
Performance Analysis at Scale:
The Score-P Tools Infrastructure

23 May 2016

Frank Winkler
On-site contractor for
Vampir, CSMD

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 2

Disclaimer

•  Bad MPI (50-90%)
•  No node-level parallelism (94%)
•  No vectorization (75%)
•  Bad memory access pattern (99%)
•  In sum: 0.008% of the peak performance

(about 2 teraflops of Titan)

It is extremely easy to
waste performance!

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 3

Disclaimer (2)

Performance tools will not automatically
make your code run faster. They help you
understand, what your code does and
where to put in work.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 4

Performance engineering workflow

• Calculation of metrics
• Identification of
performance problems

• Presentation of results

• Modifications intended
to eliminate/reduce
performance problem

• Collection of
performance data

• Aggregation of
performance data

• Prepare application
with symbols

• Insert extra code
(probes/hooks)

Preparation Measurement

Analysis Optimization

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 5

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Motivation
• Functionality
• Architecture
• Workflow
• Advanced Features

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Cube
• Vampir

Performance Analysis Tools

• Performance Analysis of Jacobi Solver on Titan

Demo

Conclusions

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 6

Sampling

Time

main foo bar Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

•  Running program is periodically interrupted to take
measurement

•  Statistical inference of program behavior
–  Not very detailed information on highly volatile metrics
–  Requires long-running applications

•  Works with unmodified executables

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 7

Instrumentation

Time

main foo bar

t13 t9 t7 t6 t5 t4 t1 t2 t3 t8 t10 t11 t12 t14

•  Measurement code is inserted such that every event of
interest is captured directly
–  Can be done in various ways

•  Advantage:
–  Much more detailed information

•  Disadvantage:
–  Processing of source-code / executable necessary
–  Large relative overheads for small functions

Measurement

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 8

Profiling vs. Tracing

•  Statistics

0 1 2 3 4 5

Number of Invocations Execution Time

main

foo

bar

Time

main foo bar foo

main foo bar foo

•  Timelines

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 9

Terms Used and How They Connect

Analysis Layer Analysis Technique

Data
Acquisition

Data
Recording

Data
Presentation

Profiling Tracing

Sampling Event-based
Instrumentation

Summarization

Statistics

Logging

Timelines

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 10

So what is the right choice?

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 11

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Motivation
• Functionality
• Architecture
• Workflow
• Advanced Features

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Cube
• Vampir

Performance Analysis Tools

• Performance Analysis of Jacobi Solver on Titan

Demo

Conclusions

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 12

Score-P: Motivation

•  Several performance tools co-exist
•  Separate measurement systems and output formats

•  Complementary features and overlapping functionality

•  Redundant effort for development and maintenance

•  Limited or expensive interoperability

•  Complications for user experience, support, training

Vampir

VampirTrace
OTF

Scalasca

EPILOG /
CUBE

TAU

TAU native
formats

Periscope

Online
measurement

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 13

Score-P: Functionality

•  Typical functionality for HPC performance tools
–  Instrumentation (various methods)
–  Sampling (experimental)

•  Flexible measurement without re-compilation
–  Basic and advanced profile generation
–  Event trace recording

•  Programming paradigms:
–  Multi-process

•  MPI, SHMEM
–  Thread-parallel

•  OpenMP, Pthreads
–  Accelerator-based

•  CUDA, OpenCL, OpenACC (Prototype)

Hybrid parallelism

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 14

Score-P: Architecture

	

Application (Process×Thread×Accelerator)	

Score-P measurement infrastructure
Hardware counter

(PAPI, rusage, PERF, plugins)
Memory Recording

(libc/C++ API)

Vampir Cube Periscope TAU

Event traces (OTF2) Call-path profiles
(CUBE4, TAU)

Online interface

	
	

Instrumentation wrapper
	 		
	
	
	

Process-level
(MPI, SHMEM)

Thread-level
(OpenMP, Pthreads)

Accelerator-based
(CUDA, OpenCL)

Sampling Interrupts
(PAPI, PERF, timer)

	 		
	
	
	

Source code instrumentation
(Compiler, PDT, User)

	 		

	
	
	

IO Recording
(Posix, NETCDF, HD5F)

Scalasca

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 15

Score-P: Workflow

1.  Instrument your application with Score-P

CC = cc
CXX = CC
F90 = ftn

CC = scorep <options> cc
CXX = scorep <options> CC
F90 = scorep <options> ftn

•  To see all available options for instrumentation:
$ scorep --help
This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:
...
 --nocompiler Disables compiler instrumentation.
 --user Enables user instrumentation.
 --cuda Enables cuda instrumentation.

0. Perform a reference run and note the run time to be
 able to refer to it later

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 16

Score-P: Workflow
•  For CMake and autotools based build systems it is

recommended to use the scorep-wrapper script instances

#CMake

SCOREP_WRAPPER=OFF cmake .. \
 -DCMAKE_C_COMPILER=scorep-cc \
 -DCMAKE_CXX_COMPILER=scorep-CC \
 -DCMAKE_Fortran_COMPILER=scorep-ftn

#Autotools

SCOREP_WRAPPER=OFF ../configure \
 CC=scorep-cc \
 CXX=scorep-CC \
 FC=scorep-ftn \
 --disable-dependency-tracking

•  Pass instrumentation and compiler flags at make:

make SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--cuda" \
 SCOREP_WRAPPER_COMPILER_FLAGS="-g –O2"

scorep --cuda <your_compiler> –g –O2

Disable
instrumentation

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 17

Score-P: Workflow
2.  Perform a measurement run with profiling enabled
•  Example for generating a profile:

$ export SCOREP_ENABLE_PROFILING=true #default
$ export SCOREP_ENABLE_TRACING=false #default
$ export SCOREP_EXPERIMENT_DIRECTORY=profile

$ aprun <instrumented binary>

•  To see all environment variables for the measurement:
$ scorep-info config-vars --full

SCOREP_ENABLE_PROFILING
 [...]
SCOREP_ENABLE_TRACING
 [...]
SCOREP_TOTAL_MEMORY
 Description: Total memory in bytes for the measurement system
 [...]
SCOREP_EXPERIMENT_DIRECTORY
 Description: Name of the experiment directory
 [...]

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 18

Score-P: Workflow
3.  Compare profile runtime with reference runtime
•  If overhead is too high:

–  Exclude short frequently called functions from measurement using
hints from scorep-score

$ scorep-score –r profile/profile.cubex
 [...]
Flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 [...]
 USR 3,421,305,420 522,844,416 137.49 10.7 0.26 matvec_sub
 USR 3,421,305,420 522,844,416 174.16 13.5 0.33 matmul_sub
 USR 3,421,305,420 522,844,416 226.67 17.6 0.43 binvcrhs
 USR 150,937,332 22,692,096 6.73 0.5 0.30 binvrhs
 USR 150,937,332 22,692,096 14.69 1.1 0.65 lhsinit
 USR 112,194,160 17,219,840 4.70 0.4 0.27 exact_solution
 OMP 1,312,128 102,912 0.06 0.0 0.58 !$omp parallel

42% of the total time for these 3
regions , however, much of that is very
likely measurement overhead due to

short frequently called functions!

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 19

Score-P: Workflow
4.  Create an optimized profile with filter applied if

measurement overhead of full instrumented profile
is too high

•  Example for generating a profile with filter applied:
$ export SCOREP_ENABLE_PROFILING=true
$ export SCOREP_ENABLE_TRACING=false
$ export SCOREP_FILTERING_FILE=scorep.filt
$ export SCOREP_EXPERIMENT_DIRECTORY=profile_with_filter

$ aprun <instrumented binary>

•  Create a filter file and list functions to be excluded
$ vim scorep.filt
SCOREP_REGION_NAMES_BEGIN EXCLUDE
 matmul_sub
 matvec_sub
 binvcrhs
SCOREP_REGION_NAMES_END

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 20

Score-P: Workflow
5.  Perform analysis on (optimized) profile data
•  Flat profile analysis with cube_stat:
$ cube_stat -t 3 -p profile_with_filter/profile.cubex
cube::Region NumberOfCalls ExclusiveTime InclusiveTime
!$omp do @z_solve.f:52 51456.000000 131.579771 131.579771
!$omp do @y_solve.f:52 51456.000000 122.818761 122.818761
!$omp do @x_solve.f:54 51456.000000 117.027571 117.027571

•  Call-path profile analysis with Cube:
$ cube profile_with_filter/profile.cubex

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 21

Score-P: Workflow
6.  Define an appropriate filter for a tracing run
•  Exclude functions from measurement which require a

large trace buffer to reduce total trace size

•  Use scorep-score with full instrumented profile
$ scorep-score –r profile/profile.cubex
Estimated aggregate size of event trace: 40GB
Estimated requirements for largest trace buffer (max_buf): 10GB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 10GB
 [...]
Flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 [...]
 USR 3,421,305,420 522,844,416 137.49 10.7 0.26 matvec_sub
 USR 3,421,305,420 522,844,416 174.16 13.5 0.33 matmul_sub
 USR 3,421,305,420 522,844,416 226.67 17.6 0.43 binvcrhs
 USR 150,937,332 22,692,096 6.73 0.5 0.30 binvrhs
 USR 150,937,332 22,692,096 14.69 1.1 0.65 lhsinit
 USR 112,194,160 17,219,840 4.70 0.4 0.27 exact_solution
 OMP 1,312,128 102,912 0.06 0.0 0.58 !$omp parallel

•  Test the effect of your filter on the trace file

About 10 GB just
for these 6 regions

per process!

$ scorep-score –f scorep.filt profile/profile.cubex

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 22

Score-P: Workflow
5.  Perform a measurement run with tracing enabled

and the filter applied
$ export SCOREP_ENABLE_PROFILING=false
$ export SCOREP_ENABLE_TRACING=true
$ export SCOREP_EXPERIMENT_DIRECTORY=trace
$ export SCOREP_FILTERING_FILE=scorep.filt
$ aprun <instrumented binary>

6.  Perform analysis on the trace data with Vampir
$ vampir trace/traces.otf2

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 23

Score-P: Workflow Summary

Instrumentation

Profile Run

Trace Run

Profile Analysis

Trace Analysis

scorep-score

Filtering

Reduce overhead
and trace size

Reduce overhead
if necessary

Run-time filter

Compile-time filter

Reduce run-time
filter overhead

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 24

Score-P Advanced Features: Sampling
•  Alternative to compiler instrumentation to generate

profiles or traces

•  Regulate the trade-off between overhead and correctness

•  Libunwind/1.1 to capture current stack

•  Sampling interrupt sources:
–  Interval timer, PAPI, Perf

•  Example for enabling sampling for measurement run:

•  Combination of instrumented and sampled events
(not for compiler instrumented events)

•  Calling context information for every event

$ export SCOREP_ENABLE_UNWINDING=true
$ export SCOREP_SAMPLING_EVENTS=PAPI_TOT_CYC@1000000

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 25

Score-P Advanced Features: Memory Rec.

•  Memory (de)allocations are recorded via the libc/C++ API
•  Recording of memory location’s call-site in sampling mode

–  Debugging symbols required (-g)

•  Interplay of memory usage and application’s execution
–  CUBE: (De)allocation size, maximum heap memory, leaked bytes
–  Vampir: Memory usage in “Counter Timelines”

•  Enabling memory recording for measurement run:

$ export SCOREP_MEMORY_RECORDING=true

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 26

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Motivation
• Functionality
• Architecture
• Workflow
• Advanced Features

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Cube
• Vampir

Performance Analysis Tools

• Performance Analysis of Jacobi Solver on Titan

Demo

Conclusions

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 27

Cube

•  Profile analysis tool for displaying performance data of
parallel programs

•  Originally developed as part of Scalasca toolset

•  Available as a separate component of Score-P

•  Representation of values (severity matrix)
on three hierarchical axes
–  Performance property (metric)
–  Call-tree path (program location)
–  System location (process/thread)

•  Three coupled tree browsers

Call
path

P
ro

pe
rty

Location

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 28

Cube: Analysis Presentation

What kind of
performance

metric?

Where is it in the
source code?

In what context?

How is it
distributed across

the processes/threads?

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 29

Vampir

•  Event trace analysis tool for displaying performance data of
complex parallel programs

•  Show dynamic run-time behavior graphically at a fine level
of detail

•  Provide summaries (profiles) on performance metrics

Timeline charts
•  Show application activities and

communication along a time axis

Summary charts
•  Provide quantitative results for the

currently selected time interval

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 30

Vampir: Performance Charts Overview

Timeline Charts
 Master Timeline

 Summary Timeline

 Performance Radar

 Process Timeline

 Counter Data Timeline

Summary Charts
 Function Summary

 Message Summary

all threads’ activities over time per thread

all threads activities over time per activity

all threads’ perf-metric over time

single thread’s activities over time

single threads perf-metric over time

Process Summary

Communication Matrix View

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 31

Vampir: Performance Charts
•  Trace visualization of FDS (Fire Dynamics Simulator)

Master Timeline

Summary Timeline

Process Timeline

Counter Data Timeline

Function Summary

Communication
Matrix View

Process Summary

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 32

Detailed information about
functions, communication

and synchronization events
for collection of processes.

Vampir: Performance Charts
Master Timeline

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 33

Vampir: Performance Charts
Summary Timeline

Fractions of the number of
processes that are actively
involved in given activities
at a certain point in time.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 34

Vampir: Performance Charts
Process Timeline

Detailed information about
different levels of function
calls in a stacked bar chart
for an individual process.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 35

Vampir: Performance Charts
Counter Timeline

Detailed counter
information over time for

an individual process.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 36

Vampir: Performance Charts
Performance Radar

Detailed counter
information over time for
a collection of processes.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 37

Vampir: Where Do the Metrics Come From?
•  Custom Metrics Built-In Editor

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 38

Vampir: Performance Charts
Function Summary

Overview of the
accumulated information

across all functions and for
a collection of processes.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 39

Vampir: Performance Charts
Process Summary

Overview of the
accumulated

information across all
functions and for every
process independently.

Clustering:
Grouping of similar
processes by using

summarized
function information.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 40

Vampir: Performance Charts
Communication Matrix View

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 41

Vampir at Scale: FDS with 8192 cores

Overview of the
entire application run
across all processes
based on available
pixels on screen.

•  Fit to chart height feature in Master Timeline

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 42

Vampir at Scale: LSMS (hybrid parallelism)

•  5831 processes: 343xMPI with 8xOpenMP and 8xCUDA

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 43

Vampir at Scale: LSMS (hybrid parallelism)
•  Group threads and CUDA streams

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 44

Vampir at Scale: LSMS (hybrid parallelism)
•  Collapse all MPI processes

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 45

Vampir at Scale: LSMS (hybrid parallelism)

Master Timeline: „Fit Chart Height“ Mode

•  Fit to chart height for all collapsed MPI processes

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 46

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Motivation
• Functionality
• Architecture
• Workflow
• Advanced Features

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Cube
• Vampir

Performance Analysis Tools

• Performance Analysis of Jacobi Solver on Titan

Demo

Conclusions

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 47

Demo: Jacobi Solver

•  Jacobi Example
–  Iterative solver for system of equations

–  Code uses OpenMP, CUDA and MPI
for parallelization

•  Domain decomposition
–  Halo exchange at boundaries:

•  Via MPI between processes
•  Via CUDA between hosts and accelerators

Uold =U
ui, j = buold,i, j + ax (uold,i−1, j +uold,i+1, j)+ ay (uold,i, j−1 +uold,i, j+1)− rHs / b

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 48

Demo: Jacobi Solver / Setup
•  Connect to Titan via X forwarding and copy sources
$ cd $MEMBERWORK/[projid]
$ cp /sw/sources/vampir/tutorial/jacobi.tar.gz .
$ tar xzvf jacobi.tar.gz
$ cd jacobi

•  Change programming environment and load modules
$ module swap PrgEnv-{pgi,gnu}
$ module load cudatoolkit
$ module load scorep

•  Compile benchmark and submit job
$ make
$ qsub –A [projid] run.pbs
$ less jacobi.o[JOB_ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
 2 processes and 16 threads + one Tesla K20X for each process.
 614 of 2049 local rows are calculated on the CPU to balance the load
 between the CPU and the GPU.
 0, 0.489197
 100, 0.002397
 [...]
 total: 8.425432 s

Keep time in mind!

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 49

Demo: Jacobi Solver / Profiling
•  Build instrumented executable
$ make clean
$ make scorep
scorep --cuda cc … -o bin/jacobi_mpi+openmp+cuda

•  Submit job for profiling run
$ less run_profile.pbs
[...]
export SCOREP_ENABLE_PROFILING=true
export SCOREP_ENABLE_TRACING=false
export SCOREP_EXPERIMENT_DIRECTORY=jacobi_mpi+openmp+cuda_profile
export SCOREP_CUDA_ENABLE=yes
export SCOREP_TIMER=clock_gettime
export SCOREP_MEMORY_RECORDING=yes
[...]
aprun -n 2 –d 16 -N 1 ./jacobi_mpi+openmp+cuda 8192 8192 0.15

$ qsub –A [projid] run_profile.pbs
$ less jacobi.o[JOB_ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
 2 processes and 16 threads + one Tesla K20X for each process.
 [...]
 total: 9.858350 s

15% Overhead!

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 50

Demo: Jacobi Solver / Profile Analysis
•  Perform flat profile analysis with cube_stat

$ cd bin.scorep
$ cube_stat -t 10 -p jacobi_mpi+openmp+cuda_profile/profile.cubex
cube::Region NumberOfCalls ExclusiveTime InclusiveTime
!$omp for @jacobi_cuda.c:188 32000.000000 131.797289 131.797289
!$omp implicit barrier 32000.000000 104.298683 104.298683
!$omp for @jacobi_cuda.c:258 32000.000000 42.999056 50.568642
[...]

•  Perform call-path profile analysis with Cube
$ cube jacobi_mpi+openmp+cuda_profile/profile.cubex

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 51

Demo: Jacobi Solver / Scoring
•  Do we need a filter? (Overhead and memory footprint)

$ scorep-score jacobi_mpi+openmp+cuda_profile/profile.cubex
Estimated aggregate size of event trace: 10MB
Estimated requirements for largest trace buffer (max_buf): 5MB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 41MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=41MB to avoid intermediate
 flushes or reduce requirements using USR regions filters.)

flt type max_buf[B] visits time[s] time[%] time/visit[us] region
 ALL 4,924,060 310,504 308.53 100.0 993.63 ALL
 OMP 4,135,850 256,417 287.31 93.1 1120.46 OMP
 CUDA 494,338 38,025 10.40 3.4 273.53 CUDA
 COM 156,260 12,020 10.46 3.4 870.58 COM
 MPI 137,222 4,012 0.30 0.1 73.96 MPI
 MEMORY 260 20 0.06 0.0 2972.15 MEMORY
 USR 130 10 0.00 0.0 10.26 USR

No filtering
required.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 52

Demo: Jacobi Solver / Tracing
•  Submit job for tracing run

$ cd ..
$ less run_trace.pbs
[...]
export SCOREP_ENABLE_PROFILING=false
export SCOREP_ENABLE_TRACING=true
export SCOREP_EXPERIMENT_DIRECTORY=jacobi_mpi+openmp+cuda_trace
export SCOREP_CUDA_ENABLE=yes
export SCOREP_TIMER=clock_gettime
export SCOREP_MEMORY_RECORDING=yes
export SCOREP_TOTAL_MEMORY=50MB
[...]
aprun -n 2 –d 16 -N 1 ./jacobi_mpi+openmp+cuda 8192 8192 0.15

$ qsub –A [projid] run_trace.pbs
$ less jacobi.o[JOB_ID]
Jacobi relaxation Calculation: 8192 x 8192 mesh with
 2 processes and 16 threads + one Tesla K20X for each process.
 614 of 2049 local rows are calculated on the CPU to balance the load
 between the CPU and the GPU.
 0, 0.489197
 100, 0.002397
 [...]
 900, 0.000269
 total: 9.895828 s

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 53

Demo: Jacobi Solver / Trace Analysis
•  Perform analysis on the trace data with Vampir

$ cd bin.scorep
$ module load vampir
$ vampir jacobi_mpi+openmp+cuda_trace/traces.otf2

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 54

Agenda

• Sampling vs. Instrumentation
• Profiling vs. Tracing

Performance Analysis Approaches

• Motivation
• Functionality
• Architecture
• Workflow
• Advanced Features

Score-P: Scalable Performance Measurement Infrastructure for Parallel Codes

• Cube
• Vampir

Performance Analysis Tools

• Performance Analysis of Jacobi Solver on Titan

Demo

Conclusions

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 55

Conclusions

•  Common instrumentation and measurement infrastructure
for various analysis tools

•  Hides away complicated details
•  Provides many options and switches for experts

Score-P

•  Instrument your application with Score-P
•  Perform a measurement run with profiling enabled
•  Perform profile analysis with Cube
•  Use scorep-score to define an appropriate filter
•  Perform a measurement run with tracing enabled and the

filter applied
•  Perform in-depth analysis on the trace data with Vampir

General Workflow

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 56

If you have any questions or need help, please
don't hesitate to contact me under
winklerf@ornl.gov.

Detailed information under:

http://www.vi-hps.org/projects/score-p or

https://www.olcf.ornl.gov/support/software/

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 57

Score-P Advanced Features: Metrics

•  Available PAPI metrics
–  Preset events: common set of events deemed relevant and useful

for application performance tuning

–  Native events: set of all events that are available on the CPU
(platform dependent)

•  Available resource usage metrics
$ man getrusage
 [... Output ...]

 struct rusage {

struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
[... More output ...]

$ papi_avail

$ papi_native_avail

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 58

Score-P Advanced Features: Metrics (2)

•  Recording hardware counters via PAPI

•  Recording operating system resource usage

$ export SCOREP_METRIC_PAPI=PAPI_TOT_INS,PAPI_FP_INS

$ export SCOREP_METRIC_RUSAGE=ru_maxrss,ru_stime

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 59

Vampir: Visualization Modes (1)

•  Directly on front end or local machine
$ vampir

 Score-P Trace
File

(OTF2)

Vampir 9 CPU CPU

CPU CPU CPU CPU

CPU CPU

Multi-Core
Program

Thread parallel Small/Medium sized trace

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 60

Vampir: Visualization Modes (2)

•  On local machine with remote VampirServer
$ vampirserver start –n 16 $ vampir

Score-P

Vampir 9

Trace
File

(OTF2)

VampirServer

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core
Program

LAN/WAN

Large Trace File
(stays on remote machine)

Parallel application

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 61

Vampir Bonus: Case Study of FDS
•  Indentification of program phases

Initialization Phase Computation Phase

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 62

Vampir Bonus: Case Study of FDS
•  Load imbalance in initialization phase

Master thread:0 is
reading input files.
All other processes

are waiting in
MPI_Barrier.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 63

Vampir Bonus: Case Study of FDS
•  Load imbalance in initialization phase (2)

Initialization time
increases with the

process index.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 64

Vampir Bonus: Case Study of FDS
•  Computation phase

12% communication and
88% computation during

computation phase.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 65

Vampir Bonus: Case Study of FDS
•  Unnecessary synchronization in computation phase

MPI_Barrier
unneeded.

Performance Analysis at Scale: The Score-P Tools Infrastructure – Frank Winkler Slide 66

Vampir Bonus: Case Study of FDS
•  Inefficient cache usage in computation phase

Low Flops/s
rate due to
a higher L2

cache
miss rate.

