## **Performance Analysis at Scale: The Score-P Tools Infrastructure**

cube

23 May 2016

#### **Frank Winkler**

**On-site contractor for** Vampir, CSMD





#### Disclaimer

It is extremely easy to waste performance!

- Bad MPI (50-90%)
- No node-level parallelism (94%)
- No vectorization (75%)
- Bad memory access pattern (99%)
- In sum: 0.008% of the peak performance (about 2 teraflops of Titan)







## **Disclaimer (2)**

Performance tools will not automatically make your code run faster. They help you understand, what your code does and where to put in work.





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

#### **Performance engineering workflow**





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

#### Agenda

#### Performance Analysis Approaches

- Sampling vs. Instrumentation
- Profiling vs. Tracing

#### Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

- Motivation
- Functionality
- Architecture
- Workflow
- Advanced Features

#### Performance Analysis Tools

- Cube
- Vampir

#### Demo

• Performance Analysis of Jacobi Solver on Titan

#### Conclusions





## Sampling



- Running program is periodically interrupted to take measurement
- Statistical inference of program behavior
  - Not very detailed information on highly volatile metrics
  - Requires long-running applications
- Works with unmodified executables





### Instrumentation



- Measurement code is inserted such that every event of interest is captured directly
  - Can be done in various ways
- Advantage:
  - Much more detailed information
- Disadvantage:
  - Processing of source-code / executable necessary
  - Large relative overheads for small functions



## **Profiling vs. Tracing**

Statistics





#### • Timelines







#### **Terms Used and How They Connect**







#### So what is the right choice?

SO, YOU HAVE DECIDED TO UNDERSTAND WHAT A PROGRAM EXACTLY DOES?





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

#### Agenda



- Sampling vs. Instrumentation
- Profiling vs. Tracing

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

- Motivation
- Functionality
- Architecture
- Workflow
- Advanced Features

Performance Analysis Tools

Cube

• Vampir

Demo

Performance Analysis of Jacobi Solver on Titan

onclusions







## **Score-P: Motivation**

- Several performance tools co-exist
- Separate measurement systems and output formats
- Complementary features and overlapping functionality
- Redundant effort for development and maintenance
- Limited or expensive interoperability
- Complications for user experience, support, training

| Vampir      | Scalasca | TAU        | Periscope   |
|-------------|----------|------------|-------------|
| VampirTrace | EPILOG / | TAU native | Online      |
| OTF         | CUBE     | formats    | measurement |





## **Score-P: Functionality**

- Typical functionality for HPC performance tools
  - Instrumentation (various methods)
  - Sampling (experimental)
- Flexible measurement without re-compilation
  - Basic and advanced profile generation
  - Event trace recording
- Programming paradigms:
  - Multi-process
    - MPI, SHMEM
  - Thread-parallel
    - OpenMP, Pthreads
  - Accelerator-based
    - CUDA, OpenCL, OpenACC (Prototype)

- Hybrid parallelism





#### **Score-P: Architecture**





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



- 0. Perform a reference run and note the run time to be able to refer to it later
- 1. Instrument your application with Score-P



• To see all available options for instrumentation:







• For CMake and autotools based build systems it is recommended to use the scorep-wrapper script instances



• Pass instrumentation and compiler flags at make:









#### 2. Perform a measurement run with profiling enabled

• Example for generating a profile:

```
$ export SCOREP_ENABLE_PROFILING=true #default
$ export SCOREP_ENABLE_TRACING=false #default
$ export SCOREP_EXPERIMENT_DIRECTORY=profile
$ aprun <instrumented binary>
```

• To see all environment variables for the measurement:

```
$ scorep-info config-vars --full
SCOREP_ENABLE_PROFILING
[...]
SCOREP_ENABLE_TRACING
[...]
SCOREP_TOTAL_MEMORY
Description: Total memory in bytes for the measurement system
[...]
SCOREP_EXPERIMENT_DIRECTORY
Description: Name of the experiment directory
[...]
```





#### 3. Compare profile runtime with reference runtime

- If overhead is too high:
  - Exclude short frequently called functions from measurement using hints from scorep-score







- 4. Create an optimized profile with filter applied if measurement overhead of full instrumented profile is too high
  - Create a filter file and list functions to be excluded

```
$ vim scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
matmul_sub
matvec_sub
binvcrhs
SCOREP_REGION_NAMES_END
```

• Example for generating a profile with filter applied:

```
$ export SCOREP_ENABLE_PROFILING=true
$ export SCOREP_ENABLE_TRACING=false
$ export SCOREP_FILTERING_FILE=scorep.filt
$ export SCOREP_EXPERIMENT_DIRECTORY=profile_with_filter
$ aprun <instrumented binary>
```





#### 5. Perform analysis on (optimized) profile data

• Flat profile analysis with cube\_stat:

| <pre>\$ cube_stat -t 3 -p profile_with_filter/profile.cubex</pre> |               |               |               |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------|---------------|---------------|--|--|--|--|--|--|--|
| cube::Region                                                      | NumberOfCalls | ExclusiveTime | InclusiveTime |  |  |  |  |  |  |  |
| !\$omp do @z_solve.f:52                                           | 51456.000000  | 131.579771    | 131.579771    |  |  |  |  |  |  |  |
| !\$omp do @y_solve.f:52                                           | 51456.000000  | 122.818761    | 122.818761    |  |  |  |  |  |  |  |
| !\$omp do @x_solve.f:54                                           | 51456.000000  | 117.027571    | 117.027571    |  |  |  |  |  |  |  |

• Call-path profile analysis with Cube:

\$ cube profile\_with\_filter/profile.cubex





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



6. Define an appropriate filter for a tracing run

- Exclude functions from measurement which require a large trace buffer to reduce total trace size
- Use scorep-score with full instrumented profile



• Test the effect of your filter on the trace file

\$ scorep-score -f scorep.filt profile.cubex







# 5. Perform a measurement run with tracing enabled and the filter applied

- \$ export SCOREP\_ENABLE\_PROFILING=false
- \$ export SCOREP\_ENABLE\_TRACING=true
- \$ export SCOREP\_EXPERIMENT\_DIRECTORY=trace
- \$ export SCOREP\_FILTERING\_FILE=scorep.filt
- \$ aprun <instrumented binary>

#### 6. Perform analysis on the trace data with Vampir



#### \$ vampir trace/traces.otf2

#### **Score-P: Workflow Summary**







## **Score-P Advanced Features: Sampling**

- Alternative to compiler instrumentation to generate profiles or traces
- Regulate the trade-off between overhead and correctness
- Libunwind/1.1 to capture current stack
- Sampling interrupt sources:
  - Interval timer, PAPI, Perf
- Example for enabling sampling for measurement run:

\$ export SCOREP\_ENABLE\_UNWINDING=true
 \$ export SCOREP\_SAMPLING\_EVENTS=PAPI\_TOT\_CYC@1000000

- Combination of instrumented and sampled events (not for compiler instrumented events)
- Calling context information for every event





## **Score-P Advanced Features: Memory Rec.**

- Memory (de)allocations are recorded via the libc/C++ API
- Recording of memory location's call-site in sampling mode
  - Debugging symbols required (-g)
- Interplay of memory usage and application's execution
  - CUBE: (De)allocation size, maximum heap memory, leaked bytes
  - Vampir: Memory usage in "Counter Timelines"
- Enabling memory recording for measurement run:

\$ export SCOREP\_MEMORY\_RECORDING=true





#### Agenda



- Sampling vs. Instrumentation
- Profiling vs. Tracing

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

- Motivation
- Functionality
- Architecture
- Workflow
- Advanced Features

#### Performance Analysis Tools

Cube

• Vampir

#### Demo

Performance Analysis of Jacobi Solver on Titan

onclusions





#### Cube

- Profile analysis tool for displaying performance data of parallel programs
- Originally developed as part of Scalasca toolset
- Available as a separate component of Score-P
- Representation of values (severity matrix) on three hierarchical axes
  - Performance property (metric)
  - Call-tree path (program location)
  - System location (process/thread)
- Three coupled tree browsers









#### **Cube: Analysis Presentation**



## Vampir



- Event trace analysis tool for displaying performance data of complex parallel programs
- Show dynamic run-time behavior graphically at a fine level of detail
- Provide summaries (profiles) on performance metrics

#### **Timeline charts**

• Show application activities and communication along a time axis



#### **Summary charts**

• Provide quantitative results for the currently selected time interval







## **Vampir: Performance Charts Overview**

#### **Timeline Charts**



Master Timeline



- Summary Timeline
- Performance Radar



- Process Timeline
- Counter Data Timeline

- all threads' activities over time per thread
- all threads activities over time per activity
- all threads' perf-metric over time
- single thread's activities over time
  - single threads perf-metric over time

#### **Summary Charts**



**Function Summary** 

Message Summary



Process Summary



Communication Matrix View





#### • Trace visualization of FDS (Fire Dynamics Simulator)











Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler





#### **Summary Timeline**





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



#### Process Timeline





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler





**Counter Timeline** 















Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler





#### **Vampir: Where Do the Metrics Come From?**

#### • Custom Metrics Built-In Editor

| Active   Image: Custom Metrics   Image: Custom Metrics  <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active   Image: Constraint of the state o |
| Image: Time Spent in MPI_     MPI_Wait       Inclusive     Image: Time Spent in MPI_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





#### Function Summary









#### 🚦 Process Summary









#### **Communication Matrix View**





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

## Vampir at Scale: FDS with 8192 cores

• Fit to chart height feature in Master Timeline

| 000                                          | ♥ Trace View - Chester:/lustre/atlas/proj-shared/stf010/w | inklerf/MPI_SCALE/reference_8 | 3192_8_procs_trace_filter/trace/trace | s.otf2 – Vampir 👷                   |
|----------------------------------------------|-----------------------------------------------------------|-------------------------------|---------------------------------------|-------------------------------------|
| i 🗮 📷 🔛 🐻                                    | 🌔 😒 😹 👪 差 🖏 🕼 🖍 😜                                         | )s                            | 964.104 s                             | 964 s                               |
| 00                                           | Timeline                                                  | 0 c 700 c 800 c               |                                       | Function Summary                    |
| U.S.                                         |                                                           |                               |                                       |                                     |
| Master thread:1                              |                                                           |                               | 2,000,000 3                           | MPL Barrier                         |
| Master thread:364                            |                                                           |                               | 2 300 760 65                          | 4 s MAIN                            |
| Master thread:480 -<br>Master thread:664 -   |                                                           |                               | 1.997.224                             | .331 s divg.divergence part 1       |
| Master thread:864                            |                                                           |                               | 464,25                                | 8.627 s pres.pressure solver        |
| Master thread:1004 -<br>Master thread:1306 - |                                                           |                               | 258,                                  | 161.183 s MPI_Allreduce             |
| Master thread:1506                           |                                                           |                               | 98                                    | 8,383.802 s MPI_Waitall             |
| Master thread:1769 -<br>Master thread:2000 - |                                                           |                               | 7                                     | 7,675.037 s MPI_File_write_at       |
| Master thread:2138                           |                                                           |                               | 5                                     | 1,696.982 s MPI_Gatherv             |
| Master thread:2320 -<br>Master thread:2500 - |                                                           |                               | 4                                     | 8,432.479 s MPI_Allgatherv          |
| Master thread:2643                           |                                                           |                               | 4                                     | 1,030.476 s MPI_Init_thread         |
| Master thread:2909                           |                                                           |                               |                                       | 2,106,409 s divg.divergence_part_2_ |
| Master thread:3522                           |                                                           |                               |                                       | 1,076,264 c MPL Startall            |
| Master thread:3967                           |                                                           |                               |                                       | 1,970.204 3 MIT_Startan             |
| Master thread:4210                           |                                                           |                               |                                       | Context View                        |
| Master thread:4601                           |                                                           |                               |                                       | × Trace Info 🗾 🔺 🕂                  |
| Master thread:4746                           |                                                           |                               | Property                              | Value                               |
| Master thread:5005                           |                                                           |                               | File                                  | Chester:/lustre/atlas/              |
| Master thread:5410                           |                                                           |                               | Creator                               | Score-P 2.0-trunk                   |
| Master thread:5661<br>Master thread:5799     | Overview of the                                           |                               | Version                               | 2.0                                 |
| Master thread:5975                           | entire application run                                    |                               | Number of Proces                      | sses 8,192                          |
| Master thread:6400                           | entile application run                                    |                               | Timer Resolution                      | 454.540618 ps                       |
| Master thread:6608 -<br>Master thread:6798 - | across all processes                                      |                               |                                       |                                     |
| Master thread:7003                           |                                                           |                               |                                       | Function Legend                     |
| Master thread:/153 -<br>Master thread:7332 - | based on available                                        |                               | MPI                                   |                                     |
| Master thread:7484                           | nixels on screen                                          |                               | Pressure                              |                                     |
| Master thread:7727 -<br>Master thread:7897 - |                                                           |                               |                                       |                                     |
| Master thread:8132                           |                                                           |                               | Monitor                               |                                     |
|                                              |                                                           |                               |                                       |                                     |





• 5831 processes: 343xMPI with 8xOpenMP and 8xCUDA



Connected: Chester



Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



Group threads and CUDA streams





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

31



#### Collapse all MPI processes





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



• Fit to chart height for all collapsed MPI processes

| $\odot$ $\bigcirc$ $\bigcirc$ $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |      |       |        |               |               | V Tr          | race View – C | hester:/lus   | tre/atlas/pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oj-shared/s                                 | tf010/winkl                                       | erf/LSMS/T                          | race_343xr    | mpi_8xomp           | _1xgpu/tra      | ces.otf2 – \  | ampir                               |               |                                                                             | r i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-------|--------|---------------|---------------|---------------|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------------------|---------------|---------------------|-----------------|---------------|-------------------------------------|---------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i 🗮 🗟 📓 👪                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6  | 6 🔄  | 88 👪  | 差 🔄    | 1             | 1             | Os            |               |               | Liberal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dan kanalan dan ka<br>Kabupatén kanalan kan | an a darlad a practice<br>An la distance a darlad | eenen aaroon ma<br>Vederdadaalaalaa |               | منار ار او او او او | 977.7           | 67 s          | يىرىيى بىرىيى<br>1. 1. يا يەلىرا يا | al de la      | ninian managementa a santa<br>minana da | n mar ann de an ann an Araban a<br>An Araban an Araban a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0s | 50 s | 100 s | 150 s  | 20 <u>0</u> s | 25 <u>0</u> s | 30 <u>0</u> s | 350 s         | 40 <u>0</u> s | 450 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 <u>0</u> s                               | 55 <u>0</u> s                                     | 600 s                               | 65 <u>0</u> s | 70 <u>0</u> s       | 750 s           | 80 <u>0</u> s | 85 <u>0</u> s                       | 90 <u>0</u> s | 950 s                                                                       | All Processes, Accumulated Exclusive Time per F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Master thread:0<br>Master thread:0<br>Master thread:0<br>Master thread:15<br>Master thread:15<br>Master thread:25<br>Master thread:30<br>Master thread:30<br>Master thread:30<br>Master thread:40<br>Master thread:50<br>Master thread:50<br>Master thread:60<br>Master thread:60<br>Master thread:60<br>Master thread:60<br>Master thread:90<br>Master thread:100<br>Master thread:100<br>Master thread:100<br>Master thread:100<br>Master thread:100<br>Master thread:115<br>Master thread:100<br>Master thread:115<br>Master thread:120<br>Master thread:120<br>Master thread:135<br>Master thread:120<br>Master thread:135<br>Master thread:145<br>Master thread:145<br>Master thread:145<br>Master thread:150<br>Master thread:160<br>Master thread:160<br>Master thread:160<br>Master thread:160<br>Master thread:160<br>Master thread:160<br>Master thread:160<br>Master thread:160<br>Master thread:250<br>Master thread:200<br>Master thread: | 05 | 50 S | 100 s | ∠ 50 s | 200 s         | 20 s          | 0s            | 350 s         | 400 s         | Implies and the second se | 500 s                                       | 550 s                                             | 600 s                               | 650 s         | 700 s               | 977.17<br>750 s | 800 s         | 850 s                               | 900 s         | 950 s                                                                       | Function Summary         Processes, Accumulated Exclusive Time per F<br>Os           All Processes, Accumulated Exclusive Time per F<br>Os         S           1.567,480.515 s         cuEventSynchronize           244,366.217 s         void zblock_lut*, int*, int*)           222,039.009 s         zgemm_sm35x8x64x8x16           141,139.875 s         Isomp impliciation.cpp:469           122,371.407 s         cnewint           106,307.5 s         Tomp impliciation.cpp:251           12,792.68 s         Isomp impliciation.cpp:251           12,792.68 s         int buildLIZ(IZInfoTypes.8)           10,987.346 s         .228femiPlu0_54_S0_S0_i           9,081.354 s         MPL_Allreduce           8,702.104 s         cuEventRecord           7,270.66 s         MPL_Recv           5,309.138 s         cuMemcpyHtoDAsync_v2           4,514.468 s         newint           3,662.155 s         madsum           3,437.672 s         int zz.zi           2,510.595 s         ISomp implicitrices.cpp:37           2,415.126 s         .217cudaMeme2EvPT_51_i           1,138.65 s         semrel           1,138.5 s         semrel           2,720.665 s         .217cudaMeme2EvPT_51_i           1,138.6 s |
| Master thread:280<br>Master thread:285<br>Master thread:290<br>Master thread:295<br>Master thread:300<br>Master thread:305<br>Master thread:310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |      |       |        |               |               |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                   |                                     |               |                     |                 |               |                                     |               |                                                                             | Application<br>CUDA_API<br>MPI<br>CUDA_FLUSH<br>CUDA_SYNC<br>OMP_LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Master thread:315<br>Master thread:320<br>Master thread:325<br>Master thread:330<br>Master thread:335<br>Master thread:340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |      |       |        |               |               |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                                                   |                                     |               |                     |                 |               | n sisi<br>Vali<br>Philip            |               |                                                                             | OMP_SYNC<br>OMP_PARALLEL<br>OMP_API<br>CUDA_KERNEL<br>Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |





#### Agenda



- Sampling vs. Instrumentation
- Profiling vs. Tracing

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

- Motivation
- Functionality
- Architecture
- Workflow
- Advanced Features

**Performance Analysis Tools** 

- Cube
- Vampir

#### Demo

• Performance Analysis of Jacobi Solver on Titan

onclusions





## **Demo: Jacobi Solver**

- Jacobi Example
  - Iterative solver for system of equations

 $U_{old} = U$ 

 $u_{i,j} = bu_{old,i,j} + a_x(u_{old,i-1,j} + u_{old,i+1,j}) + a_y(u_{old,i,j-1} + u_{old,i,j+1}) - rHs / b$ 

 Code uses OpenMP, CUDA and MPI for parallelization





- Domain decomposition
  - Halo exchange at boundaries:
    - Via MPI between processes
    - Via CUDA between hosts and accelerators







#### **Demo: Jacobi Solver / Setup**

#### • Connect to Titan via X forwarding and copy sources

```
$ cd $MEMBERWORK/[projid]
```

```
$ cp /sw/sources/vampir/tutorial/jacobi.tar.gz .
```

```
$ tar xzvf jacobi.tar.gz
```

```
$ cd jacobi
```

Change programming environment and load modules

```
$ module swap PrgEnv-{pgi,gnu}
```

```
$ module load cudatoolkit
```

```
$ module load scorep
```

#### Compile benchmark and submit job

```
$ make
$ qsub -A [projid] run.pbs
$ less jacobi.o[JOB_ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
2 processes and 16 threads + one Tesla K20X for each process.
614 of 2049 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.
0, 0.489197
100, 0.002397
[...]
total: 8.425432 s
```





## **Demo: Jacobi Solver / Profiling**

#### Build instrumented executable

```
$ make clean
$ make scorep
scorep --cuda cc ... -o bin/jacobi_mpi+openmp+cuda
```

#### Submit job for profiling run







## **Demo: Jacobi Solver / Profile Analysis**

• Perform flat profile analysis with cube\_stat

| <pre>\$ cd bin.scorep</pre>                  |                 |                 |               |
|----------------------------------------------|-----------------|-----------------|---------------|
| <pre>\$ cube_stat -t 10 -p jacobi_mpi+</pre> | openmp+cuda_pro | ofile/profile.c | cubex         |
| cube::Region                                 | NumberOfCalls   | ExclusiveTime   | InclusiveTime |
| !\$omp for @jacobi_cuda.c:188                | 32000.000000    | 131.797289      | 131.797289    |
| !\$omp implicit barrier                      | 32000.000000    | 104.298683      | 104.298683    |
| !\$omp for @jacobi_cuda.c:258                | 32000.000000    | 42.999056       | 50.568642     |
| []                                           |                 |                 |               |

• Perform call-path profile analysis with Cube

\$ cube jacobi\_mpi+openmp+cuda\_profile/profile.cubex



## **Demo: Jacobi Solver / Scoring**

• Do we need a filter? (Overhead and memory footprint)

| <pre>\$ scorep-score jacobi_mpi+openmp+cuda_profile/profile.cubex Estimated aggregate size of event trace: 10MB</pre> | No filtering required. |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|
| Estimated requirements for largest trace buffer (max buf): 5MB                                                        |                        |  |  |  |  |  |  |  |  |  |
| Estimated memory requirements (SCOREP_TOTAL_MEMORY): 41MB                                                             |                        |  |  |  |  |  |  |  |  |  |
| (hint: When tracing set SCOREP_TOTAL_MEMORY=41MB to avoid inter                                                       | mediate                |  |  |  |  |  |  |  |  |  |
| flushes or reduce requirements using USR regions filters.)                                                            |                        |  |  |  |  |  |  |  |  |  |
|                                                                                                                       |                        |  |  |  |  |  |  |  |  |  |
| <pre>flt type max_buf[B] visits time[s] time[%] time/visit[us]</pre>                                                  | region                 |  |  |  |  |  |  |  |  |  |
| ALL 4,924,060 310,504 308.53 100.0 993.63                                                                             | ALL                    |  |  |  |  |  |  |  |  |  |
| OMP 4,135,850 256,417 287.31 93.1 1120.46                                                                             | OMP                    |  |  |  |  |  |  |  |  |  |
| CUDA 494,338 38,025 10.40 3.4 273.53                                                                                  | CUDA                   |  |  |  |  |  |  |  |  |  |
| COM 156,260 12,020 10.46 3.4 870.58                                                                                   | COM                    |  |  |  |  |  |  |  |  |  |
| MPI 137,222 4,012 0.30 0.1 73.96                                                                                      | MPI                    |  |  |  |  |  |  |  |  |  |
| MEMORY 260 20 0.06 0.0 2972.15                                                                                        | MEMORY                 |  |  |  |  |  |  |  |  |  |
| USR 130 10 0.00 0.0 10.26                                                                                             | USR                    |  |  |  |  |  |  |  |  |  |
|                                                                                                                       |                        |  |  |  |  |  |  |  |  |  |





## **Demo: Jacobi Solver / Tracing**

• Submit job for tracing run

```
$ cd ...
$ less run trace.pbs
[...]
export SCOREP ENABLE PROFILING=false
export SCOREP ENABLE TRACING=true
export SCOREP EXPERIMENT DIRECTORY=jacobi mpi+openmp+cuda trace
export SCOREP CUDA ENABLE=yes
export SCOREP TIMER=clock gettime
export SCOREP MEMORY RECORDING=yes
export SCOREP TOTAL MEMORY=50MB
[...]
aprun -n 2 -d 16 -N 1 ./jacobi mpi+openmp+cuda 8192 8192 0.15
$ qsub -A [projid] run trace.pbs
$ less jacobi.o[JOB ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
2 processes and 16 threads + one Tesla K20X for each process.
614 of 2049 local rows are calculated on the CPU to balance the load
between the CPU and the GPU.
   0, 0.489197
 100, 0.002397
 [...]
 900, 0.000269
total: 9.895828 s
```





## **Demo: Jacobi Solver / Trace Analysis**

• Perform analysis on the trace data with Vampir





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



#### Agenda

Performance Analysis Approaches

- Sampling vs. Instrumentation
- Profiling vs. Tracing

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

- Motivation
- Functionality
- Architecture
- Workflow
- Advanced Features

Performance Analysis Tools

- Cube
- Vampir

Demo

Performance Analysis of Jacobi Solver on Titan

#### Conclusions



Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



#### Conclusions

#### Score-P

- Common instrumentation and measurement infrastructure for various analysis tools
- Hides away complicated details
- Provides many options and switches for experts

#### **General Workflow**

- Instrument your application with Score-P
- Perform a measurement run with profiling enabled
- Perform profile analysis with Cube
- Use scorep-score to define an appropriate filter
- Perform a measurement run with **tracing enabled** and the filter applied
- Perform in-depth analysis on the trace data with Vampir







If you have any questions or need help, please don't hesitate to contact me under winklerf@ornl.gov.

Detailed information under:

http://www.vi-hps.org/projects/score-p or

https://www.olcf.ornl.gov/support/software/



Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



## **Score-P Advanced Features: Metrics**

#### • Available PAPI metrics

 Preset events: common set of events deemed relevant and useful for application performance tuning

\$ papi\_avail

Native events: set of all events that are available on the CPU (platform dependent)

\$ papi\_native\_avail

• Available resource usage metrics

```
$ man getrusage
[... Output ...]
struct rusage {
   struct timeval ru_utime; /* user CPU time used */
   struct timeval ru_stime; /* system CPU time used */
   [... More output ...]
```





## **Score-P Advanced Features: Metrics (2)**

• Recording hardware counters via PAPI

\$ export SCOREP\_METRIC\_PAPI=PAPI\_TOT\_INS,PAPI\_FP\_INS

• Recording operating system resource usage

\$ export SCOREP\_METRIC\_RUSAGE=ru\_maxrss,ru\_stime





## Vampir: Visualization Modes (1)

• Directly on front end or local machine

\$ vampir





Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler



## Vampir: Visualization Modes (2)

• On local machine with remote VampirServer



Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

#### • Indentification of program phases

| 000                 | V Trace Vie | w – Cheste | :/lustre/ | atlas/proj-sh | ared/stf010 | /winklerf/ | MPI_SCALE | /reference | _8192_8_procs | _trace_filter/trace/traces.otf2 - Vampir | E A                     |
|---------------------|-------------|------------|-----------|---------------|-------------|------------|-----------|------------|---------------|------------------------------------------|-------------------------|
| 🚟 🗟 🍇 👪             | i 🗧 🔁       |            | ا 🟄       | ā 🐌           | 1           | Os         |           |            |               | 964.104 s                                | 964 s                   |
| 05                  | 100 c       | 200 c      | 300 c     | Timeline      | 500 c       | 600 s      | 700 c     | 800 c      | 000 c         | Function Sum                             | mary                    |
| 0,3                 | 100 5       | 2003       | 30,0 3    | 400 5         | 50,0 5      | 000 5      | 700 3     | 00,0 5     | 500 5         | 2 000 000 c                              | sive time per runction  |
| Master thread:1     |             |            |           |               |             |            |           |            |               | 2,000,000 s 0s                           |                         |
| Master thread:207   |             |            |           |               |             |            |           |            |               | 2,537,706.44 s                           | API_Barrier             |
| Master thread:480   |             |            |           |               |             |            |           |            |               | 2,300,760.654 s                          | MAIN                    |
| Master thread:664   |             |            |           |               |             |            |           |            |               | 1,997,224.331 s                          | livg.divergence_part_1_ |
| Master thread:864   |             |            |           |               |             |            |           |            |               | 464.258.627 s                            | pres.pressure solver    |
| Master thread:1004  |             |            |           |               |             |            |           |            |               | 258,161,183 5                            |                         |
| Master thread:1506  |             |            |           |               |             |            |           |            |               | 98 383 802 c                             | MPL Waitall             |
| Master thread:1769  |             |            |           |               |             |            |           |            |               | 77 675 027 -                             | ADI File unite et       |
| Master thread:2000  |             |            |           |               |             |            |           |            |               | 77,075.037 S                             | API_FILe_write_at       |
| Master thread:2138  |             |            |           |               |             |            |           |            |               | 51,696.982 s                             | MPI_Gatherv             |
| Master thread:2500  |             |            |           |               |             |            |           |            |               | 48,432.479 s                             | 4PI_Allgatherv          |
| Master thread:2643  |             |            |           |               |             |            |           |            |               | 41,030.476 s                             | MPI_Init_thread         |
| Master thread:2909  |             |            |           |               |             |            |           |            |               | 14,804.909 s                             | livg.divergence_part_2_ |
| Master thread:3222  |             |            |           |               |             |            |           |            |               | 2,196.408 s                              | MPI_File_open           |
| Master thread:3678  |             |            |           |               |             |            |           |            |               | 1.976.264 s                              | MPI Startall            |
| Master thread:3967  |             |            |           |               |             |            |           |            |               |                                          | _                       |
| Master thread:4210  |             |            |           |               |             |            |           |            |               | Context Vi                               | 0.14                    |
| Master thread:4414  |             |            |           |               |             |            |           |            |               |                                          |                         |
| Master thread:4746  |             |            |           |               |             |            |           |            |               |                                          |                         |
| Master thread:4910  |             |            |           |               |             |            |           |            |               | Property                                 | Value                   |
| Master thread:5005  |             |            |           |               |             |            |           |            |               | File                                     | Chester:/lustre/atlas/  |
| Master thread:5410  |             |            |           |               |             |            |           |            |               | Creator                                  | Score-P 2.0-trunk       |
| Master thread:5661  |             |            |           |               |             |            |           |            |               | Version                                  | 2.0                     |
| Master thread:5975  |             |            |           |               |             |            |           |            |               | Number of Processes                      | 8,192                   |
| Master thread:6400  |             |            |           |               |             |            |           |            |               | Timer Resolution                         | 454.540618 ps           |
| Master thread:66798 |             |            |           |               |             |            |           |            |               |                                          |                         |
| Master thread:7003  |             |            |           |               |             |            |           |            |               | Function Leg                             | Jend                    |
| Master thread:7153  |             |            |           |               |             |            |           |            |               | MPI                                      |                         |
| Master thread:7332  |             |            |           |               |             |            |           |            |               | Pressure                                 |                         |
| Master thread:7484  |             |            |           |               |             |            |           |            |               | Divergence                               |                         |
| Master thread:7     |             |            |           |               |             |            |           |            |               | Application                              |                         |
| Master thread:8     | tializati   | on Ph      | lase      |               | Con         | nputa      | ation     | Phas       | e 📕           | Monitor                                  |                         |
|                     |             |            |           |               |             |            |           |            |               |                                          |                         |
|                     |             |            |           |               |             |            |           |            |               |                                          | Connected: Chester      |





Load imbalance in initialization phase







• Load imbalance in initialization phase (2)









#### Computation phase







Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

#### • Unnecessary synchronization in computation phase

| $\odot$ $\bigcirc$ $\bigcirc$ | V Trace View - Cł     | hester:/lustre/atlas/proj-s | shared/stf010/winklerf/MPI_SCA | LE/reference_8192_8_proc | s_trace_filter/trace/traces.c | otf2 – Vampir ⊮™                    |
|-------------------------------|-----------------------|-----------------------------|--------------------------------|--------------------------|-------------------------------|-------------------------------------|
| i 🚍 📷 🔤 🚻                     | . 🖸 🍮 📑               | 🔢 🛎 🔄 🔯                     |                                |                          | 592.50 s                      | 592.51 s                            |
|                               |                       | Timeline                    |                                |                          |                               | Function Summary                    |
|                               | 592.496 s             | 592.498 s 592               | 2.500 s 592.502 s              | 592.504 s                | All Processes, Accur          | nulated Exclusive Time per Function |
| Master thread:0               | pres.pressure solver  |                             | MPI Barrier                    | MAIN                     | 40 s 2                        | 0 s Os                              |
| Master thread:1               | pres.pressure         |                             | MPI Barrier                    | MAIN                     | 50.985 S                      | MPI_Barrier                         |
| Master thread:2               | pres.pressure         | DI Dorrior                  | MPI Barrier                    | MAIN                     | 10                            | 20.507 s pres.pressure_solver_      |
| Master thread:3               | pres.pressure         | PI_bamer                    | MPI_Barrier                    | MAIN_                    | 10                            | 0 287 s MPL Startall                |
| Master thread:4               | pres.pressure         | nneeded                     | MPI_Barrier                    | MAIN_                    |                               | 0.258 s MPI Waitall                 |
| Master thread:5               | pres.pressure         | iniceaca.                   | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:6               | pres.pressure_solver_ | $\neg$                      | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:7               | pres.pressure_solver_ |                             | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:8               | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:9               | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:10              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:11              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    |                               |                                     |
| Master thread:12              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    |                               | Context View                        |
| Master thread:13              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    | ^ <u></u> ×                   | 😹 Master Timeline 📃 🗾 🔸             |
| Master thread:14              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    | Property                      | Value                               |
| Master thread:15              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    | Display                       | Master Timeline                     |
| Master thread:16              | pres.pressure_solver_ | -                           | MPI_Barrier                    | MAIN_                    | Туре                          | Collective                          |
| Master thread:17              | pres.pressure_solver_ | MPI_Barr                    | ier                            | MAIN                     | Commission                    |                                     |
| Master thread:18              | pres.pressure_solver_ | MPI_Bar                     | rier                           | MAIN_                    | Communicator                  | MPI COMM WORLD                      |
| Master thread:19              | pres.pressure_solver_ | <mark>MPI_B</mark>          | arrier                         | MAIN_                    | Collective Operatio           | n BARRIER                           |
| Master thread:20              | pres.pressure_solver_ | MPI_Bar                     | rier                           | MAIN_                    |                               |                                     |
| Master thread:21              | pres.pressure_solver_ | MPI_Ba                      | rrier                          | MAIN_                    |                               |                                     |
| Master thread:22              | pres.pressure_solver_ | MPI_Ba                      | rrier                          | MAIN_                    |                               | Even the second                     |
| Master thread:23              | pres.pressure_solver_ | - MPI_Bai                   | rrier                          | MAIN_                    | MDI                           | Function Legend                     |
| Master thread:24              | pres.pressure_solver_ | MPI_Ba                      | rrier                          | MAIN_                    | Pressure                      |                                     |
| Master thread:25              | pres.pressure_solver_ | MPI_Barr                    | ier                            | MAIN_                    | Divergence                    |                                     |
| Master thread:26              | pres.pressure_solver_ | - MPI_Bar                   | rier                           | MAIN_                    | Application                   |                                     |
| Master thread:27              | pres.pressure_solver_ | - MPI_Bar                   | rier                           | MAIN_                    | Monitor                       |                                     |
|                               |                       | :                           | -                              |                          |                               |                                     |
|                               |                       |                             |                                |                          |                               | Connected: Chester                  |





#### • Inefficient cache usage in computation phase

| $\odot$ $\bigcirc$ $\bigcirc$ | ✓ Trace View – Chester:/lustre/atlas | /proj-shared/stf010/winklerf/M | PI_SCALE/reference_8192_8_procs_ | _trace_filter/trace/traces.otf2 - Vampir | R <sub>2</sub>                   |
|-------------------------------|--------------------------------------|--------------------------------|----------------------------------|------------------------------------------|----------------------------------|
| : 🚟 🛣 🌉 📕                     | o 🌕 📑 🔚 👪 🔌 🐴                        | 👪 🖈 💡 i 🚺                      |                                  | 719.763                                  | s 719.780 <i>s</i><br>68 ms      |
|                               | Tim<br>719.7675 s 719.7700 s         | eline<br>719.7725 s 719.7750 s | 719 7775 s                       | Function Su                              | mmary<br>usive Time per Function |
|                               |                                      | 15                             |                                  | 50 s 25 s                                | Os                               |
| Master thread:0               | MAINMPI_Allgat                       | nerv MPL Gatherv MA            | IN                               | 64.878 s                                 | MAIN_                            |
| Master thread:1               | MAINMPI_Allg                         | atherv <b>MAIN</b>             |                                  | 18.711 s                                 | pres.pressure_solver_            |
| Master thread:2               | MAINMPI_Allg                         | atherv 🛉 🛉 MAIN_               |                                  | 15.492 s                                 | MPI_Gatherv                      |
| Master thread:3               | MAINMPI_Allg                         | atherv 🛉 🛉 🛉 MAIN_             |                                  | 14.749 s                                 | MPI_Allgatherv                   |
| Master thread:4               | MAINMPI_Allg                         | atherv 🛉 🛉 MAIN_               |                                  | 6.425 s                                  | MPI_Barrier                      |
| Master thread:5               | MAIN                                 | atherv                         | -                                |                                          |                                  |
| Master thread:6               | MAINMPI_Allg                         | atherv MAIN_                   |                                  |                                          |                                  |
| Master thread:7               | MAINMPI_Allg                         | atherv 🛉 🛉 MAIN_               |                                  |                                          |                                  |
| Master thread:8               | MAINMPI_Allg                         | atherv MAIN_                   | -                                |                                          |                                  |
| Master thread:9               | MAINMPI AU                           | MAIN_                          |                                  |                                          |                                  |
| Master thread:10              | MAIN                                 | ow Flops/s 🛯 🏧                 | -                                |                                          |                                  |
| Master thread:11              | MAIN                                 |                                |                                  |                                          |                                  |
| Master thread:12              | MAIN                                 |                                |                                  |                                          |                                  |
|                               |                                      | higher 12                      | 1                                |                                          |                                  |
| Master thread:0, Values       | of Metric "PAPI_FP_OPS" over         |                                |                                  |                                          |                                  |
| 125 M ·····                   |                                      | cache                          |                                  |                                          |                                  |
| 100 M ·····                   |                                      |                                |                                  |                                          |                                  |
| S 75 M ·····                  |                                      | miss rate.                     |                                  |                                          |                                  |
| <sup>™</sup> 50 M·····        | <u> </u>                             |                                |                                  |                                          |                                  |
| 25 M                          |                                      |                                |                                  |                                          |                                  |
| 0-                            |                                      |                                |                                  |                                          |                                  |
| Master thread:0, Values       | of Metric "PAPI_L2_DCM" over Time    |                                |                                  |                                          |                                  |
|                               |                                      |                                |                                  |                                          |                                  |
| 30.0 M·····                   |                                      |                                |                                  | Function L                               | egend                            |
| 22.5 M                        |                                      |                                |                                  |                                          |                                  |
| ₩ 15.0 M····                  |                                      |                                |                                  | Divergence                               |                                  |
| 7.5 M·····                    |                                      |                                |                                  | Application                              |                                  |
| _                             |                                      |                                |                                  | Monitor                                  |                                  |
|                               | : :                                  |                                |                                  |                                          |                                  |
|                               |                                      |                                |                                  |                                          | Connected: Chester               |



Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler

