bind processor 3 is bound with proc0

proc4 has 4 SMT threads.
Bind processor 4 is bound with proc4
Bind processor 5 is bound with proc4
Bind processor 6 is bound with proc4
Bind processor 7 is bound with proc4

The smtctl output in Example 8-6 shows that the system is running in SMT4 mode with bind
processors (logical CPU) 0 - 3 belonging to proc0 and bind processors 4 - 7 belonging to
proc1. Create an RSET with four logical CPUs either for CPUs 0 - 3 or for CPUs 4 - 7.

To achieve the best performance with RSETs that are created across multiple cores, all cores
of the RSET must be from the same chip and in the same scheduler resource allocation
domain (SRAD). The lssrad command can be used to determine which logical CPUs belong
to which SRAD, as shown in Example 8-7:

Example 8-7 Use the lssrad command to determine which logical CPUs belong to which SRAD

lssrad -av
REF1 SRAD MEM CPU
0

 0 22397.25 0-31
1

 1 29801.75 32-63

The output in Example 8-7 shows a system that has two SRADs. CPUs 0 - 31 belong to the
first SRAD, and CPUs 32 - 63 belong to the second SRAD. In this example, create an RSET
with multiple cores either by using the CPUs of the first or second SRAD.

Authority for RSETs: A user must have root authority or have CAP_NUMA_ATTACH capability
to use RSETs.
188 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Linux environment
In a Linux environment, the equivalent to execrset is the taskset command. The following
example demonstrates how to use taskset to create a taskset with CPUs 4 - 7 and run an
application that is attached to it:

Linux: taskset -c 4-7 <application>

There is no equivalent environment variable to MEMORY_AFFINITY on Linux; however, there is a
command, numactl, that can accomplish the same task as MEMORY_AFFINITY and the execrset
and taskset commands. For example:

numactl [-l | --localalloc] -C 4-7 <application>

The -l | --localalloc option is analogous to MEMORY_AFFINITY=MCM.

8.6.3 Java lock reservation

Synchronization and locking are an important part of any multi-threaded application. Shared
resources must be adequately protected by monitors to ensure correctness, even if some
resources are only infrequently shared. If a resource is primarily accessed by a single thread
at any time, that thread is frequently the only thread to acquire the monitor that is guarding the
resource. In such cases, the cost of acquiring the monitor can be reduced by using the
-XlockReservation option. With this option, it is assumed that the last thread to acquire the
monitor is also likely to be the next thread to acquire it. The lock is, therefore, said to be
reserved for that thread, minimizing its cost to acquire and release the monitor.

This option is suited to workloads that use many threads and many shared resources that are
infrequently shared in practice.

8.6.4 Java GC threads

The GC that is used by IBM JVM takes every opportunity to use parallelism on multi-CPU
machines. All phases of the GC can be run in parallel with multiple helper threads dividing up
the work to complete the task as quickly as possible. Depending on the GC strategy and heap
size in use, it can be beneficial to adjust the number of threads that the GC uses. The number
of GC threads can be specified with the -Xgcthreads<number> option. The default number of
GC threads is equal to the number of logical processors on the partition, and it is not helpful
to exceed this value. Reducing it, however, reduces the GC impact and might be wanted in
some situations, such as when RSETs are used. The number of GC threads is capped at 64
starting in IBM JVM V2.6 J9.

8.6.5 Java concurrent marking

The gencon policy combines concurrent marking with generational GC. If generational GC is
wanted but the impact of concurrent marking, regarding both the impact of the marking thread
and the extra book-keeping that is required when you allocate and manipulate objects, is not
wanted, then concurrent marking can be disabled by using the -Xconcurrentlevel0 option.
This option is appropriate for workloads that benefit from the gencon policy for object
allocation and lifetimes, but also require maximum throughput and minimal GC impact while
the application threads are running.
Chapter 8. Java 189

In general, for both the gencon and optavgpause GC policies, concurrent marking can be
tuned with the -Xconcurrentlevel<number> option, which specifies the ratio between the
amount of heap that is allocated and heap that is marked. The default value is 8. The number
of low-priority mark threads can be set with the -Xconcurrentbackground<number> option. By
default, one thread is used for concurrent marking.

For more information about this topic, see 8.8, “Related publications” on page 192.

8.7 Using GPU accelerators with IBM Java

GPU accelerators can be used to increase substantially Java software performance when
certain conditions are met. The GPU can be accessed from Java by using several different
techniques that are fully compatible and supported by the IBM Java platform.

Regardless of the choice of the Java technology (to be detailed later) that is used to use the
GPU, the software should have some or all of these conditions met:

1. Key code segments (hot spots) where the Java program spends the majority of its time
should exist. For example, processing large data sets and complex mathematical
operations.

2. These code segments can be expressed as parallel operations or as a short sequence of
parallel operations. For example, sorting, linear algebra operations, and other operations
that are highly parallel.

3. The parallelism in these operations should be of a fine grain type, which means that
several thousand threads can operate concurrently to complete the overall operation.

4. Sufficient computation per data item. Each data item is used several times.

These items are only rules of thumb and there might be situations where they either fail or
other situations where the GPU still provides performance benefit even if some conditions fail.

Ultimately, one must experiment with GPU acceleration and observe whether there are
indeed performance advantages in any given situation.

8.7.1 Automatic GPU compilation

The IBM Java Just-In-Time (JIT) compiler is able to offload certain processing tasks to a GPU
without any user involvement or special knowledge. The only requirement on the user is to
express the computation as a parallel loop by using Java Lambda expressions.

The JIT determines at run time whether a parallel loop is suitable to be offloaded to the GPU
by using certain performance heuristics.

Here are the two Java constructs that can be accelerated by the GPU:

� IntStream.range(<range>).parallel().forEach(<lambda>)
� IntStream.rangeClosed(<range>).parallel().forEach(<lambda>)

Where <range> defines upper and lower bounds and <lambda> is a correctly defined lambda
expression.

The lambda expression may use variables and one-dimensional arrays of all Java primitive
types and automatic, parameter, and instance variables. Also, you may use all standard Java
exceptions.
190 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

The following items are not supported:

� Method invocations
� Intermediate operations, such as map or filter
� User-defined exceptions
� New/delete statements

To enable GPU processing of the parallel loops, set the -Xjit:enableGPU option on the
command line when you start your Java application.

For more information, see the Java 8 SDK documentation, found at:

https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.do
c/diag/understanding/gpu_jit.html

8.7.2 Accessing the GPU through the CUDA4J application programming
interface

You can use the NVIDIA Compute Unified Device Architecture 4J (CUDA4J) API to develop
applications that can specify exactly when to use the GPU for application processing. Unlike
the JIT automatic GPU compilation, you have explicit control over the GPU operations and
under which conditions they are started. However, you must write and maintain the GPU
source code by using the CUDA4J API.

There are many classes that are available in the CUDA4J API, which are described in the
Java 7 API reference (or later), found at:

https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.do
c/user/gpu_developing_cuda4j.html?lang=en

8.7.3 The com.ibm.gpu application programming interface

You can use the com.ibm.gpu API to develop applications that sort arrays of primitive types
(int, long, float, or double) on the GPU. Parallel processing of sort operations on data arrays
can improve performance if the array is large enough to justify the impact of moving the data.
Testing indicates that moving the data from the CPU to the GPU is cost neutral at 20,000
entries, but for larger arrays, you see a reduced sort time when you use the GPU rather than
the CPU.

For more information, see the Java 7 API reference (or later), found at:

https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.do
c/user/gpu_developing_sort.html?lang=en

8.7.4 NVIDIA Compute Unified Device Architecture: Java Native interface

You can always use the Java Native Interface (JNI) to call CUDA kernels directly, which is
done by using standard JNI techniques. For example:

// Java source code
import java.nio.ByteBuffer;
class CudaTest1
{
 static { System.loadLibrary("cudatest1"); } // native shared-obj or DLL
 private void grayscale(byte[] bgr, int width, int height)
 {
Chapter 8. Java 191

https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/diag/understanding/gpu_jit.html
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_cuda4j.html?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.lnx.80.doc/user/gpu_developing_sort.html?lang=en

 ByteBuffer buffer = ByteBuffer.allocateDirect(data.length);
 buffer.put(data,0,data.length);
 buffer.position(0);
 grayscale0(buffer,width,height);
 buffer.get(data);
 }
 private static native void grayscale0(ByteBuffer buffer, int width, int
height);
…
}

// C source code
#include <jni.h>
JNIEXPORT void JNICALL Java_CudaTest1_grayscale0(JNIEnv* env, jclass,
 jobject buffer, jint width, jint height)
{
 unsigned char* bytes = (unsigned char*)env->GetDirectBufferAddress(buffer);
 int length = width * height * 3; // 3 bytes per pixel
 grayscale(bytes,width,height); // see C/C++ section on example implementation
}

8.8 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� Java Performance on POWER7 – Best Practice, found at:

http://www.ibm.com/systems/power/hardware/whitepapers/java_perf.htm

� Java Performance on POWER7, found at:

https://www.ibm.com/developerworks/wikis/display/LinuxP/Java+Performance+on+POW
ER7

� Top 10 64-bit IBM WebSphere Application Server FAQ, found at:

ftp://public.dhe.ibm.com/software/webservers/appserv/WAS_64-bit_FAQ.pdf
192 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/systems/power/hardware/whitepapers/java_perf.htm
https://www.ibm.com/developerworks/wikis/display/LinuxP/Java+Performance+on+POWER7
ftp://public.dhe.ibm.com/software/webservers/appserv/WAS_64-bit_FAQ.pdf

Chapter 9. IBM DB2

This chapter describes the optimization and tuning of DB2 running on POWER
processor-based servers. It covers the following topics:

� 9.1, “DB2 and the POWER processor” on page 194
� 9.2, “Taking advantage of the POWER processor” on page 194
� 9.3, “Capitalizing on the compilers and optimization tools for POWER” on page 197
� 9.4, “Capitalizing on POWER virtualization” on page 198
� 9.5, “Capitalizing on the AIX system libraries” on page 199
� 9.6, “Capitalizing on performance tools” on page 201
� 9.7, “Conclusion” on page 202
� 9.8, “Related publications” on page 202

9

© Copyright IBM Corp. 2014, 2015. All rights reserved. 193

9.1 DB2 and the POWER processor

IBM DB2 is positioned to take full advantage of the Power Architecture. This chapter refers to
DB2 10, including DB2 10.1, DB2 10.5, and all subsequent updates. References to POWER
are to the POWER7, POWER7+, and the new POWER8 processors.

DB2 offers many capabilities that are tailored to use POWER processor features. The DB2
self-tuning memory manager (STMM) feature is one of many features that can help you
efficiently consolidate DB2 workloads on Power Systems. Additionally, DB2 is one of the most
optimized software applications on Power Systems. During the DB2 development cycles, IBM
evaluates new POWER processor capabilities and tests and characterizes the performance
of DB2 on the latest Power Systems servers. So far, in the earlier chapters of this book, you
read detailed descriptions about most of these POWER guidelines and technologies. The
focus of this chapter is to showcase how DB2 uses various POWER features and preferred
practices from this guide during its own software development cycle, which is done to
maximize performance on the Power Architecture. General DB2 tuning and preferred
practices of DB2 are covered extensively in many other places, some of which are listed in
9.8, “Related publications” on page 202.

Most of the Power Systems exploitation capabilities of DB2 extend to the POWER7,
POWER7+, and POWER8 processors. A number of the new POWER8 capabilities are
evolutionary in nature, and no new externals are required in DB2 (just verification and some
adjustment of the internal data structures and algorithms in DB2 to take full advantage of the
new capabilities). Similarly, DB2 evolves, so maximizing the benefits of POWER processors in
DB2 10.1 has been extended and enhanced in DB2 10.5.

However, there are also new capabilities in DB2 10.5 that take advantage of new POWER
processor capabilities. For example, the new columnar in-memory analytic processing
capability that is known as BLU Acceleration uses the POWER VSX engine on all of the
POWER7 and later processors.

As of DB2 10.5 FP5, DB2 supports the Linux on Power Little Endian platform on POWER8
processors running under RHEL 7.1 and Ubuntu 14.4. Most of the material in this chapter
specifically refers to DB2 running under AIX. Where appropriate, specific details are provided
about Linux on Power Little Endian.

9.2 Taking advantage of the POWER processor

Methods for taking advantage of the inherent power of the POWER processor include
affinitization, page size, decimal arithmetics, and the usage of simultaneous multithreading
(SMT) priorities for internal lock implementation. New in DB2 10.5 is the ability to use Single
Instruction Multiple Data (SIMD) processing with the VSX engine.

9.2.1 Affinitization

A simple way to achieve affinitization on POWER7 and POWER8 processor-based systems is
through the DB2 registry variable DB2_RESOURCE_POLICY. In general, this variable defines a
policy that outlines which operating system resources are available for DB2 databases. When
this variable is set to AUTOMATIC, the DB2 database system automatically detects the POWER
hardware topology and computes the best way to assign engine dispatchable units (EDUs) to
various hardware modules. The goal is to determine the most efficient way to share memory
between multiple EDUs that need access to the same regions of memory.
194 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

On AIX, the AUTOMATIC setting uses Scheduler Resource Allocation Domain Identifier
(SRADID) attachments for affinity purposes. On Linux, the AUTOMATIC setting uses NUMA
nodes (as exposed by libnuma) for affinity purposes.

The AUTOMATIC setting can be used on POWER7 and POWER8 processor-based systems
running the following or later releases:

� AIX V6.1 Technology Level (TL) 5 with DB2 10.1
� Linux (Little Endian) with DB2 10.5 FP5

This setting is intended for multi-socket SCM and all DCM Power Systems. It is best to run a
performance analysis of the workload before and after you set this variable to AUTOMATIC to
validate the performance improvement.

For more information about other usages of DB2_RESOURCE_POLICY other memory-related DB2
registry variables, see Chapter 2, “AIX configuration”, in Best Practices for DB2 on AIX 6.1 for
POWER Systems, SG24-7821.

9.2.2 Page sizes

DB2 objects, such as tables and indexes, are stored in pages on disk and in memory. DB2
supports 4 KB, 8 KB, 16 KB, and 32 KB page sizes.

DB2 buffer pools, which are memory regions that are used to store pages from disk, use
memory that is allocated from the OS. Depending on the OS, various page sizes can be used
to improve the performance of the virtual memory manager (VMM). The default page size on
AIX is 4 KB, and on Linux it is 64 KB, but other page sizes are available.

To achieve increased performance on Power Systems, DB2 10.1 by default uses 64 KB
(“medium pages”) on AIX.

Using large pages
For some workloads, particularly ones that require intensive memory access, there are
performance benefits for using large pages. (A “large page” is 16 MB on Power Systems.)
However, certain drawbacks must be considered. When large pages support is enabled
through DB2, all the memory that is set for large pages is pinned. It is possible to allocate too
much memory with large pages and not enough for 4 KB and 64 KB pages, which can result
in heavy paging activities. Furthermore, enabling large pages prevents the STMM from
automatically tuning overall database memory consumption. Consider using the
DB2_LARGE_PAGE_MEM variable only for defined workloads that have a relatively static database
memory requirement.

To enable large page support on AIX operating systems, complete the following steps:1

1. Configure AIX server for large pages support by running vmo:

vmo -r -o lgpg_size=<LargePageSize> -o lgpg_regions=<LargePages>

<LargePageSize> is the size in bytes of the hardware-supported large pages, and
<LargePages> specifies the number of large pages to reserve.

2. Run bosboot to pick up the changes (made by running vmo) for the next system start.

3. After restart, run vmo to enable memory pinning:

vmo -o v_pinshm=1

1 Enabling large page support (AIX) (for DB2 Version 10.1 for Linux, UNIX, and Windows), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.d
b2.luw.admin.dbobj.doc%2Fdoc%2Ft0010405.html
Chapter 9. IBM DB2 195

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Ft0010405.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Ft0010405.html

To enable large page support on Linux operating systems, complete the following steps:

1. Configure Linux server for large page support by running the following command:

echo "vm.nr_hugepages=<LargePages>" >> /etc/sysctl.conf

2. Restart the server.

In both cases, after the server is configured for large pages and restarted, use the following
steps to enable large page support in DB2:

1. Set the DB2_LARGE_PAGE_MEM registry variable by running db2set:

db2set DB2_LARGE_PAGE_MEM=DB

2. Start the DB2 database manager by running db2start:

db2start

9.2.3 Decimal arithmetic

DB2 for AIX uses the hardware DFP unit in POWER6, POWER7, and POWER8 processors in
its implementation of decimal-encoded formats and arithmetic. One example of a data type
that uses this hardware support is the DECFLOAT data type that is introduced in DB2 9.5.
This decimal-floating point data type supports business applications that require exact
decimal values, with a precision of 16 or 34 digits. When the DECFLOAT data type is used for
a DB2 database that is on a POWER6, POWER7, or POWER8 processor, the native
hardware support for decimal arithmetic is used. In comparison to other platforms, where
such business operations can be achieved only through software emulation, applications that
run on POWER6, POWER7, or POWER8 processors can use the hardware support to gain
performance improvements.

DECFLOAT: The Data Type of the Future describes this topic in more detail. This paper is
found at the following website:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0801chainani/

9.2.4 Using simultaneous multithreading priorities for internal lock
implementation

DB2 uses SMT and hardware priorities in its internal lock implementation. Internal locks are
short duration locks that are required to ensure consistency of various values in highly
concurrent applications such as DB2. In certain cases, it is beneficial to prioritize different
DB2 agent threads to maximize system resource utilization.

For more information about this topic, see 9.8, “Related publications” on page 202.

9.2.5 Single Instruction Multiple Data

DB2 10.5 with BLU Acceleration uses SIMD processing to speed up analytic query
processing. On POWER processors, this is called the VSX engine. The VSX engine has been
part of the POWER architecture for a time, was improved in the POWER7 processor, and has
received further improvements in the POWER8 processor.

Note: Do not be confused by the Linux OS terminology of huge pages.
196 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/developerworks/data/library/techarticle/dm-0801chainani/

SIMD instructions are low-level CPU instructions that enable you to perform the same
operation on multiple data points at the same time.

DB2 10.5 with BLU Acceleration auto-detects whether it is running on an SIMD-enabled CPU,
and automatically uses SIMD to effectively multiply the power of the CPU. In particular, BLU
Acceleration can use a single SIMD instruction to get results from multiple data elements.

Figure 9-1 is an example of a scan operation that involves a predicate evaluation.

Figure 9-1 Compare predicate evaluation with and without SIMD on POWER using DB2 10.5 with BLU
Acceleration

The left side of Figure 9-1 illustrates a typical operation, namely, that each data element (or
column value) is evaluated, one after another. The right side of the figure shows how BLU
Acceleration processes four columns at a time by using SIMD. Think of it as CPU power
multiplied by four. Although Figure 9-1 shows a predicate evaluation, BLU Acceleration can
also take advantage of SIMD processing for join operations, arithmetic, and more.

9.3 Capitalizing on the compilers and optimization tools for
POWER

DB2 is built by using the latest IBM XL C/C++ compiler found at the start of the development
cycle. For DB2 10.1 for AIX, IBM uses the Version 11 compiler, and for DB2 10.5 for AIX, IBM
uses the Version 12 compiler. The latest XLC compiler technology was used for DB2 10.5 on
Linux on Power Little Endian. IBM uses various compiler optimization flags along with
optimization techniques based on the common three steps of software profiling:

� Application preparation/instrumentation
� Application profiling
� Application optimization

Data

2012

Instruction Instruction

Processor
Core

Processor
Core

2009 2010 2011 2012

Data

Compare
= 2009

Result
Stream

Result
Stream

STOP
PLEASEWAIT
HERE

SIMD
exploitation
unavailable

>

Data

2009

Data

2010

Data

2011

SIMD
technology

detected, auto-
enable

exploitation

>

Compare
= 2009

Compare
= 2009

Data

Data

Result
Stream

Result
Stream

2012

2009 2010 2011 2012
Chapter 9. IBM DB2 197

9.3.1 Whole-program analysis and profile-based optimizations

On the AIX platform, whole-program analysis (IPA) and profile-directed feedback (PDF)
compiler options are used to optimize DB2 by using a set of customer representative
workloads. This technique produces a highly optimized DB2 executable file that is targeted at
the best usage of the Power Architecture.

For more information, see “Whole-program analysis” and “Optimization that is based on
Profile Directed Feedback” on page 145.

9.3.2 IBM Feedback Directed Program Restructuring

In addition to IPA and PDF optimizations that use IBM XL C/C++ compiler, a post-link
optimization step provides further performance improvement on the AIX platform. The
particular tool that is used is Feedback Directed Program Restructuring (FDPR). Similar to
IPA and PDF, a set of DB2 customer representative workloads is employed in this step, and
IBM FDPR-Pro profiles and ultimately creates an optimized version of the DB2 product. For
more information, see 7.4, “IBM Feedback Directed Program Restructuring” on page 160.

For more information about this topic, see 9.8, “Related publications” on page 202.

9.4 Capitalizing on POWER virtualization

DB2 supports and fully draws upon the virtualization technologies that are provided by the
Power Architecture. These technologies include PowerVM for AIX and Linux, PowerKVM for
Linux, and System Workload Partitioning (WPAR) for AIX. Many of the DB2 performance
preferred practices for a non-virtualized environment also extend to a virtualized environment.

Furthermore, DB2 offers IBM SubCapacity Licensing, which enables customers to
consolidate more effectively their infrastructure and reduce their overall total cost of
ownership (TCO). DB2 also provides a flexible software licensing model that supports
advanced virtualization capabilities, such as shared processor pools, Micro-Partitioning,
virtual machines, and dynamic reallocation of resources. To support this type of licensing
model, a tool is provided that allows customers to track and manage their own software
license usage.

9.4.1 DB2 virtualization

DB2 is engineered to take advantage of the many benefits of virtualization on Power Systems
and therefore allows various types of workload to be deployed in a virtualized environment.
One key DB2 feature that enables workloads to run efficiently in virtualized environments is
the STMM. STMM automatically adjusts the values of several memory configuration
parameters in DB2. When enabled, it dynamically evaluates and redistributes available
memory resources among the buffer pools, lock memory, package cache, and sort memory to
maximize performance. The changes are applied dynamically and can simplify the task of
manual configuration of memory parameters. This feature is useful in a virtualized
environment because STMM can respond to dynamic changes in partition memory allocation.

By default, most DB2 parameters are set to automatic to enable STMM. As a preferred
practice, leave the instance_memory parameter and other memory parameters as automatic,
especially when you are running in a virtualized environment because DB2 is designed to
allow STMM to look for available memory in the system when instance_memory is set
to automatic.
198 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

DB2 also supports the PowerVM Live Partition Mobility (LPM) feature when virtual I/O is
configured. LPM allows an active database to be moved from a system with limited memory
to one with more memory without disrupting the operating system or applications. When
coupling dynamic LPAR (DLPAR) with STMM, the newly migrated database can automatically
adjust to the additional memory resource for better performance.

DB2 Virtualization, SG24-7805 describes in considerable detail the concept of DB2
virtualization, in addition to setup, configuration, and management of DB2 on IBM Power
Systems with PowerVM technology. That book follows many of the preferred practices for
Power Systems virtualization and has a list of preferred practices for DB2 on PowerVM.

9.4.2 DB2 in an AIX workload partition

DB2 supports product installation on system WPARs. DB2 can be installed either within a
local file system on a system WPAR or in a global environment under either the /usr or /opt
directory with each instance created on the local WPARs. In both cases, each DB2 instance is
only visible and managed by the system WPAR in which it is created. If DB2 is installed in a
global environment, different instances on different WPARs share the globally installed DB2
copy to improve i-cache efficiency and memory usage. WPAR mobility is also supported
where a DB2 instance that is running on a system WPAR can migrate to a remote WPAR on a
different physical machine.

There are certain restrictions and considerations to keep in mind when you install DB2 in a
global environment:

� Certain DB2 installation features cannot be installed on a system WPAR. These features
are IBM Tivoli® System Automation for Multiplatforms and IBM Data Studio Administration
Console.

� When you uninstall a DB2 copy in a global environment, all associated instances must be
dropped or updated to another DB2 copy and its corresponding system WPARs must
be active.

� When you apply fix packs to a DB2 copy in a global environment, all associated instances
must be stopped and its corresponding system WPARs must be active.

For information about installing a DB2 copy on a WPAR, see Chapter 8, “Workload
Partitioning”, in Best Practices for DB2 on AIX 6.1 for POWER Systems, SG24-7821.

For more information about this topic, see 9.8, “Related publications” on page 202.

9.5 Capitalizing on the AIX system libraries

This section describes methods for capitalizing on the AIX system libraries.

9.5.1 Using the thread_post_many API

DB2 uses thread_wait and thread_post_many to improve the efficiency of DB2 threads
running on multi-processor Power Systems. DB2 takes advantage of the thread_post_many
function. The availability of such an API on AIX directly impacts the efficiency of DB2
processing, as it allows for waking many EDUs with a single function call, which in other
operating systems requires many individual function calls (typically as many as the number of
EDUs being woken up).
Chapter 9. IBM DB2 199

9.5.2 File systems

DB2 uses most of the advanced features within the AIX file systems. These features include
Direct I/O (DIO), Concurrent I/O (CIO), Asynchronous I/O, and I/O Completion Ports (IOCP).

Non-buffered I/O
By default, DB2 uses CIO or DIO for newly created table space containers because
non-buffered I/O provides more efficient underlying storage access over buffered I/O on most
workloads, with most of the benefit realized by bypassing the file system cache. Non-buffered
I/O is configured through the NO FILE SYSTEM CACHING clause of the table space definition. To
maximize the benefits of non-buffered I/O, a correct buffer pool size is essential. This size can
be achieved by using STMM to tune the buffer pool sizes. (The default buffer pool is always
tuned by STMM, but user-created buffer pools must specify the automatic keyword for the
size to allow STMM to tune them.) When STMM is enabled, it automatically adjusts the buffer
pool size for optimal performance.

For file systems that support CIO, such as AIX JFS2, DB2 automatically uses this I/O method
because of its performance benefits over DIO.

The DB2 log file by default uses DIO, which brings similar performance benefits as avoiding
file system cache for table spaces.

Asynchronous I/O
In general, DB2 users cannot explicitly choose synchronous or asynchronous I/O. However,
to improve the overall response time of the database system, minimizing synchronous I/O is
preferred and can be achieved through correct database tuning. Consider the following items:

� Synchronous read I/O can occur when a DB2 agent needs a page that is not in the buffer
pool to process an SQL statement. In addition, a synchronous write I/O can occur if no
clean pages are available in the buffer pool to make room to bring another page from disk
into that buffer pool. This situation can be minimized by having sufficiently large buffer
pools or setting the buffer pool size to automatic to allow STMM to find its optimal size, in
addition to tuning the page cleaning (by using the chngpgs_thresh database parameter).

� Not all pages read into buffer pools are done synchronously. Depending on the SQL
statement, DB2 can prefetch pages of data into buffer pools through asynchronous I/O.
When prefetching is enabled, two parallel activities occur during query processing: data
processing and data page I/O. The latter is done through the I/O servers that wait for
prefetch requests from the former. These prefetch requests contain a description of the I/O
that must satisfy the query. The number of I/O servers for a database is specified through
the num_ioservers configuration parameter. By default, this parameter is automatically
tuned during database start.

For more information about how to monitor and tune AIO for DB2, see Best Practices for DB2
on AIX 6.1 for POWER Systems, SG24-7821.

I/O Completion Port
Configure the AIX I/O Completion Port for performance purposes, even though it is not
mandatory, as part of the DB2 10 installation process. For more information, see Configuring
IOCP (AIX), found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?
topic=/com.ibm.db2.luw.admin.perf.doc/doc/t0054518.html
200 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.perf.doc/doc/t0054518.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.perf.doc/doc/t0054518.html

After IOCP is configured on AIX, then DB2, by default, capitalize on this feature for all
asynchronous I/O requests. With IOCP configured, AIO server processes from the AIX
operating system manage the I/O requests by processing many requests in the most optimal
way for the system.

For more information about this topic, see 9.8, “Related publications” on page 202.

9.6 Capitalizing on performance tools

Correct performance tools are crucial for maximizing DB2 performance. Zoning in on potential
performance bottlenecks is impossible without a strong performance tool set, such as the
ones on Power Systems.

9.6.1 High-level investigation

During the general analysis of any performance investigation, the identification of the system
resource bottlenecks is key to determining the root cause of the bottleneck. System resource
bottlenecks can be classified into several categories, such as CPU bound, IO bound, network
bound, or excessive idling, all of which can be identified with AIX system commands.

9.6.2 Low-level investigation

Various system level tools are essential in drilling down to find a potential root cause for the
type of the bottlenecks that are listed in 9.6, “Capitalizing on performance tools” on page 201.
Profiling tools are especially invaluable for identifying CPU-bound issues and are available on
AIX and Linux on Power platforms.

AIX tprof
tprof is a powerful profiling tool on the AIX platform that does program counter-sampling in
clock interrupts. It can work on any binary without recompilation and is a great tool for
codepath analysis.

For instructions about using the tprof command, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.
aix.prftools/doc/prftools/tprofcommand.htm

AIX tprof microprofiling
Beyond the high-level tprof profiling, DB2 also uses the microprofiling option of tprof during
development. Microprofiling allows DB2 to perform instruction-level profiling to apportion the
total CPU time to individual source program lines.

Linux OProfile and perf
OProfile and perf are system profiling tools, similar to tprof, which are popular on the Linux
platform. OProfile and perf use hardware counters to provide functional-level profiling in
both the kernel and user space. Similar to tprof, these tools are useful during DB2
development for codepath analysis.

For more information about this topic, see 9.8, “Related publications” on page 202.
Chapter 9. IBM DB2 201

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftools/doc/prftools/tprofcommand.htm

9.7 Conclusion

DB2 is positioned to capitalize on many POWER processor features to maximize the return
on investment (ROI) of the full IBM stack. During the entire DB2 development cycle, there is a
targeted effort to take advantage of POWER processor features and ensure that the highest
level of optimization is employed on this platform. With every new POWER processor
generation, DB2 ensures that the key features are supported and brought into play at the
POWER processor launch by working on such features well in advance of general availability.
This type of targeted effort ensures that DB2 is at the forefront of optimization for POWER
processor applications.

9.8 Related publications

The publications that are listed in this section are considered suitable for a more detailed
description of the topics that are covered in this chapter:

� Best Practices for DB2 on AIX 6.1 for Power Systems, SG24-7821

� Best practices for DB2 for Linux, UNIX, and Windows, found at:

http://www.ibm.com/developerworks/data/bestpractices/db2luw/

� DB2 documentation about its many variations is found at:

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.adm
in.regvars.doc/doc/r0005665.html?cp=SSEPGG_10.5.0%2F2-4-5-4-7

� DB2 database products in a workload partition (AIX), found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.j
sp?topic=/com.ibm.db2.luw.qb.server.doc/doc/c0053344.html

� DB2 performance registry variables, including DB2_LOGGER_NON_BUFFERED_IO and
DB2_USE_IOCP, are described in Performance variables, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.j
sp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html

� DB2 Version 10.1 for Linux, UNIX, and Windows, Performance variables describes DB2
performance registry variables, including DB2_RESOURCE_POLICY and DB2_LARGE_PAGE_MEM:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.j
sp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html

� DB2 Virtualization, SG24-7805

� DECFLOAT: The data type of the future, found at:

http://www.ibm.com/developerworks/data/library/techarticle/dm-0801chainani/

� DECFLOAT scalar function (for DB2 10.1 for Linux, UNIX, and Windows), found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.j
sp?topic=/com.ibm.db2.luw.sql.ref.doc/doc/r0050508.html

� Feedback Directed Program Restructuring (FDPR), found at:

https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/

� FDPR-Pro - Usage: Feedback Directed Program Restructuring, found at:

http://www.research.ibm.com/haifa/projects/systems/cot/fdpr/papers/fdpr_pro_usa
ge_cs.pdf
202 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/developerworks/data/bestpractices/db2luw/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.qb.server.doc/doc/c0053344.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-0801chainani/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.sql.ref.doc/doc/r0050508.html
https://www.research.ibm.com/haifa/projects/systems/cot/fdpr/
http://www.research.ibm.com/haifa/projects/systems/cot/fdpr/papers/fdpr_pro_usage_cs.pdf
http://www.research.ibm.com/haifa/projects/systems/cot/fdpr/papers/fdpr_pro_usage_cs.pdf
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.regvars.doc/doc/r0005665.html?cp=SSEPGG_10.5.0%2F2-4-5-4-7

� IBM DB2 10.1 IBM Knowledge Center, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.j
sp?topic=/com.ibm.db2.luw.welcome.doc/doc/welcome.html

� Smashing performance with OProfile, found at:

http://www.ibm.com/developerworks/library/l-oprof/

� tprof Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm
Chapter 9. IBM DB2 203

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm
http://www.ibm.com/developerworks/library/l-oprof/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/db2luw/v10r1/index.jsp?topic=/com.ibm.db2.luw.welcome.doc/doc/welcome.html

204 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Chapter 10. IBM WebSphere Application
Server

This chapter describes the optimization and tuning of the POWER8 processor-based server
running WebSphere Application Server. The topic 10.1, “IBM WebSphere” on page 206 is the
highlight of this chapter:

10
© Copyright IBM Corp. 2014, 2015. All rights reserved. 205

10.1 IBM WebSphere

This chapter is intended to provide you with performance and functional considerations for
running WebSphere Application Server middleware on Power Systems. It primarily describes
POWER7 and POWER8 processor-based systems. Even though WebSphere Application
Server is designed to run on many operating systems and platforms, some specific
capabilities of Power Systems are used by WebSphere Application Server as a part of
platform optimization efforts.

The intent of this chapter is to explain WebSphere Application Server installation,
deployment, and migration topics when WebSphere Application Server is running on Power
Systems. This chapter also describes preferred practices for performance when you run
enterprise Java applications on Power Systems. This chapter also highlights some of the
known WebSphere Application Server topics and solutions for Power Systems.

10.1.1 Installation

As there are multiple versions of WebSphere Application Server, there are also multiple
versions of AIX that are supported by POWER7 and POWER8 processor-based systems.
Table 10-1 shows some of the installation considerations. Use the most currently available
code, including the latest installation binary files. For the most current AIX installation and
configuration details, see 4.4.1, “AIX preferred practices that are applicable to all Power
Systems generations” on page 105.

Table 10-1 Installation considerations

10.1.2 Deployment

When you start the WebSphere Application Server, there is an option to bind the Java
processors to specific CPU processor cores to circumvent the operating system scheduler to
send the work to available processors in the pool. In certain cases, using RSETs and binding
the JVM to stay within core/socket boundaries improves the performance. Table 10-2 on
page 207 lists some of the deployment considerations.

Important: If running on a POWER7 processor-based system, use the versions of
WebSphere Application Server that run in POWER7 mode with performance
enhancements. Similarly, for POWER8 processor-based systems, use the versions of
WebSphere Application Server that run in POWER8 mode with performance
enhancements.

Document Associated website Information provided

IBM WebSphere Application
Server support on POWER7
hardware

http://www.ibm.com/support/
docview.wss?uid=swg21422150

Various fix pack levels and 64-bit
considerations for running in
POWER7 mode
206 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/support/docview.wss?uid=swg21422150

Table 10-2 Deployment considerations

Processor affinity benefits for WebSphere applications
When an application that is running on top of WebSphere Application Server is deployed on a
large LPAR, it might not use all the cores in that LPAR, resulting in less than optimum
application performance. If this situation occurs, performance improvements to these
applications can be obtained by binding the application server to certain cores. This task can
be accomplished by creating the resource sets and attaching them to the application server
that is running excerset. For an example of using the taskset and numactl commands in a
Linux environment, see “Partition sizes and affinity” on page 16.

10.1.3 Performance

When you run WebSphere Application Server on POWER7 and POWER8 processor-based
systems, end-to-end performance depends on many subsystems. This includes the network,
memory, disk, and CPU subsystems of POWER7 and POWER8 processor-based systems; a
crucial consideration is Java configuration and tuning. Topology also plays a major role in the
performance of the enterprise application that is being deployed. The architecture of the
application must be considered when you determine the best deployment topology.
Table 10-3 includes links to preferred practices documents, which target each of these major
areas.

Table 10-3 Performance considerations

Consideration Associated website Information provided

Workload partitioning
(WPAR) in AIX V6.1

http://www.ibm.com/develope
rworks/aix/library/au-wpar6
1aix/

Determining when it is useful to
move from LPAR deployment to
WPAR deployment

Troubleshooting and
performance analysis of
different applications in
versioned WPARs

http://www.ibm.com/develope
rworks/aix/library/au-wpars
/

The benefits of moving from old
hardware to the new POWER7
hardware in the form of versioned
WPARs

Document Associated website Information provided

Java Performance on
POWER7 - Best practice

http://www.ibm.com/common/s
si/cgi-bin/ssialias?infotyp
e=SA&subtype=WH&htmlfid=POW
03066USEN

This white paper highlights key
preferred practices for all Java
applications that are running on
Power Systems and
simultaneous multithreading
(SMT) considerations when you
are migrating from POWER5 or
POWER6 processor-based
systems to a POWER7
processor-based system.

Optimizing AIX 7 network
performance: Part 1,
Network overview -
Monitoring the hardware

http://www.ibm.com/develope
rworks/aix/library/au-aix7n
etworkoptimize1/index.html

This three-part white paper
reviews AIX V7.1 networking and
includes suggestions for
achieving the best network
performance.
Chapter 10. IBM WebSphere Application Server 207

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03066USEN
http://www.ibm.com/developerworks/aix/library/au-wpar61aix/
http://www.ibm.com/developerworks/aix/library/au-wpars/
http://www.ibm.com/developerworks/aix/library/au-aix7networkoptimize1/index.html

WebSphere channel framework degradation on POWER7
processor-based systems
Certain applications that run on WebSphere Application Server on POWER7
processor-based systems can experience performance degradation because of
asynchronous I/O (AIO). AIO can be disabled to improve the performance of these
applications. For instructions about how to accomplish this task, see Disabling AIO
(Asynchronous Input/Output) native transport in WebSphere Application Server, found at:

http://www.ibm.com/support/docview.wss?uid=swg21366862

Scalability challenges when moving from a POWER5 or POWER6
processor-based system to a POWER7 or POWER8 processor-based
system
By default, the POWER7 processor runs in SMT4 mode, the POWER8 processor for AIX runs
in SMT4 mode, and the POWER8 processor for Linux runs in SMT8 mode. As such, there are
either four or eight hardware threads (logical CPUs) per core that provide tremendous
concurrency for applications. If the enterprise applications are migrated to POWER7 or
POWER8 processor-based systems from an earlier version of POWER hardware (POWER5
or POWER6 processor-based systems), you might experience scalability issues because the
default SMT mode on POWER8 is SMT8, and on the POWER7 processor is SMT4, but on
POWER5 and POWER6 processor-based systems, the default is SMT and SMT2 mode,
respectively. As some of these applications might not be designed for the massive parallelism
of POWER7 or POWER8 processors, performance and scalability can be improved by using
smaller partitions or processor binding. Processor binding is described in “Processor affinity
benefits for WebSphere applications” on page 207.

Memory affinity benefits for WebSphere applications
In addition to the processor affinity that is described in “Processor affinity benefits for
WebSphere applications” on page 207, applications can benefit from avoiding remote
memory accesses by setting the environment variable MEMORY_AFFINITY to MCM (AIX only; this
does not apply to Linux). This variable allocates application private and shared memory from
processor local memory.

These three tuning techniques (SMT scalability, CPU affinity, and memory affinity) can
improve the performance of WebSphere Application Server on POWER7 and POWER8
processor-based systems. For an example of using the taskset and numactl commands in a
Linux environment, see “Partition sizes and affinity” on page 16 and “Processor affinity
benefits for WebSphere applications” on page 207.

For more information about these topics, see Java Performance on POWER7 - Best practice,
found at the following website:

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW0
3066USEN

Optimizing AIX V7 memory
performance: Part 1,
Memory overview and tuning
memory parameters

http://www.ibm.com/develope
rworks/aix/library/au-aix7m
emoryoptimize1/index.html

Memory optimization is essential
for running WebSphere
Application Server faster on a
POWER7 processor-based
systems.

Optimizing AIX V7
performance: Part 2,
Monitoring logical volumes
and analyzing the results

http://www.ibm.com/develope
rworks/aix/library/au-aix7o
ptimize2/index.html

Optimizing the disk and
troubleshooting the I/O
bottlenecks is crucial for
I/O-intensive applications.
208 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03066USEN
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03066USEN
http://www.ibm.com/developerworks/aix/library/au-aix7memoryoptimize1/index.html
http://www.ibm.com/developerworks/aix/library/au-aix7optimize2/index.html
http://www.ibm.com/support/docview.wss?uid=swg21366862

10.1.4 Performance analysis, problem determination, and diagnostic tests

Resources for addressing issues regarding performance analysis, problem determination,
and diagnostic tests are listed in Table 10-4.

Table 10-4 Performance analysis and problem determination

For more information about addressing performance analysis, see:

� 8.2, “32-bit versus 64-bit Java” on page 174
� 8.3, “Memory and page size considerations” on page 175
� 8.5, “Java garbage collection tuning” on page 183
� 8.6, “Application scaling” on page 186

Document Associated website Information provided

Java Performance Advisor
(JPA)

https://www.ibm.com/develop
erworks/wikis/display/WikiP
type/Java+Performance+Advis
or

The JPA tool provides
suggestions for improving the
performance of Java/WebSphere
Application Server applications
that are running on Power
Systems.

The performance detective:
Where does it hurt?

http://www.ibm.com/develope
rworks/aix/library/au-perfo
rmancedectective/index.html

Describes how to isolate
performance problems.

MustGather: Performance,
hang, or high CPU issues
with WebSphere Application
Server on AIX

http://www.ibm.com/support/
docview.wss?uid=swg21052641

MustGather assists with
collecting the data that is
necessary to diagnose and
resolve issues with hanging or
CPU usage issues.
Chapter 10. IBM WebSphere Application Server 209

https://www.ibm.com/developerworks/wikis/display/WikiPtype/Java+Performance+Advisor
http://www.ibm.com/developerworks/aix/library/au-performancedectective/index.html
http://www.ibm.com/support/docview.wss?uid=swg21052641

210 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Appendix A. Analyzing malloc usage under
IBM AIX

This appendix describes the optimization and tuning of the memory usage of an application
by using the AIX malloc subroutine. It covers the following topics:

� “Introduction” on page 212
� “How to collect malloc usage information” on page 212

A

© Copyright IBM Corp. 2014, 2015. All rights reserved. 211

Introduction

There is a simple methodology on AIX to collect useful information about how an application
uses the C heap. That information can then be used to choose and tune the appropriate
malloc settings. The type of information that typically must be collected is:

� The distribution of malloc allocation sizes that are used by an application, which shows
whether AIX MALLOCOPTIONS, such as pool and buckets, are expected to perform well. This
information can be used to fine-tune bucket sizes.

� The steady state size of the heap, which shows how to size the pool option.

Additional information about thread counts, malloc usage per thread, and so on, can be
useful, but the information that is presented here presents a basic view.

This appendix does not apply to the watson2 allocator (see “Memory allocators” on page 95),
which autonomically adjusts to the memory usage of an application and does not require
specific tuning.

How to collect malloc usage information

To discover the distribution of allocation sizes, set the following environment variable:

export MALLOCOPTIONS=buckets,bucket_statistics:stdout

Run an application. When the application completes, a summary of the malloc activity is
output. Example A-1 shows a sample output from a simple test program.

Example A-1 Output from a simple test program

==================================
Malloc buckets statistical summary
==================================
Configuration values:
 Number of buckets: 16
 Bucket sizing factor: 32
 Blocks per bucket: 1024
Allocation request totals:
 Buckets allocator: 118870654
 Default allocator: 343383
 Total for process: 119214037
Allocation requests by bucket
Bucket Maximum Number of
Number Block Size Allocations
----- ---------- -----------
 0 32 104906782
 1 64 9658271
 2 96 1838903
 3 128 880723
 4 160 300990
 5 192 422310
 6 224 143923
 7 256 126939
 8 288 157459
 9 320 72162
 10 352 87108
212 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

 11 384 56136
 12 416 63137
 13 448 66160
 14 480 45571
 15 512 44080
Allocation requests by heap
 Heap Buckets Default
Number Allocator Allocator
----- ----------- -----------
 0 118870654 343383

This environment variable causes the program to produce a histogram of allocation sizes
when it terminates. The number of allocation requests that are satisfied by the default
allocator indicates the fraction of requests that are too large for the buckets allocator (larger
than 512 bytes, in this example). By modifying some of the malloc buckets configuration
options, you can, for example, obtain more information about larger allocation sizes.

To discover the steady state size of the heap, set the following environment variable:

export MALLOCDEBUG=log

Run an application to a steady state point, attach it by running dbx, and then run malloc.
Example A-2 shows a sample output.

Example A-2 Sample output from the malloc subroutine

(dbx) malloc
The following options are enabled:
 Implementation Algorithm........ Default Allocator (Yorktown)
 Malloc Log
 Stack Depth............. 4
Statistical Report on the Malloc Subsystem:
 Heap 0
 heap lock held by................ pthread ID 0x20023358
 bytes acquired from sbrk()....... 5309664
 bytes in the freespace tree...... 334032
 bytes held by the user........... 4975632
 allocations currently active..... 76102
 allocations since process start.. 20999785
The Process Heap
 Initial process brk value........ 0x20013850
 current process brk value........ 0x214924c0
 sbrk()s called by malloc......... 78

The bytes held by the user value indicates how much heap space is allocated. By stopping
multiple times when you run dbx and then running malloc, you can get a good estimate of the
heap space that is needed by the application.

For more information, see System memory allocation using the malloc subsystem, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.
aix.genprogc/doc/genprogc/sys_mem_alloc.htm
Appendix A. Analyzing malloc usage under IBM AIX 213

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.genprogc/doc/genprogc/sys_mem_alloc.htm

214 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

Appendix B. Performance tools and empirical
performance analysis

This appendix describes the optimization and tuning of the POWER8 processor-based
system from the perspective of performance tools and empirical performance analysis. It
covers the following topics:

� “Introduction” on page 216
� “Performance advisors” on page 216
� “IBM Power Virtualization Performance” on page 223
� “AIX” on page 223
� “Linux” on page 233
� “Java (either AIX or Linux)” on page 239

B

© Copyright IBM Corp. 2014, 2015. All rights reserved. 215

Introduction

This appendix includes a general description about performance advisors, and descriptions
that are specific to the three performance advisors that are referenced in this book:

� AIX
� Linux
� Java (either AIX or Linux)

Performance advisors

IBM developed four new performance advisors that empower users to address their own
performance issues to best use their Power Systems server. These performance advisors can
be run by a broad class of users.

The first three of these advisors are tools that run and analyze the configuration of a system
and the software that is running on it. They also provide advice about the performance
implications of the current configuration and suggestions for improvement. These three
advisors are documented in “Expert system advisors” on page 216.

The fourth advisor is part of the IBM Rational Developer for Power Systems Software. It is a
component of an integrated development environment (IDE), which provides a set of features
for performance tuning of C and C++ applications on AIX and Linux. That advisor is
documented in “IBM Rational Performance Advisor” on page 221.

Expert system advisors

The expert system advisors are three new tools that are developed by IBM. What is unique
about these applications is that they collect and interpret performance data. In one step, they
collect performance metrics, analyze data, and provide a one-page visual report. This report
summarizes the performance health of the environment, and includes instructions for
alleviating detected problems. The performance advisors produce advice that is based on the
expertise of IBM performance analysts, and IBM documented preferred practices. These
expert systems focus on AIX Partition Virtualization, VIOS, and Java performance.
216 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

All of the advisors follow the same reporting format, which is a single page XML file you can
use to assess quickly conditions by visually inspecting the report and looking at the
descriptive icons, as shown in Figure B-1.

Figure B-1 Descriptive icons in expert system advisors (AIX Partition Virtualization, VIOS Advisor, and
Java Performance Advisor)

The XML reports that are generated by all of the advisors are interactive. If a problem is
detected, three pieces of information are shared with the user:

1. What is this?

This section explains why a particular topic was monitored, and provides a definition of the
performance metric or setting.

2. Why is it important?

This report entry explains why the topic is relevant and how it impacts performance.

3. How do I modify it?

Instructions for addressing the problem are listed in this section.

VIOS Performance Advisor
The VIOS Performance Advisor provides guidance about various aspects of VIOS:

� CPU
� Shared processing pool
� Memory
� Fibre Channel performance
� Disk I/O subsystem
� Shared Ethernet adapter

The output is presented on a single page, and copies of the report can be saved, making it
easy to document the settings and performance of VIOS over time. The goal of the advisor is
for you to be able to self-assess the health of your VIOS and act to attain optimal
performance.
Appendix B. Performance tools and empirical performance analysis 217

Figure B-2 shows a window of the VIOS Performance Advisor, focusing on the FC adapter
section of the report, which attempts to guide the user in determining whether any of the FC
ports are being saturated, and, if so, to what extent. An investigate image was displayed next
to the idle FC port to confirm that the idle adapter port is intentional and because of an
administrative configuration design choice.

The VIOS Advisor can be found at the following website:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Sys
tems/page/VIOS%20Advisor

Figure B-2 shows a window from the VIOS Advisor.

Figure B-2 The VIOS Advisor

Virtualization Performance Advisor
The Virtualization Performance Advisor provides guidance for various aspects of a logical
partition (LPAR), both dedicated and shared:

� LPAR physical memory domain allocation
� Physical CPU entitlement and virtual CPU optimization
� SMT effectiveness
� Processor folding effectiveness
� Shared processing pool
� Memory optimization
� Physical Fibre Channel adapter optimization
� Virtual disk I/O optimization (virtual small computer system interface (vSCSI) and N_Port

ID Virtualization (NPIV))

The output is presented in a single window, and copies of the report can be saved, making it
easy for the user to document the settings and performance of their LPAR over time. The goal
of the advisor is for the user to be able to self-assess the health of their LPAR and act to attain
optimal performance.
218 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/Power%20Systems/page/VIOS%20Advisor

Figure B-3 is a snapshot of the LPAR Virtualization Performance Advisor, focusing on the
LPAR optimization section of the report, which applies virtualization preferred practice
guidance to the LPAR configuration, resource usage of the LPAR, and shared processor pool,
and determines whether the LPAR configuration is optimized. If the advisor finds that the
LPAR configuration is not optimal for the workload, it guides the user in determining the best
possible configuration. The LPAR Performance Advisor can be found at the following website:

https://www.ibm.com/developerworks/community/blogs/simplyaix/entry/lpar_performanc
e_advisor?lang=en

Figure B-3 LPAR Virtualization Performance Advisor

Java Performance Advisor
The Java Performance Advisor provides recommendations to improve the performance of a
stand-alone Java or WebSphere Application Server application that is running on an AIX
machine. The guidance that is provided is categorized into four groups:

� Hardware and LPAR-related parameters: Processor sharing, SMT levels, memory, and
so on

� AIX specific tunables: Process RSET, TCP buffers, memory affinity, and so on
Appendix B. Performance tools and empirical performance analysis 219

https://www.ibm.com/developerworks/community/blogs/simplyaix/entry/lpar_performance_advisor?lang=en

� JVM tunables: Heap sizing, garbage collection (GC) policy, page size, and so on

� WebSphere Application Server related settings for a WebSphere Application
Server process

The guidance is based on Java tuning preferred practices. The criteria that are used to
determine the guidance include the relative importance of the Java application, machine
usage (test and production), and the user's expertise level.

Figure B-4 on page 221 is a snapshot of Java and WebSphere Application Server
recommendations from a sample run, indicating the best JVM optimization and WebSphere
Application Server settings for better results, per Java preferred practices. Details about the
metrics can be obtained by expanding each of the metrics. The output of the run is a simple
XML file that can be viewed by using the supplied XSL viewer and any browser. The Java
Performance Advisor (JPA) can be found at the following website:

https://www.ibm.com/developerworks/wikis/display/WikiPtype/Java+Performance+Adviso
r

220 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.ibm.com/developerworks/wikis/display/WikiPtype/Java+Performance+Advisor
https://www.ibm.com/developerworks/wikis/display/WikiPtype/Java+Performance+Advisor

Figure B-4 Java Performance Advisor

IBM Rational Performance Advisor

IBM Rational Developer for AIX and Linux IDE V9.1.1.1 and later includes a component that
is called Rational Performance Advisor, which provides a rich set of features for performance
tuning C and C++ applications on IBM AIX and Linux on Power Systems, including support for
POWER8 processor-based systems and Linux on Power Little Endian. Although not directly
related to the tools that are described in “Expert system advisors” on page 216, Rational
Performance Advisor has the same goal of helping users to best use Power Systems
hardware with tools that offer simple collection, management, and analysis of performance
data.
Appendix B. Performance tools and empirical performance analysis 221

Rational Performance Advisor gathers data from several sources. The raw application
performance data comes from the same expert-level tprof and OProfile CPU profilers that
are described in “AIX” on page 223 and “Linux” on page 233, and other low-level operating
system tools. The debug information that is generated by the compiler allows this data to be
matched back to the original source code. XLC compilers can generate XML report files that
provide information about optimizations that were performed during compilation. Finally, the
application build and runtime systems are analyzed to determine whether there are any
potential environmental problems.

All of this data is automatically gathered, correlated, analyzed, and presented in a way that is
quick to access and easy to understand (Figure B-5).

Figure B-5 Rational Performance Advisor

Key features include:

� Performance Explorer organizes your performance tuning sessions and data.
� System Scorecard reports on your Power Systems build and runtime environments.
� Hotspots Browser shows CPU profiling results for your application and its functions.
� Hotspots Comparison Browser compares runs for regression analysis or fix verification.
� The Performance Source Viewer and Outline view gives precise line-level profiling results.
� Invocations Browser displays dynamic call information from your application
� The Recommendations view offers expert-system guidance.

For more information about Rational Performance Advisor, including a trial download, see
Rational Developer for AIX and Linux C/C++ Edition, found at:

http://www.ibm.com/software/products/en/dev-c-cpp
222 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/software/products/en/dev-c-cpp

IBM Power Virtualization Performance

IBM Power Virtualization Performance (IBM PowerVP™) is a performance monitoring solution
that provides detailed and real-time information about virtualized workloads that are running
on Power Systems. PowerVP is a licensed program that is offered as part of PowerVM
Enterprise Edition, but is also available separately for clients without PowerVM Enterprise
Edition. You can use PowerVP to understand how virtual workloads use resources, to analyze
performance bottlenecks, and to make informed choices about resource allocation and
virtualized machine placement. PowerVP V1.1.2 supports the POWER8 hardware.

The PowerVP tool has the following features:

� Monitors the performance of an entire system (or frame).

� Is supported on AIX, IBM i, Linux, and VIOS operating systems.

� Provides a GUI for monitoring virtualized workloads.

� Includes a system-level monitoring agent that collects data from the PowerVM hypervisor,
which provides a complete view of virtualized machines that are running on the server.

� Displays the data that is collected at the system level, at the hardware node level, and at
the partition level. You can optimize performance by using the PowerVP performance
metrics, which provide information about balancing and improving affinity and application
efficiency.

� Provides an illustration of the Power Systems hardware topology along with resource
usage metrics.

� Provides a mapping between real and virtual processor resources.

� Provides a recording feature for storing performance information with digital video
recorder- (DVR-)like functions, such as play, fast forward, rewind, jump, pause, and stop.
You can find performance bottlenecks by playing back the recorded data at any point in
time.

For more information about PowerVP, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/powersys/v3r1m5/index.j
sp?topic=%2Fp7ecul%2Fp7ecu_intro_powervp.htm

AIX

The section introduces tools and techniques that are used for optimizing software for a
combination of Power Systems and AIX. The intended audience for this section is software
development teams. As such, this section does not address performance topics that are
related to capacity planning, and system-level performance monitoring and tuning.

To download Java for AIX, go to the following website:

http://www.ibm.com/developerworks/java/jdk/aix/

For capacity planning, see the IBM Systems Workload Estimator, found at the following
website:

http://www-912.ibm.com/estimator
Appendix B. Performance tools and empirical performance analysis 223

http://www.ibm.com/developerworks/java/jdk/aix/
http://www-01.ibm.com/support/knowledgecenter/api/redirect/powersys/v3r1m5/index.jsp?topic=%2Fp7ecul%2Fp7ecu_intro_powervp.htm
http://www-912.ibm.com/estimator

For system-level performance monitoring and tuning information for AIX, see Performance
management, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.
aix.prftungd/doc/prftungd/performance_management-kickoff.htm

The bedrock of any empirically based software optimization effort is a suite of repeatable
benchmark tests. To be useful, such tests must be representative of the manner in which
users interact with the software. For many commercial applications, a benchmark test
simulates the actions of multiple users that drive a prescribed mix of application transactions.
Here, the fundamental measure of performance is throughput (the number of transactions
that are run over a period) with an acceptable response time. Other applications are more
batch-oriented, where few jobs are started and the time that is taken to completion is
measured. Whichever benchmark style is used, it must be repeatable. Within some small
tolerance (typically a few percent), running the benchmark several times on the same setup
yields the same result.

Tools and techniques that are employed in software performance analysis focus on
pinpointing aspects of the software that inhibit performance. At a high level, here are the two
most common inhibitors to application performance:

� Areas of code that consume large amounts of CPU resources. This code is caused by
using inefficient algorithms, poor coding practices, or inadequate compiler optimization

� Waiting for locks or external events. Locks are used to serialize execution through critical
sections, that is, sections of code where the need for data consistency requires that only
one software thread run at a time. An example of an external event is the system that is
waiting for a disk I/O to complete. Although the amount of time that an application must
wait for external events might be outside of the control of the application (for example, the
time that is required for a disk I/O depends on the type of storage employed), simply being
aware that the application is having to wait for such an event can open the door to potential
optimizations.

CPU profiling

A CPU profiler is a performance tool that shows in which code CPU resources are being
consumed. tprof is a powerful CPU profiler that encompasses a broad spectrum of
profiling functions:

� It can profile any program, library, or kernel extension that is compiled with C, C++,
Fortran, or Java compilers. It can profile machine code that is created in real time by the
JIT compiler.

� It can attribute time to processes, threads, subroutines (user mode, kernel mode, shared
library, and Java methods), source statements, and even individual machine instructions.

� In most cases, no recompilation of object files is required.

Usage of tprof typically focuses on generating subroutine-level profiles to pinpoint code
hotspots, and to examine the impact of an attempted code optimization. A common way to
run tprof is as follows:

$ tprof -E -skeuz -x sleep 10
224 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftungd/doc/prftungd/performance_management-kickoff.htm

The -E flag instructs tprof to employ the performance monitoring unit (PMU) as the sampling
mechanism to generate the profile. Using the PMU as the sampling mechanism provides a
more accurate profile than the default time-based sampling mechanism, as the PMU
sampling mechanism can accurately sample regions of kernel code where interrupts are
disabled. The s, k, e, and u flags instruct tprof to generate subroutine-level profiles for shared
library, kernel, kernel extension, and user-level activity. The z flag instructs tprof to report
CPU time in the number of ticks (that is, samples) instead of percentages. The -x sleep 10
argument instructs tprof to collect profiling data during the running of the sleep 10
command. This command collects profile data over the entire system (including all running
processes) over a period of 10 seconds.

Excerpts from a tprof report are shown in Example B-1, Example B-2, and Example B-3 on
page 226.

Example B-1 is a breakdown of samples of the processes that are running on the system.
When multiple processes have the same name, they have only one line in this report: the
number of processes with that name is in the “Freq” column. “Total” is the total number of
samples that are accumulated by the process, and “Kernel”, “User”, and “Shared” are the
number of samples that are accumulated by the processes in kernel (including kernel
extensions), user space, and shared libraries. “Other” is a catchall for samples that do not fall
in the other categories. The most common scenario where samples wind up in “Other” is
because of CPU resources that are being consumed by machine code that is generated in
real time by the JIT compiler. The -j flag of tprof can be used to attribute these samples to
Java methods.

Example: B-1 Excerpt from a tprof report - breakdown of samples of processes running on the system

Process Freq Total Kernel User Shared Other
 ======= ==== ===== ====== ==== ====== =====
 wait 4 5810 5810 0 0 0
 ./version1 1 1672 35 1637 0 0
 /usr/bin/tprof 2 15 13 0 2 0
 /etc/syncd 1 2 2 0 0 0
 /usr/bin/sh 2 2 2 0 0 0
 swapper 1 1 1 0 0 0
 /usr/bin/trcstop 1 1 1 0 0 0
 rmcd 1 1 1 0 0 0
 ======= === ===== ====== ==== ====== =====
 Total 13 7504 5865 1637 2 0

Example B-2 is a breakdown of samples of the threads that are running on the system. In
addition to the columns that are described in Example B-1, this report has PID and TID
columns that detail the process IDs and thread IDs.

Example: B-2 Excerpt from a tprof report - breakdown of threads that are running on the system

Process PID TID Total Kernel User Shared Other
 ======= === === ===== ====== ==== ====== =====
 wait 16392 16393 1874 1874 0 0 0
 wait 12294 12295 1873 1873 0 0 0
 wait 20490 20491 1860 1860 0 0 0
 ./version1 245974 606263 1672 35 1637 0 0
 wait 8196 8197 203 203 0 0 0
 /usr/bin/tprof 291002 643291 13 13 0 0 0
 /usr/bin/tprof 274580 610467 2 0 0 2 0
 /etc/syncd 73824 110691 2 2 0 0 0
 /usr/bin/sh 245974 606263 1 1 0 0 0
 /usr/bin/sh 245976 606265 1 1 0 0 0
Appendix B. Performance tools and empirical performance analysis 225

 /usr/bin/trcstop 245976 606263 1 1 0 0 0
 swapper 0 3 1 1 0 0 0
 rmcd 155876 348337 1 1 0 0 0
 ======= === === ===== ====== ==== ====== =====
 Total 7504 5865 1637 2 0

 Total Samples = 7504 Total Elapsed Time = 18.76s

Example B-3 from the report gives the subroutine-level profile for the Version1 program. In
this simple example, all of the time is spent in main().

Example: B-3 Excerpt from a tprof report - subroutine-level profile for the version1 program with all time
spent in main()

Profile: ./version1
 Total Ticks For All Processes (./version1) = 1637
 Subroutine Ticks % Source Address Bytes
 ============= ====== ====== ======= ======= =====

.main 1637 21.82 version1.c 350 536

For more information about using AIX tprof for Java programs, see “Hot method or routine
analysis” on page 241.

The functions of tprof are rich. As such, it cannot be fully described in this guide. For
complete tprof documentation, see tprof Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topi
c=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm

AIX trace-based analysis tools

Trace1 is a powerful utility that is provided by AIX for collecting a time-sequenced log of
operating system events on a Power Systems server. The AIX kernel and kernel extensions
are richly instrumented with trace hooks that, when trace is activated, append trace records
with context-relevant data, to a pinned, kernel-resident trace buffer. These records can be
later read from that buffer and logged to a disk-resident file. Further utilities are provided to
interpret and summarize trace logs and generate human-readable reports. The tprof CPU
profiler is one such utility. Besides tprof, two of the most-commonly used trace-based utilities
are curt2 and splat.3,4

1 trace Daemon, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmd
s/doc/aixcmds5/trace.htm

2 CPU Utilization Reporting Tool (curt), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftools/doc/p
rftools/idprftools_cpu.htm

3 Simple performance lock analysis tool (splat), found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftools/doc/p
rftools/idprftools_splat.htm

4 splat Command, found at:
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmd
s/doc/aixcmds5/splat.htm
226 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/trace.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftools/doc/prftools/idprftools_cpu.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/topic/com.ibm.aix.prftools/doc/prftools/idprftools_splat.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/splat.htm

The curt command takes as its input a trace that is collected by using the AIX trace facility,
and generates a report that breaks down how CPU time is consumed by various
entities, including:

� Processes (grouped by process name)
� Individual processes
� Individual threads
� System calls (either on a system-wide or per-thread basis)
� Interrupts

One of the most useful reports from curt is the System Calls Summary. This report provides a
system-wide summary of the system calls that are run while the trace is collected. For each
system call, the following information is provided:

� Count: The number of times the system call was run during the monitoring interval
� Total Time: Amount of CPU time (in milliseconds) consumed in running the system call
� % sys time: Percentage of overall CPU capacity that is spent in running the system call
� Avg Time: Average CPU time that is consumed for each execution of the system call
� Min Time: Minimum CPU time that is consumed during an execution of the system call
� Max Time: Maximum CPU time that is consumed during an execution of the system call
� SVC: Name and address of the system call

An excerpt from a System Calls Summary report is shown in Example B-4.

Example: B-4 System Calls Summary report (excerpt)

System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 123647 3172.0694 14.60% 0.0257 0.0128 0.9064 kpread(2a2d5e8)
 539 1354.6939 6.24% 2.5133 0.0163 4.1719 listio64(516ea40)
 26496 757.6204 3.49% 0.0286 0.0162 0.0580 _esend(2a29f88)
 26414 447.7029 2.06% 0.0169 0.0082 0.0426 _erecv(2a29e98)

9907 266.1382 1.23% 0.0269 0.0143 0.5350 kpwrite(2a2d588)
 34282 167.8132 0.77% 0.0049 0.0032 0.0204 _thread_wait(2a28778)

As a first step, compare the mix of system calls to the expectation of how the application is
expected to behave. Is the mix aligned with expectations? If not, first confirm that the trace is
collected while the wanted workload runs. If the trace is collected at the correct time and the
mix still differs from expectations, then investigate the application logic. Also, examine the list
of system calls for potential optimizations. For example, if select or poll is used frequently,
consider employing the pollset facility (see 4.3.3, “pollset” on page 98).

As a further breakdown, curt provides a report of the system calls that are run by each
thread. An example report is shown in Example B-5.

Example: B-5 System calls run by each thread

Report for Thread Id: 549305 (hex 861b9) Pid: 323930 (hex 4f15a)
Process Name: proc1

 Total Application Time (ms): 89.010297
 Total System Call Time (ms): 160.465531
 Total Hypervisor Call Time (ms): 18.303531
 Thread System Call Summary

 Count Total Time Avg Time Min Time Max Time SVC (Address)
Appendix B. Performance tools and empirical performance analysis 227

 (msec) (msec) (msec) (msec)
======== =========== ======== ======== ======== ================
 492 157.0663 0.3192 0.0032 0.6596 listio64(516ea40)
 494 3.3656 0.0068 0.0002 0.0163 GetMultipleCompletionStatus(549a6a8)
 12 0.0238 0.0020 0.0017 0.0022 _thread_wait(2a28778)
 6 0.0060 0.0010 0.0007 0.0014 thread_unlock(2a28838)
 4 0.0028 0.0007 0.0005 0.0008 thread_post(2a288f8)

Another useful report that is provided by curt is the Pending System Calls Summary. This
summary shows the list of threads that are in an unfinished system call at the end of the
trace. An example report is given in Example B-6.

Example: B-6 Threads that are in an unfinished system call at the end of the trace

Pending System Calls Summary

Accumulated SVC (Address)Procname (Pid Tid)
Time (msec)
============ ========================= ==========================

0.0082 GetMultipleCompletionStatus(549a6a8) proc1(323930 532813)
0.0089 _nsleep(2a28d30) proc2(270398 545277)
0.0054 _thread_wait(2a28778) proc1(323930 549305)
0.0088 GetMultipleCompletionStatus(549a6a8) proc1(323930 561437)
3.3981 listio64(516ea40) proc1(323930 577917)
0.0130 kpwrite(2a2d588) proc1(323930 794729)

For each thread in an unfinished system call, the following items are provided:

� The accumulated time in the system call
� The name of the system call (followed by the system call address in parentheses)
� The process name, followed by the Process ID and Thread ID in parentheses

This report is useful in determining what system calls are blocking threads from proceeding.
For example, threads appearing in this report with an unfinished recv call are waiting on data
to be received over a socket.

Another useful trace-based tool is splat, which is the Simple Performance Lock Analysis
Tool. The splat tool provides reports about the usage of kernel and application
(pthread-level) locks. At the pthread level, splat can report about the usage of pthread
synchronizers: mutexes, read/write locks, and condition variables. Importantly, splat provides
data about the degree of contention and blocking on these objects, an important
consideration in creating highly scalable and pthread-based applications.

The pthread library instrumentation does not provide names or classes of synchronizers, so
the addresses are the only way that you have to identify them. Under certain conditions, the
instrumentation can capture the return addresses of the function call stack, and these
addresses are used with the output of the gensyms tool to identify the call chains when these
synchronizers are created. The creation and deletion times of the synchronizer can
sometimes be determined as well, along with the ID of the pthread that created them.

An example of a mutex report from splat is shown in Example B-7.

Example: B-7 Mutex report from splat

[pthread MUTEX] ADDRESS: 00000000F0154CD0
Parent Thread: 0000000000000001 creation time: 26.232305
Pid: 18396 Process Name: trcstop
Creation call-chain ==
00000000D268606C .pthread_mutex_lock
228 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

00000000D268EB88 .pthread_once
00000000D01FE588 .__libs_init
00000000D01EB2FCdne_callbacks
00000000D01EB280 ._libc_declare_data_functions
00000000D269F960 ._pth_init_libc
00000000D268A2B4 .pthread_init
00000000D01EAC08 .__modinit
000000001000014C .__start
 | | | Percent Held (26.235284s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
1 | 0.000 0 0 0 |0.000006 0.000006 | 0.00 0.00 0.00 0.00

Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0
Recursion 0 1 0
 Acqui- Miss Spin Wait Busy Percent Held of Total Time
 PThreadID sitions Rate Count Count Count CPU Elapse Spin Wait
 ~~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~ 
         1         1    0.00      0      0      0     0.00     0.00     0.00     0.00 
                  Acqui-  Miss   Spin   Wait   Busy    Percent Held of Total Time 
Function Name    sitions  Rate   Count  Count  Count   CPU   Elapse  Spin   Wait   Return Address   Start Address    
Offset 
^^^^^^^^^^^^^    ^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^
^^^^^^^^ 
.pthread_once        0    0.00    0      0      0     99.99  99.99   0.00   0.00  00000000D268EC98 00000000D2684180 
.pthread_once        1    0.00    0      0      0      0.01   0.01   0.00   0.00  00000000D268EB88 00000000D2684180

In addition to the common header information and the [pthread MUTEX] identifier, this report 
lists the following lock details: 

Parent thread Pthread ID of the parent pthread

Creation time Elapsed time in seconds after the first event recorded in trace (if available)

Deletion time Elapsed time in seconds after the first event recorded in trace (if available)

PID Process identifier

Process Name Name of the process that uses the lock

Call-chain Stack of called methods (if available)

Acquisitions The number of times the lock was acquired in the analysis interval

Miss Rate The percentage of attempts that failed to acquire the lock

Spin Count The number of unsuccessful attempts to acquire the lock

Wait Count The number of times a thread is forced into a suspended wait state while 
waiting for the lock to come available

Busy Count The number of trylock calls that returned busy

Seconds Held This field contains the following subfields:

CPU The total number of processor seconds the lock is 
held by a running thread.

Elapse(d) The total number of elapsed seconds the lock is 
held, whether the thread was running 
or suspended.
Appendix B. Performance tools and empirical performance analysis 229



Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative processor time 
the lock was held by a running thread.

Real Elapsed The percentage of the elapsed real time the lock is 
held by any thread, either running or suspended.

Comb(ined) Spin The percentage of the cumulative processor time 
that running threads spend spinning while it tries to 
acquire this lock.

Real Wait The percentage of elapsed real time that any 
thread was waiting to acquire this lock. If two or 
more threads are waiting simultaneously, this wait 
time is charged only one time. To learn how many 
threads are waiting simultaneously, look at the 
WaitQ Depth statistics.

Depth This field contains the following subfields:

SpinQ The minimum, maximum, and average number of 
threads that are spinning on the lock, whether 
running or suspended, across the analysis interval

WaitQ The minimum, maximum, and average number of 
threads that are waiting on the lock, across the 
analysis interval

Recursion The minimum, maximum, and average recursion 
depth to which each thread held the lock

Finding alignment issues
Improperly aligned code or data can cause performance degradation. By default, the IBM 
compilers and linkers correctly align code and data, including stack and statically allocated 
variables. Incorrect typecasting can result in references to storage that are not correctly 
aligned. There are two types of alignment issues with which to be concerned:

� Alignment issues that are handled by Licensed Internal Code in the POWER7 processor
� Alignment issues that are handled through alignment interrupts.

Examples of alignment issues that are handled by Licensed Internal Code with a performance 
penalty in the POWER7 processor are loads that cross a 128-byte boundary and stores that 
cross a 4 KB page boundary. To give an indication of the penalty for this type of misalignment, 
on a 4 GHz processor, a nine-instruction loop that contains an 8-byte load that crosses a 
128-byte boundary takes double the time of the same loop with the load correctly aligned.

Alignment issues that are handled by Licensed Internal Code can be detected by running 
hpmcount or hpmstat. The hpmcount command is a command-line utility that runs a command 
and collects statistics from the POWER7 PMU while the command runs. To detect alignment 
issues that are handled by Licensed Internal Code, run hpmcount to collect data for group 38. 
An example is provided in Example B-8. 

Example: B-8   Example of the results of the hpmcount command

# hpmcount -g 38 ./unaligned
Group: 38
 Counting mode: user
 Counting duration: 21.048874056 seconds
  PM_LSU_FLUSH_ULD (LRQ unaligned load flushes)               :      4320840034
  PM_LSU_FLUSH_UST (SRQ unaligned store flushes)              :               0
230 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8



  PM_LSU_FLUSH_LRQ (LRQ flushes)                              :       450842085
  PM_LSU_FLUSH_SRQ (SRQ flushes)                              :             149
  PM_RUN_INST_CMPL (Run instructions completed)               :     19327363517
  PM_RUN_CYC (Run cycles)                                     :     84219113069
 Normalization base: time
 Counting mode: user
  Derived metric group: General
  [   ] Run cycles per run instruction                        :           4.358

The hpmstat command is similar to hpmcount, except that it collects performance data on a 
system-wide basis, rather than just for the running of a command.

Generally, scenarios in which the ratio of (LRQ unaligned load flushes + SRQ unaligned store 
flushes) divided by Run instructions completed is greater than 0.5% must be further 
investigated. The tprof command can be used to further pinpoint where in the code the 
unaligned storage references are occurring. To pinpoint unaligned loads, the -E 
PM_MRK_LSU_FLUSH_ULD flag is added to the tprof command line, and to pinpoint unaligned 
stores, the -E PM_MRK_LSU_FLUSH_UST flag is added. When these flags are used, tprof 
generates a profile where unaligned loads and stores are sampled instead of 
time-based sampling.

Examples of alignment issues that cause an alignment interrupt include execution of a lmw or 
lwarx instruction on a non-word-aligned boundary. These issues can be detected by running 
alstat. This command can be run with an interval, which is the number of seconds between 
each report. An example is presented in Example B-9. 

Example: B-9   Alignment issues can be addressed with the alstat command

> alstat 5
  Alignment  Alignment
  SinceBoot      Delta
       2016          0
       2016          0
       2016          0
       2016          0
       2016          0
       2016          0

The key metric in the alstat report is the Alignment Delta. This metric is the number of 
alignment interrupts that occurred during the interval. Nonzero counts in this column merit 
further investigation with tprof. Running tprof with the -E ALIGNMENT flag generates a profile 
that shows where the unaligned references are occurring.

For more information, see alstat Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topi
c=/com.ibm.aix.cmds/doc/aixcmds1/alstat.htm
Appendix B. Performance tools and empirical performance analysis 231

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds1/alstat.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds1/alstat.htm


Finding emulation issues

Over the 20+ year evolution of the POWER instruction set, a few instructions were removed. 
Instead of trapping programs that run these instructions, AIX emulates them in the kernel, 
although with a significant processing impact. Generally, programs that are written in a 
third-generation language (for example, C and C++) and compiled with an up-to-date 
compiler do not contain these emulated instructions. However, older binary files or older 
hand-written assembly language might contain such instructions, and because they are 
silently emulated by AIX, the performance penalty might not be readily apparent.

The emstat command detects the presence of these instructions. Like alstat, it is run with an 
interval, which is the number of seconds between reports. An example is shown in 
Example B-10. 

Example: B-10   The emstat command detects the presence of emulated instructions

> emstat 5
  Emulation  Emulation
  SinceBoot      Delta
          0          0
          0          0
          0          0
          0          0
          0          0

The key metric is the Emulation Delta (the number of instructions that are emulated during 
each interval). Nonzero values merit further investigation. Running tprof with the -E 
EMULATION flag generates a profile that shows where the emulated instructions are.

For more information, see emstat Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topi
c=/com.ibm.aix.cmds/doc/aixcmds2/emstat.htm

hpmstat, hpmcount, and tprof -E

The POWER processor provides a powerful on-chip PMU that can be used to count the 
number of occurrences of performance-critical processor events. A rich set of events is 
countable; examples include level 2 and level 3 d-cache misses, and cache reloads from 
local, remote, and distant memory. Local memory is memory that is attached to the same 
POWER processor chip that the software thread is running on. Remote memory is memory 
that is attached to a different POWER processor that is in the same central electronic complex 
(CEC) (that is, the same node or building block in the case of a multi-CEC system, such as a 
Power 780) on which the software thread is running. Distant memory is memory that is 
attached to a POWER processor that is in a different CEC from the CEC on which the 
software thread is running.

Two commands exist to count PMU events: hpmcount and hpmstat. The hpmcount command is 
a command-line utility that runs a command and collects statistics from the PMU while the 
command runs. The hpmstat command is similar to hpmcount, except that it collects 
performance data on a system-wide basis, rather than just for the execution of a command.
232 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds2/emstat.htm


Further documentation about hpmcount and hpmstat can be found at:

� http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?top
ic=/com.ibm.aix.cmds/doc/aixcmds2/hpmcount.htm 

� http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?top
ic=/com.ibm.aix.cmds/doc/aixcmds2/hpmstat.htm 

In addition to simply counting processor events, the PMU can be configured to sample 
instructions based on processor events. With this capability, profiles can be generated that 
show which parts of an application are experiencing specified processor events. For example, 
you can show which subroutines of an application are generating level 2 or level 3 cache 
misses. The tprof profiler includes these functions through the -E flag, which allows a PMU 
event name to be provided to tprof as the sampled event. The list of PMU events can be 
generated by running pmlist -c -1. Whenever possible, perform profiling by using marked 
events, as profiling that uses marked events is more accurate than profiling that uses 
unmarked events. The marked events begin with the prefix PM_MRK_.

For more information about using the -E flag of tprof, go to the following website:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topi
c=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm

Linux

The section introduces tools and techniques that are used for optimizing software on the 
combination of Power Systems and Linux. The intended audience for this section is software 
development teams. 

To download Java for Linux, go to the following website: 

http://www.ibm.com/developerworks/java/jdk/linux/

Empirical performance analysis by using the IBM Software Development Kit 
for Linux on Power

After you apply the best high-level optimization techniques, a deeper level of analysis might 
be required to gain more performance improvements. You can use the IBM Software 
Development Kit (SDK) for Linux on Power to help you gain these improvements. 

The IBM SDK for Linux on Power is a set of tools that support:

� Hot spot analysis

� Analysis of ported code for missed platform-specific optimization 

� Whole program analysis for coding issues, for example, pipeline hazards, inlining 
opportunities, early exits and hidden path length, devirtualization, and branch 
prediction hints

� Lock contention and IO delay analysis

The IBM SDK for PowerLinux can be found at:

http://www.ibm.com/support/customercare/sas/f/lopdiags/sdklop.html
Appendix B. Performance tools and empirical performance analysis 233

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds2/hpmcount.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds2/hpmcount.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds2/hpmstat.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds2/hpmstat.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm
http://www.ibm.com/developerworks/java/jdk/linux/
http://www.ibm.com/support/customercare/sas/f/lopdiags/sdklop.html


The SDK provides an Eclipse C/C++ IDE with Linux tools integration. The SDK provides 
graphical presentation and source code view integration with Linux execution profiling 
(gprof/OProfile/Perf), malloc and memory usage (valgrind), pthread synchronization 
(helgrind), SystemTap tapsets, and tapset development.

Hotspot analysis
You should profile the application and look for hotspots. When you run the application under 
one or more representative workloads, use a hardware-based profiling tool such as OProfile. 
OProfile can be run directly as a command-line tool or under the IBM SDK for Linux on 
Power.

The OProfile tools can monitor the whole system (LPAR), including all the tasks and the 
kernel. This action requires root authority, but is the preferred way to profile the kernel and 
complex applications with multiple cooperating processes. OProfile is fully enabled to take 
samples by using the full set of the PMU events (run ophelp for a complete list of events). 
OProfile can produce text file reports that are organized by process, program and libraries, 
function symbols, and annotated source file and line number or machine code disassembly.

The IBM SDK for Linux on Power can profile applications that are associated with Eclipse 
projects. The SDK automates the setup and running of the profile, but is restricted to a single 
application, its libraries, and direct kernel calls. The SDK is easier to use, as it is hierarchically 
organized by percentage with program, function symbol, and line number. Clicking the line 
number in the profile pane jumps the source view pane to the matching source file and line 
number. This action simplifies edit, compile, and profile tuning activities.

The whole system profile is a good place to start. You might find that your application is 
consuming most of the CPU cycles, and deeper analysis of the application is the next logical 
step. The IBM SDK for Linux on Power provides a number of helpful tools, including integrated 
application profiling (OProfile and valgrind), Migration Assistant, and the Source 
Code Advisor.

High kernel usage
If the bulk of the CPU cycles is consumed in the kernel or runtime libraries that are not part of 
your application, then a different type of analysis is required. If the kernel is consuming 
significant cycles, then the application might be I/O or lock contention bound. This situation 
can occur when an application moves to larger systems (higher core count) and fails to 
scale up.

I/O bound applications can be constrained by small buffer sizes or a poor choice of an access 
method. One issue to look for is applications that use local loopback sockets for interprocess 
communications (IPC). This situation is common for applications that are migrating from early 
scale-out designs to larger systems (and core-count). The first application change is to 
choose a lighter weight form of IPC for in-system communications.

Note: You might find it useful to use the Linux perf tool in its top mode. This perf top 
works similarly to old top (however, instead of showing processes, it shows hot methods).
234 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8



Excessive locking or poor lock granularity can also result in high kernel usage (in the kernel’s 
spin_lock, futex, and scheduler components) when applications move to larger system 
configurations. This situation might require adjusting the application lock strategy and 
possibly the type of lock mechanism that is used as well:

� POSIX pthread_mutex and pthread_rwlock locks are complex and heavy, and POSIX 
semaphores are simpler and lighter.

� Use trylock forms to spin in user mode for a limited time when appropriate. Use this 
technique when there is normally a finite lock hold time and limited contention for the 
resource. This situation avoids context switch and scheduler impact in the kernel.

� Reserve POSIX pthread_spinlock and sched_yield for applications that have exclusive 
use of the system and with carefully designed thread affinity (assigning specific threads to 
specific cores).

� The compiler provides inline functions (__sync_fetch_and_add, __sync_fetch_and_or, and 
so on) that are better suited for simple atomic updates than POSIX lock and unlock. Use 
thread local storage, where appropriate to avoid locking for thread safe code.

Using the IBM SDK for Linux on Power Trace Analyzer

The IBM SDK for Linux on Power provides tools, including the SystemTap and pthread 
monitor, for tracking I/O and lock usage of a running application. The higher-level Trace 
Analyzer tools can target a specific application for a combined SystemTap syscall trace and 
Lock Trace. The resulting trace information is correlated for time strip display and analysis 
within the tool.

High library usage

If libraries are consuming significant cycles, then you must determine whether the following 
items are true:

� Those libraries are part of your application, provided by a third party, or the Linux 
distribution

� There are alternative libraries that are better optimized

� You can recompile those libraries at a higher optimization

Libraries that are part of your application require the same level of empirical analysis as the 
rest of your application (by using source profiling and the Source Code Advisor (SCA)). When 
you have libraries that are used by, but not part of your application, this implies a number of 
options and strategies:

� Most open source packages in the Linux environment are compiled with optimization level 
-O2 and tend to avoid additional (higher-level GCC) compiler options. This configuration 
might be sufficient for a CISC processor with limited register resources, but not sufficient 
for a RISC-based register-rich processor, such as POWER7 and POWER8 processors.

� A RISC-based, superscalar, out-of-order execution processor chip, such as the POWER8 
processor, requires more aggressive inlining and loop-unrolling to capitalize on the larger 
register set and superscalar design point. Also, automatic vectorization is not enabled at 
this lower (-O2) optimization level, and so the vector registers and ISA feature go unused.
Appendix B. Performance tools and empirical performance analysis 235



� In GCC, you must specify the -O3 optimization level and inform the compiler that you are 
running on a newer processor chip with the Vector ISA extensions. In fact, with GCC, you 
need both -O3 and -mcpu=power7 for the compiler to generate code that capitalizes on the 
new VSX feature of the POWER7 processor. You need both -O3 and -mcpu=power8 for the 
compiler to take advantage of the latest VSX instructions that are implemented on the 
POWER8 processor.

One source of optimized libraries is the IBM Advance Toolchain for Linux on Power. The 
Advance Toolchain provides alternative runtime libraries for all the common POSIX C 
language, Math, and pthread libraries that are highly optimized (-O3 and -mcpu=) for multiple 
Power Systems platforms (including POWER7 and POWER8 processor-based systems). The 
IBM Advance Toolchain runtime RPM provides multiple CPU tuned library instances and 
automatically selects the specific library version that is optimized for the specific POWER5, 
POWER6, POWER7, or POWER8 processor-based system.

If there are specific open source or third-party libraries that are dominating the execution 
profile of your application, you must ask the distribution or library product owner to provide a 
build that uses higher optimization. Alternatively, for open source library packages, you can 
build your own optimized binary version of those packages.

Deeper empirical analysis

If simple recompilation with higher optimization options or even a more capable compiler does 
not provide acceptable performance, then deeper analysis is required. The IBM SDK for Linux 
on Power integrates the following analysis tools: 

� Migration Assistant analysis, non-performing codes, and data types 

� Application-specific hotspot profiling

� SCA analysis for non-performing code idioms and induced execution hazards

The Migration Assistant analyzes the source code directly and does not require a running 
binary application for analysis. Profiling and the SCA do require compiled application binary 
files and an application-specific benchmark or repeatable workload for analysis.

The Migration Assistant
For applications that originate on another platform, the Migration Assistant (MA) can identify 
non-portable code that must be addressed for a successful port to Power Systems. The MA 
uses the Eclipse infrastructure to analyze the following items:

� Data-endian-dependent unions and structures 
� Casts with potential endian issues 
� Non-portable data types 
� Non-portable inline assembly language code 
� Non-portable or arch-dependent compiler built-ins 
� Proprietary or architectural-specific APIs 

Program usage of non-portable data types and inline assembly language can cause poor 
performance on the POWER processor, which always must be investigated and addressed.

For example, the long double data type is supported for both Intel x86 and POWER, but has a 
different size, data range, and implementation. The x86 80-bit Floating Point format is 
implemented in hardware and is faster than (although not compatible with) the AIX long 
double, which is implemented as an algorithm that uses two 64-bit doubles. Neither one is 
fully IEEE-compliant, and both must be avoided in cross-platform application codes and 
libraries.
236 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8



Another example is small Intel specific optimization that uses inline x86 assembly language 
and conditionally providing a generic C implementation for other platforms. In most cases, 
GCC provides an equivalent built-in function that generates the optimal code for each 
platform. Replacing inline assembly language with GCC built-in functions makes the 
application more portable and provides equivalent or better performance on all platforms.

To use the MA tool, complete the following steps:

1. Import your project into the SDK.

2. Select the Project’s Properties. 

3. Select the Linux/x86 to PowerLinux application Migration check box under C/C++ 
General/Code Analysis.

4. Right-click the project name, and select Run Migration Advisor.

Hotspot profiling
IBM SDK for Linux on Power integrates the Linux OProfile hardware event profiling with the 
application source code view. This configuration is a convenient way to do hotspot analysis. 
The integrated Linux Tools profiler focuses on an application that is selected from the current 
SDK project. 

After you run the application, the SDK opens an OProfile tab in a console window. This 
window shows a nested set of twisties, starting with the event (cycles by default), then 
program/library, function, and source line (within function). The developer drills down by 
opening the twisties in the profile window, opening the next level of detail. Items are ordered 
by profile frequency with highest frequency first. Clicking the function or line number entries in 
the profile window causes the source view to jump to the corresponding source file or 
line number.

This process is a convenient way to do hotspot analysis, focusing only on the top three to five 
items at each level in the profile. Examine the source code for algorithmic problems, excess 
conversions, unneeded debug code, and so on, and make the appropriate source 
code changes.

With your application code (or subset) imported in to the SDK, it is easy to edit, compile, and 
profile code changes and verify improvements. As the developer makes code improvements, 
the hotspots in the profile change. Repeat this process until performance is satisfactory or all 
the profile entries at the function level are in the low single digits.

To use the integrated profiler, right-click the project and select Profile As → Profile with 
OProfile. If your project contains multiple applications or the application needs setup or 
inputs to run the specific workload, then create profile configurations as needed.

Detailed analysis with the Source Code Advisor
Hotspot analysis might not find all of the latent performance problems, especially coding style 
and some machine-specific hazards. These problems tend to be diffused across the 
application, and do not show up in hotspot analysis. Common examples of machine hazards 
include address translation, cache misses, and branch miss-predictions.

Complex C++ applications or C programs that use object-based techniques might see 
performance issues that are related to using many small functions of indirect calls. Unless the 
compiler or optimizer can see the whole program or library, it cannot prove that it is safe to 
optimize these cases. However, it is possible for the developer to optimize manually at the 
source level, as the developer knows the original intent or actual usage in context.
Appendix B. Performance tools and empirical performance analysis 237



The SCA can find and recommend solutions for many of these coding style and machine 
hazards. The process generates a journal that associates performance problems (including 
hazards) with specific source file and line numbers.

The SCA window has a drill-down hierarchy similar to the profile window that is described in 
“Hotspot profiling” on page 237. The SCA window is organized as a list of problem categories, 
and then nested twisties, for affected functions and source line numbers within functions. 
Functions and lines are ordered by the percent of overall contribution to execution time. 
Associated with each problem is a plain language description and suggested solution that 
describes a source change or compiler or linker options that are expected to resolve the 
problem. Clicking the line number item jumps the source display to the associated source file 
and line number for editing.

SCA uses the Feedback Directed Program Restructuring (FDPR) tool to instrument your 
application (or library) for code and data flow trace when you run a workload. The resulting 
FDPR journal is used to drive the SCA analysis. Running FDPR and retrieving the journal is 
automated by clicking Profile as → Profile with Source Code Advisor. 

Pipeline stall analysis with the cycles per instruction breakdown tool
The cycles per instruction (CPI) metric is a measure of the average processor clock cycles 
that are needed to complete an instruction. The CPI value is a measure of processor 
performance and, in a modern processor such as the POWER processor, a high value can 
indicate poor performance because of a high ratio of stalls in the execution pipeline. By 
collecting information from the processor’s PMU, those events and derived metrics can be 
mapped to the CPU functional units (for example, branch, load or store, or floating point), 
where they occurred. These events and metrics can be represented in a hierarchical 
breakdown of cycles, called the CPI breakdown model (CBM). For more information about 
CPI metric and pipeline analysis, see Commonly Used Metrics for Performance Analysis, 
found at (registration required):

https://www.power.org/documentation/commonly-used-metrics-for-performance-analysis/

The IBM SDK for Linux on Power delivers with the CPI breakdown tool for automating the 
collection of PMU stall events and for building a CBM representation of application execution. 
After you run the application, the CPI breakdown tool opens a CBM view in the default Eclipse 
perspective. This view shows a breakdown of stall events and metrics, along with their 
contribution percentage and description. A sample is shown in Figure B-6 on page 239. 
238 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

https://www.power.org/documentation/commonly-used-metrics-for-performance-analysis/


Figure B-6   The CPI Breakdown tool perspective

In the CBM view (see Figure B-6), click any of the squares to open the drill-down menu that 
shows a nested set of twisties, including the event, program or library, function, and source 
line, as shown in the lower right of Figure B-6. As you drill down, the items are ordered by 
profile frequency, with highest frequency first. Click a function or line number in the profile 
window to open the source view and jump to the corresponding source file and line number.

Use the CPI Breakdown tool to measure application behavior in the POWER processor and 
for hotspot analysis. The tool assists in finding the CPU functional units with a high ratio of 
stalls and the corresponding chunks of source code that are likely to be the cause of 
performance degradation of your application.

Java (either AIX or Linux)

Focused empirical analysis of Java applications involves gathering specific types of 
performance information, making and assessing changes, and repeating the process. The 
specific areas to consider, the types of performance information to gather, and the tools to 
use, are described in this section.

To download Java for AIX or Linux, go to the following websites: 

� For AIX:http://www.ibm.com/developerworks/java/jdk/aix/
� For Linux:http://www.ibm.com/developerworks/java/jdk/linux/
Appendix B. Performance tools and empirical performance analysis 239

http://www.ibm.com/developerworks/java/jdk/aix/
http://www.ibm.com/developerworks/java/jdk/linux/


32-bit or 64-bit JDK

All other things being equal, a 32-bit JDK has about 5% higher performance than a 64-bit JDK 
that uses -Xcompressedrefs. Without the -Xcompressedrefs options for a 64-bit JDK, a 32-bit 
JDK might have 10% higher performance compared to a 64-bit JDK. Give careful 
consideration to the choice of a 32-bit or 64-bit JVM. It is not a good choice to take an 
application that suffers from excessive object allocation rates and switch to a 64-bit JVM 
simply to allow a larger heap size.

For more information about this topic, see the following sections: 

� “Verbose GC Log” on page 240
� Section 8.2, “32-bit versus 64-bit Java” on page 174. 

Java heap size, and garbage collection policies and parameters

The performance of Java applications is often influenced by the heap size, GC policy, and GC 
parameters. Try different combinations that are guided by appropriate data gathering and 
analysis. Various tools and diagnostic options are available that can provide detailed 
information about the state of the JVM. The information that is provided can be used to guide 
tuning decisions to maximize performance for an application or workload.

Verbose GC Log
The verbose GC log is a keytool to understanding the memory characteristics of a particular 
workload. The information that is provided in the log can be used to guide tuning decisions to 
minimize GC impact and improve overall performance. Logging can be activated with the 
-verbose:gc option and is directed to the command terminal. Logging can be redirected to a 
file with the -Xverbosegclog:<file> option. 

Verbose logs capture many types of GC events, such as regular GC cycles, allocation 
failures, heap expansion and contraction, events that are related to concurrent marking, and 
scavenger collections. Verbose logs also show the approximate length of time many events 
take, the number of bytes processed (if applicable), and other relevant metrics. Information 
relevant to many of the tuning issues for GC can be obtained from the log, such as 
appropriate GC policies, optimal constant heap size, optimal min and max free space factors, 
and growth and shrink sizes. For a detailed description of verbose log output, see Diagnostics 
Guide for IBM SDK and Runtime Environment Java Technology Edition, Version 6, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/javasdk/v6r0/topic/com.
ibm.java.doc.diagnostics.60/homepage/plugin-homepage-java6.html

Garbage collection and memory visualizer
For large, long-running workloads, verbose logs can quickly grow in size, making them 
difficult to work with and to analyze an application's behavior over time. The GC and memory 
visualizer is a tool that can parse verbose GC logs and present them in a visual manner by 
using graphs and other diagrams, allowing trends and totals to be recognized easily and 
quickly. The graphs can be used to determine the minimum and maximum heap usage, 
growth and shrink rates over time, and identify oscillating behaviors. This information can be 
especially helpful when you choose optimal GC parameters. The GC and memory visualizer 
can also compare multiple logs side by side, which can aid in testing various options in 
isolation and determining their effects.
240 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www-01.ibm.com/support/knowledgecenter/api/redirect/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/homepage/plugin-homepage-java6.html


For more information about the GC and memory visualizer, see Java diagnostics, IBM style, 
Part 2: Garbage collection with the IBM Monitoring and Diagnostic Tools for Java – Garbage 
Collection and Memory Visualizer, found at:

http://www.ibm.com/developerworks/java/library/j-ibmtools2

Java Health Center
The Java Health Center is the successor to both the GC and memory visualizer and the Java 
Lock Monitor. It is an all-in-one tool that provides information about GC activity, memory 
usage, and lock contention. The Health Center also functions as a profiler, providing 
sample-based statistics on method execution. The Health Center functions as an agent of the 
JVM being monitored and can provide information throughout the life of a running application.

For more information about the Java Health Center, see Java diagnostics, IBM style, Part 5: 
Optimizing your application with the Health Center, found at:

https://www.ibm.com/developerworks/java/library/j-ibmtools5 

For more information, see 8.5, “Java garbage collection tuning” on page 183.

Hot method or routine analysis

A CPU profile shows a breakdown of the time that is spent in Java methods and JNI or 
system routines. Investigate any hot methods or routines to determine whether the 
concentration of execution time in them is warranted or whether there is poor coding or other 
issues.

Here are some tools and techniques for this analysis:

� AIX tprof profiling. For more information, see tprof Command, found at:

http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?t
opic=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm

� Linux OProfile profiling. For more information about OProfile, see the following 
resources:

– Getting started with OProfile on PowerLinux (resource page), found at: 

http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/in
dex.jsp?topic=%2Fliacf%2Foprofgetstart.htm

– Getting started with OProfile on PowerLinux, found at: 

http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/to
pic/liacf/oprofile_pdf.pdf

– OProfile results with JIT samples, found at: 

http://oprofile.sourceforge.net/doc/getting-jit-reports.html

– Java Performance on POWER7, found at:

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7
ffcf4dfd_4b40_9d82_446ebc23c550/page/Java%20Performance%20on%20POWER7

– OProfile manual, found at:

http://oprofile.sourceforge.net/doc/index.html
Appendix B. Performance tools and empirical performance analysis 241

http://www.ibm.com/developerworks/java/library/j-ibmtools2
https://www.ibm.com/developerworks/java/library/j-ibmtools5
http://www-01.ibm.com/support/knowledgecenter/api/redirect/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds5/tprof.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/index.jsp?topic=%2Fliacf%2Foprofgetstart.htm
http://www-01.ibm.com/support/knowledgecenter/api/redirect/lnxinfo/v3r0m0/topic/liacf/oprofile_pdf.pdf
http://oprofile.sourceforge.net/doc/getting-jit-reports.html
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Java%20Performance%20on%20POWER7
http://oprofile.sourceforge.net/doc/index.html


General information about running the profiler and interpreting the results are in “AIX” on 
page 223 and “Linux” on page 233. For Java profiling, additional Java options are required to 
profile the machine code that is generated for methods by the JIT compiler:

� AIX 32-bit: -agentlib:jpa=instructions=1
� AIX 64-bit: -agentlib:jpa64=instructions=1
� Linux OProfile: -agentlib:jvmti_oprofile

The entire execution of a Java program can be profiled, for example, on AIX by running the 
following command:

tprof -ujeskzl -A -I -E -x java …

However, it is more common to profile Java after a warm-up period so that JIT compilation 
activity has completed. To profile after a warm-up, start Java and wait an appropriate interval 
until a steady-state performance is reached, which is anywhere from a few seconds to a few 
minutes for large applications. Then, start the profiler, for example, on AIX, by running the 
following command:

tprof -ujeskzl -A -I -E -x sleep 60

On Linux, OProfile and perf can be used in a similar fashion; for more information, see “Java 
profiling example”. 

Java profiling example
Example B-11 contains a sample Java program that is profiled on AIX and Linux. This 
program does some meaningless work and is purposely poorly written to illustrate lock 
contention and GC impact in the profile. The program creates three threads, but serializes 
their execution by having them attempt to lock the same object. One thread at a time acquires 
the lock, forcing the other two threads to wait until they can get the lock and run the code that 
is protected by the synchronized statement in the doWork method. While they wait to acquire 
the lock, the threads initially use spin locking, repeatedly checking whether the lock is free. 
After a suitable amount of spinning, the threads block rather than continuing to use CPU 
resources.

Example: B-11   Sample Java program

public class ProfileTest extends Thread {

 static Object o;  /* used for locking to serialize threads */
 static Double A[], B[], C[];
 static int Num=1000;

 public static void main(String[] args) {
 o = new Object();
 new ProfileTest().start();  /* start 3 threads */
 new ProfileTest().start();  /* each thread executes the "run" method */
 new ProfileTest().start();

 }

 public void run() {
 double sum = 0.0;
 for (int i = 0; i < 50000; i++) {

 sum += doWork();  /* repeatedly do some work */
 }
 System.out.println("sum: "+sum);  /* use the results of the work */

 }
242 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8



 public double doWork() {
 double d;
 synchronized (o) {  /* serialize the threads to create lock contention */

 A = new Double [Num];
 B = new Double [Num];
 C = new Double [Num];
 initialize();
 calculate();
 d = C[0].doubleValue();

 }
 return(d);  /* use the calculated values */

 }

 public static void initialize() {
 /* Initialize A and B. */
 for (int i = 0; i < Num; i++) {

 A[i] = new Double(Math.random());  /* use new to create objects */
 B[i] = new Double(Math.random());  /* to force garbage collection */

 }
 }

 public static void calculate() {
 for (int i = 0; i < Num; i++) {

 C[i] = new Double(A[i].doubleValue() * B[i].doubleValue());
 }

 }
 }

 

The program also uses the Double class, creating many short-lived objects by using new. By 
running the program with a small Java heap, GC is frequently required to free the Java heap 
space that is taken by the Double objects that are no longer in use.

Example B-12 shows how this program was run and profiled on AIX. 64-bit Java was used 
with the options -Xms10m and -Xmx10m to specify the size of the Java heap. The profile that is 
generated appears in the java.prof file. 

Example: B-12   Results of running tprof on AIX

# tprof -ujeskzl -A -I -E -x java -Xms10m -Xmx10m -agentlib:jpa64=instructions=1 ProfileTest

 Starting Command java -Xms10m -Xmx10m -agentlib:jpa64=instructions=1 ProfileTest

sum: 12518.481782746869
sum: 12507.63528674597
sum: 12526.320955364286
stopping trace collection.
Sun Oct 30 15:04:21 2011
System: AIX 6.1 Node: el9-90-28 Machine: 00F603F74C00
Generating java.trc
Generating java.syms

Generating java.prof
Appendix B. Performance tools and empirical performance analysis 243



Example B-13 and Example B-14 contain excerpts from the java.prof file that is created on 
AIX. Here are the notable elements of the profile:

� Lock contention impact: The impact of spin locking is shown in Example B-13 as ticks in 
the libj9jit24.so helper routine jitMonitorEntry, in the AIX pthreads library 
libpthreads.a, and in the AIX kernel routine _check_lock. This Java program clearly has 
excessive lock contention with jitMonitorEntry consuming 26.66% of the ticks in the 
profile. jitMonitorEntry and other routines, such as jitMethodMonitorEntry, indicate 
spin locking at the Java language level, and the impact in the pthreads library or 
_check_lock is locking at the system level, which might be associated with Java locks. For 
example, libpthreads.a and _check_lock are active for lock contention that is related to 
malloc on AIX.

Example: B-13   AIX profile excerpt showing kernel and shared library ticks

 Total Ticks For All Processes (KERNEL) = 690

Subroutine  Ticks  %  Source  Address  Bytes
==========  ===== ====== ======  =======  =====
._check_lock  240  5.71 low.s  3420  40

Shared Object  Ticks  %  Address  Bytes
=============  ===== ======  =======  =====
libj9jit24.so  1157  27.51 900000003e81240 5c8878
libj9gc24.so  510  12.13 900000004534200  91d66
/usr/lib/libpthreads.a[shr_xpg5_64.o]  175  4.16 900000000b83200  30aa0

 Profile: libj9jit24.so

 Total Ticks For All Processes (libj9jit24.so) = 1157

Subroutine  Ticks  %  Source  Address  Bytes
==========  ===== ====== ======  =======  =====
.jitMonitorEntry  1121  26.66 nathelp.s  549fc0  cc0

� GC impact: The impact of initializing new objects and of GC is shown in Example B-13 as 
12.13% of ticks in the libj9gc24.so shared object. This high GC impact is related to the 
excessive creation of Double objects in the sample program.

� Java method execution: In Example B-14, the profile shows the time that is spent in the 
ProfileTest class, which is broken down by method. Some methods appear more than 
one time in the breakdown because they are compiled multiple times at increasing 
optimization levels by the JIT compiler. Most of the ticks appear in the final highly 
optimized version of the doWork()D method, into which the initialize()V and 
calculate()V methods are inlined by the JIT compiler. 

Example: B-14   AIX profile excerpt showing Java classes and methods

Total Ticks For All Processes (JAVA) = 1450

Class  Ticks  %
=====  ===== ======
ProfileTest  1401  33.32
java/util/Random  38  0.90
244 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8



java/lang/Float  5  0.12
java/lang/Double  3  0.07
java/lang/Math  3  0.07

 Profile: ProfileTest

 Total Ticks For All Processes (ProfileTest) = 1401

Method  Ticks  %  Source  Address  Bytes
======  ===== ====== ======  =======  =====
doWork()D  1385  32.94 ProfileTest.java  1107283bc  b54
doWork()D  6  0.14 ProfileTest.java  110725148  464
doWork()D  4  0.10 ProfileTest.java  110726e3c  156c
initialize()V  3  0.07 ProfileTest.java  1107262dc  b4c
calculate()V  2  0.05 ProfileTest.java  110724400  144

initialize()V  1  0.02 ProfileTest.java  1107255c4  
d04

Example B-15 contains a shell program that collects a profile on Linux by using OProfile. The 
resulting profile might be similar to the previous example profile on AIX, indicating substantial 
time in spin locking and in GC. Depending on some specifics of the Linux system, however, 
the locking impact can appear in routines in the libj9thr24.so shared object, as compared 
to the AIX spin locking seen in libj9jit24.so.

In some cases, an environment variable setting might be necessary to indicate the location of 
the JVMTI library that is needed for running OProfile with Java:

� Linux 32-bit: LD_LIBRARY_PATH=/usr/lib/oprofile
� Linux 64-bit: LD_LIBRARY_PATH=/usr/lib64/oprofile

Alternatively, you can specify the full path to the JVMTI library on the Java command line, 
such as:

java -agentpath:/usr/lib/oprofile/libjvmti_oprofile.so

Example: B-15   Linux shell to collect a profile by using OProfile

#!/bin/bash

# Note - 
# Oprofile version 0.9.8 (~2010) deprecated the opcontrol interfaces
# in favor of the Linux kernel perf-events interface, available through
# the operf utility.  The opcontrol interface is no longer used.

# Select the performance counter that counts non-idle cycles and
# generate a sample after 500,000 such events.
# this becomes "-e PM_RUN_CYC:500000 "

# Specify the jvmti_oprofile library to allow the perf tools to resolve
# the jitted methods.
# this becomes "-agentlib:jvmti_oprofile"

operf -e PM_RUN_CYC:500000 java -Xms10m -Xmx10m -agentlib:jvmti_oprofile ProfileTest
Appendix B. Performance tools and empirical performance analysis 245



opreport > ProfileTest_summary.log

opreport -l > ProfileTest_long.log

Locking analysis

Locking bottlenecks are fairly common in Java applications. Collect locking information to 
identify any bottlenecks, and then take the appropriate steps to eliminate the problems. A 
common case is when older Java/util classes, such as Hashtable, do not scale well and cause 
a locking bottleneck. An easy solution is to use Java/util/concurrent classes instead, such 
as ConcurrentHashMap.

Locking can be at the Java code level or at the system level. Java Lock Monitor is an easy to 
use tool that identifies locking bottlenecks at the Java language level or in internal JVM 
locking. A profile that is slowing a significant fraction of time in kernel locking routines 
indicates that system level locking that might be related to an underlying Java locking issue. 
Other AIX tools, such as splat, are helpful in diagnosing locking problems at the system level.

Always evaluate locking in the largest required scalability configuration (the largest number 
of cores).

Java Lock Monitor
The Java Lock Monitor (JLM) is a valuable tool to deal with concurrency and synchronization 
in multi-threaded applications. The JLM can provide detailed information, such as how 
contested every monitor in the application is, how often a particular thread acquires a 
particular monitor, and how often a monitor is reacquired by a thread that already owns it. The 
locks that are surveyed by the JLM include both application locks and locks that are used 
internally by the JVM, such as GC locks. These statistics can be used to make decisions 
about GC policies, lock reservation, and so on, to make optimal usage of processing 
resources. For more information about the JLM, see Java diagnostics, IBM style, Part 3: 
Diagnosing synchronization and locking problems with the Lock Analyzer for Java, 
found at: 

http://www.ibm.com/developerworks/library/j-ibmtools3/

Also, see “Hot method or routine analysis” on page 241.

Thread state analysis

Multi-threaded Java applications, especially applications that are running on top of 
WebSphere Application Server, often have many threads that might be blocked or waiting on 
locks, database operations, or file system operations. A powerful analysis technique is to look 
at the state of the threads to diagnose performance issues.

Always evaluate thread state analysis in the largest required scalability configuration (the 
largest number of cores).

IBM Whole-system Analysis of Idle Time
IBM Whole-system Analysis of Idle Time (WAIT) is a lightweight tool to assess various 
performance issues that range from GC to lock contention to file system bottlenecks and 
database bottlenecks, to client delays and authentication server delays, and more, including 
traditional performance issues, such as identifying hot methods. 
246 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8

http://www.ibm.com/developerworks/library/j-ibmtools3/


WAIT was originally developed for Java and Java Platform, Enterprise Edition workloads, but 
a beta version that works with C/C++ native code is also available. The WAIT diagnostic 
capabilities are not limited to traditional Java bottlenecks such as GC problems or hot 
methods. WAIT employs an expert rule system to look at how Java code communicates with 
the wider world to provide a high-level view of system and application bottlenecks. 

WAIT is also agentless (relying on javacores, ps, vmstat, and similar information, all of which 
are subject to availability). For example, WAIT produces a report with whatever subset of data 
can be extracted on a machine. Getting javacores, ps, and vmstat data almost never requires 
a change to command lines, environment variables, and so on. 

The output is viewed in a browser such as Firefox, Chrome, Safari, and Internet Explorer, and 
assuming one has a browser, no additional installation is needed to view the WAIT output. 
Reports are interactive, and clicking different elements reveals more information. Manuals, 
animated demonstrations, and sample reports are also available on the WAIT website.

For more information about WAIT, go to the following website:

http://wait.researchlabs.ibm.com 

This website also has sample input files for WAIT, so users can try out the data analysis and 
visualization aspects without collecting any data.
Appendix B. Performance tools and empirical performance analysis 247

http://wait.researchlabs.ibm.com


248 Performance Optimization and Tuning Techniques for IBM Power Systems Processors Including IBM POWER8



IS
B

N
 0738440922

S
G

24-8171-01

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Perform
ance Optim

ization and Tuning Techniques for IBM
 Pow

er System
s Processors Including IBM

 POW
ER8







ibm.com/redbooks

SG24-8171-01

ISBN 0738440922

Printed in U.S.A.

Back cover

https://www.facebook.com/IBMRedbooks
https://plus.google.com/117986870691663860381/posts
https://www.youtube.com/user/IBMRedbooks
https://twitter.com/IBMRedbooks
https://www.linkedin.com/company/2890543?goback=.fcs_GLHD_ibm+redbooks_false_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2_*2&trk=ncsrch_hits
http://www.weibo.com/ibmredbooks
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp?Open
http://www.redbooks.ibm.com

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	August 2015, Second Edition

	Chapter 1. Optimization and tuning on IBM POWER8 processor-based systems
	1.1 Introduction
	1.2 Outline of this guide
	1.3 Conventions that are used in this guide
	1.4 Background
	1.5 Optimizing performance on POWER8 processor-based systems
	1.5.1 Lightweight tuning and optimization guidelines
	1.5.2 Deployment guidelines
	1.5.3 Deep performance optimization guidelines


	Chapter 2. The IBM POWER8 processor
	2.1 Introduction to the POWER8 processor
	2.2 Using POWER8 features
	2.2.1 Multi-core and multi-thread
	2.2.2 Multipage size support (page sizes (4 KB, 64 KB, 16 MB, and 16 GB))
	2.2.3 Efficient use of cache and memory
	2.2.4 Transactional memory
	2.2.5 Vector Scalar eXtension
	2.2.6 Decimal floating point
	2.2.7 In-core cryptography and integrity enhancements
	2.2.8 On-chip accelerators
	2.2.9 Storage synchronization (sync, lwsync, lwarx, stwcx., and eieio)
	2.2.10 Fixed-point load and store quadword instructions
	2.2.11 Instruction fusion
	2.2.12 Event-based branches (or user-level fast interrupts)
	2.2.13 Power management and system performance
	2.2.14 Coherent Accelerator Processor Interface

	2.3 I/O adapter affinity
	2.4 Related publications

	Chapter 3. The IBM POWER Hypervisor
	3.1 Introduction to PowerVM
	3.2 Power Systems virtualization with PowerVM
	3.2.1 Virtual processors
	3.2.2 Page table sizes for LPARs
	3.2.3 Placing LPAR resources to attain higher memory affinity
	3.2.4 Active memory expansion
	3.2.5 Optimizing resource placement: Dynamic Platform Optimizer
	3.2.6 Partition compatibility mode

	3.3 Introduction to KVM Virtualization
	3.4 Related publications

	Chapter 4. IBM AIX
	4.1 Introduction
	4.2 Using Power Architecture features with AIX
	4.2.1 Multi-core and multi-thread
	4.2.2 Multipage size support on AIX
	4.2.3 Efficient use of cache
	4.2.4 Transactional memory
	4.2.5 Vector Scalar eXtension
	4.2.6 Decimal floating point
	4.2.7 On-chip encryption accelerator

	4.3 AIX operating system-specific optimizations
	4.3.1 Malloc
	4.3.2 Pthread tunables
	4.3.3 pollset
	4.3.4 File system performance benefits
	4.3.5 Direct I/O
	4.3.6 Concurrent I/O
	4.3.7 Asynchronous I/O
	4.3.8 I/O completion ports
	4.3.9 shmat versus mmap
	4.3.10 Large segment tunable aliasing (LSA)
	4.3.11 64-bit versus 32-bit ABIs
	4.3.12 Sleep and wake-up primitives (thread_wait and thread_post)
	4.3.13 Shared versus private loads
	4.3.14 Workload partition shared licensed program installations

	4.4 AIX preferred practices
	4.4.1 AIX preferred practices that are applicable to all Power Systems generations
	4.4.2 AIX preferred practices that are applicable to POWER7 and POWER8 processor-based systems

	4.5 Related publications

	Chapter 5. IBM i
	5.1 Introduction
	5.2 Using Power features with IBM i
	5.2.1 Multi-core and multi-thread
	5.2.2 Multipage size support on IBM i
	5.2.3 Vector Scalar eXtension
	5.2.4 Decimal floating point

	5.3 IBM i operating system-specific optimizations
	5.3.1 IBM i advanced optimization techniques
	5.3.2 Performance management on IBM i

	5.4 Related publications

	Chapter 6. Linux
	6.1 Introduction
	6.2 Using Power features with Linux
	6.2.1 Multi-core and multi-thread
	6.2.2 Multipage size support on Linux
	6.2.3 Efficient use of cache
	6.2.4 Transactional memory
	6.2.5 Vector Scalar eXtension
	6.2.6 Decimal floating point
	6.2.7 Event-based branches

	6.3 Linux operating system-specific optimizations
	6.3.1 GCC, toolchain, and IBM Advance Toolchain
	6.3.2 Tuning and optimizing malloc
	6.3.3 Large TOC -mcmodel=medium optimization
	6.3.4 POWER7 based distro considerations
	6.3.5 Microthreading considerations

	6.4 Little Endian
	6.4.1 Application binary interface

	6.5 Related publications

	Chapter 7. Compilers and optimization tools for C, C++, and Fortran
	7.1 Compiler versions and optimization levels
	7.2 Advanced compiler optimization techniques
	7.2.1 Common prerequisites
	7.2.2 XL compiler family
	7.2.3 GCC compiler family

	7.3 Capitalizing on POWER8 features with the XL and GCC compilers
	7.3.1 In-core cryptography
	7.3.2 Compiler support for Vector Scalar eXtension
	7.3.3 Built-in functions for storage synchronization
	7.3.4 Data Streams Control Register controls
	7.3.5 Transactional memory

	7.4 IBM Feedback Directed Program Restructuring
	7.4.1 Introduction
	7.4.2 Feedback Directed Program Restructuring supported environments
	7.4.3 Acceptable input formats
	7.4.4 General operation
	7.4.5 Instrumentation and profiling
	7.4.6 Optimization

	7.5 Using the Advance Toolchain with IBM XLC and XLF
	7.6 Using GPU accelerators with C/C++
	7.7 Related publications

	Chapter 8. Java
	8.1 Java levels
	8.2 32-bit versus 64-bit Java
	8.2.1 Little Endian support

	8.3 Memory and page size considerations
	8.3.1 Medium and large pages for Java heap and code cache
	8.3.2 Configuring large pages for Java heap and code cache
	8.3.3 Prefetching
	8.3.4 Compressed references
	8.3.5 JIT code cache
	8.3.6 Shared classes

	8.4 Capitalizing on POWER8 features with IBM Java
	8.4.1 In-core Advanced Encryption Standard and Secure Hash Algorithm acceleration and instructions
	8.4.2 Transactional memory
	8.4.3 Runtime instrumentation

	8.5 Java garbage collection tuning
	8.5.1 GC strategy: Optthruput
	8.5.2 GC strategy: Optavgpause
	8.5.3 GC strategy: Gencon
	8.5.4 GC strategy: Balanced
	8.5.5 Optimal heap size

	8.6 Application scaling
	8.6.1 Choosing the correct simultaneous multithreading mode
	8.6.2 Using resource sets
	8.6.3 Java lock reservation
	8.6.4 Java GC threads
	8.6.5 Java concurrent marking

	8.7 Using GPU accelerators with IBM Java
	8.7.1 Automatic GPU compilation
	8.7.2 Accessing the GPU through the CUDA4J application programming interface
	8.7.3 The com.ibm.gpu application programming interface
	8.7.4 NVIDIA Compute Unified Device Architecture: Java Native interface

	8.8 Related publications

	Chapter 9. IBM DB2
	9.1 DB2 and the POWER processor
	9.2 Taking advantage of the POWER processor
	9.2.1 Affinitization
	9.2.2 Page sizes
	9.2.3 Decimal arithmetic
	9.2.4 Using simultaneous multithreading priorities for internal lock implementation
	9.2.5 Single Instruction Multiple Data

	9.3 Capitalizing on the compilers and optimization tools for POWER
	9.3.1 Whole-program analysis and profile-based optimizations
	9.3.2 IBM Feedback Directed Program Restructuring

	9.4 Capitalizing on POWER virtualization
	9.4.1 DB2 virtualization
	9.4.2 DB2 in an AIX workload partition

	9.5 Capitalizing on the AIX system libraries
	9.5.1 Using the thread_post_many API
	9.5.2 File systems

	9.6 Capitalizing on performance tools
	9.6.1 High-level investigation
	9.6.2 Low-level investigation

	9.7 Conclusion
	9.8 Related publications

	Chapter 10. IBM WebSphere Application Server
	10.1 IBM WebSphere
	10.1.1 Installation
	10.1.2 Deployment
	10.1.3 Performance
	10.1.4 Performance analysis, problem determination, and diagnostic tests


	Appendix A. Analyzing malloc usage under IBM AIX
	Introduction
	How to collect malloc usage information

	Appendix B. Performance tools and empirical performance analysis
	Introduction
	Performance advisors
	Expert system advisors
	IBM Rational Performance Advisor

	IBM Power Virtualization Performance
	AIX
	CPU profiling
	AIX trace-based analysis tools
	Finding emulation issues
	hpmstat, hpmcount, and tprof -E

	Linux
	Empirical performance analysis by using the IBM Software Development Kit for Linux on Power
	Using the IBM SDK for Linux on Power Trace Analyzer
	High library usage
	Deeper empirical analysis

	Java (either AIX or Linux)
	32-bit or 64-bit JDK
	Java heap size, and garbage collection policies and parameters
	Hot method or routine analysis
	Locking analysis
	Thread state analysis


	Back cover

