
Programming with Big Data in R

George Ostrouchov and Mike Matheson

Oak Ridge National Laboratory

2016 OLCF User Meeting: Day 0 Tutorial

Oak Ridge National Laboratory
Monday, May 23, 2016 Oak Ridge, Tennessee

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC

Why R? Popularity?

IEEE Spectrum’s Ranking of Programming Languages

See: http://spectrum.ieee.org/static/interactive-the-top-programming-languages#index

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

http://spectrum.ieee.org/static/interactive-the-top-programming-languages#index

Introduction to R and HPC

Why R? Programming with Data

Chambers.
Computational
Methods for
Data Analysis.
Wiley, 1977.

Becker, Chambers,
and Wilks. The
New S Language.
Chapman & Hall,
1988.

Chambers and
Hastie. Statistical
Models in S.
Chapman & Hall,
1992.

Chambers.
Programming
with Data.
Springer, 1998.

Chambers.
Software for Data
Analysis:
Programming
with R. Springer,
2008.

Thanks to Dirk Eddelbuettel for this slide idea and to John Chambers for providing the high-resolution scans of the covers of his
books.

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC

Why R? Resources for Learning R

RStudio IDE
http://www.rstudio.com/products/rstudio-desktop/

Task Views: http://cran.at.r-project.org/web/views

Book: The Art of R Programming by Norm Matloff:
http://nostarch.com/artofr.htm

Advanced R: http://adv-r.had.co.nz/ and ggplot2
http://docs.ggplot2.org/current/ by Hadley Wickham

R programming for those coming from other languages: http:

//www.johndcook.com/R_language_for_programmers.html

aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and Kevin
Ushey: http://tim-smith.us/arrgh/

Mailing list archives: http://tolstoy.newcastle.edu.au/R/

The [R] stackoverflow tag.

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

http://www.rstudio.com/products/rstudio-desktop/
http://cran.at.r-project.org/web/views
http://nostarch.com/artofr.htm
http://adv-r.had.co.nz/
http://docs.ggplot2.org/current/
http://www.johndcook.com/R_language_for_programmers.html
http://www.johndcook.com/R_language_for_programmers.html
http://tim-smith.us/arrgh/
http://tolstoy.newcastle.edu.au/R/

Introduction to R and HPC

Why R? Programming with Big Data

pbdR Core Team
Wei-Chen Chen, FDA
George Ostrouchov, ORNL & UTK
Drew Schmidt, UTK

Developers
Christian Heckendorf, Pragneshkumar Patel,
Gaurav Sehrawat

Contributors
Whit Armstrong, Ewan Higgs, Michael
Lawrence, David Pierce, Brian Ripley, ZhaoKang
Wang, Hao Yu

Engage parallel libraries at scale

R language unchanged

New distributed concepts

New profiling capabilities

New interactive SPMD

In situ distributed capability

In situ staging capability via ADIOS

Plans for DPLASMA GPU capability

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC

Modules on Titan, Rhea, and Eos (Current R Version is 3.3.0)

Notes - Remember to submit R to compute nodes and not run it on login nodes
Notes - R gpu code can run on Titan nodes or Rhea gpu nodes

1 module load r/3.3.0

2 R

3 rstudio (Currently only on Rhea - use either a remote visualization tool or forward

X [ssh -X and qsub -X])

Example qsub batch script for Titan

1 #!/bin/csh

2 #PBS -A STF006

3 #PBS -N R

4 #PBS -q batch

5 #PBS -l nodes=1

6 #PBS -l walltime =0:15:00

7
8 cd /lustre/atlas2/stf006/world -shared/mikem

9
10 module load r/3.3.0

11
12 setenv OPENBLAS_NUM_THREADS 1

13 setenv OMP_NUM_THREADS 1

14
15 echo "host = ‘hostname ‘"

16
17 aprun -n 1 Rscript --vanilla eigen.r

18 aprun -n 1 Rscript --vanilla ex_hdf5.r

19 aprun -n 1 Rscript --vanilla ex_max.r

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC Speeding Things Up with Compiled Code

Strategies for Making R, a Scripting Language, Faster

Serial solutions before parallel solutions

User R code often inefficient (high-level code = deep complexity)

Profile and improve code first
Vectorize loops if possible
Compute once if not changing
Know when copies are made

Move kernels into compiled language, such as C/C++ (+OpenMP)

multicore components of parallel package (Unix fork)

Distributed via ppppppbbbbbbddddddRRRRRR (only solution for big memory)

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC Speeding Things Up with Compiled Code

Integrating C/C++ Code Into R

.Call

Standard R interface to C code

Lightweight but clunky

Rcpp: Incorporating C++ code into R

Authors: Dirk Eddelbuettel and Romain Francois

Simplifies integrating C++ code with R

Maps R objects (vectors, matrices, functions, environments, . . .) to
dedicated C++ classes

Broad support for C++ Standard Template Library idioms.

C++ code can be compiled, linked and loaded on the fly, or added via
packages.

Error and exception code handling

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC Speeding Things Up with Compiled Code

Rcpp Example: A simple row max calculation

cat ex max.cpp

1 #include <Rcpp.h>

2 using namespace Rcpp;

3
4 //[[Rcpp:: export]]

5
6 NumericVector row_max(NumericMatrix m)

7 {

8 int nrows = m.nrow();

9 NumericVector maxPerRow(nrows);

10
11 for (int i = 0; i < nrows; i++)

12 {

13 maxPerRow[i] = Rcpp::max(m(i, _));

14 }

15
16 return (maxPerRow);

17 }

One can get configuration values by

1 setenv PKG_CXXFLAGS ‘Rscript -e "Rcpp ::: CxxFlags()"‘

2 setenv PKG_LIBS ‘Rscript -e "Rcpp ::: LdFlags()"‘

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC Speeding Things Up with Compiled Code

Rcpp Example (con’d): A simple row max calculation

cat ex max.r

1 library(Rcpp)

2 Sys.setenv("PKG_CXXFLAGS" =

3 "-I /sw/redhat6/r/3.3.0/rhel6_gnu4 .8.2/lib64/R/library/Rcpp/include")

4 Sys.setenv("PKG_LIBS"="-lm")

5
6 sourceCpp("ex_max.cpp")

7
8 set.seed(27)

9 X <- matrix(rnorm(4 * 4), 4, 4)

10 X

11
12 print("Rcpp")

13 row_max(X)

Rscript ex max.r

1 Rscript ex_max.r

2 [,1] [,2] [,3] [,4]

3 [1,] 1.9071626 -1.093468881 2.13463789 1.5702953

4 [2,] 1.1448769 0.295241218 0.23784461 0.1580101

5 [3,] -0.7645307 0.006885942 -1.28512736 -0.7457995

6 [4,] -1.4574325 1.157410886 0.03482725 -1.0688030

7 [1] "Rcpp"

8 [1] 2.134637891 1.144876890 0.006885942 1.157410886

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC Speeding Things Up with Compiled Code

The RcppArmadillo package is a set of bindings to the Armadillo C++ library.

Armadillo is a templated C++ linear algebra library that uses supplied BLAS and
LAPACK.

Includes some machine learning libraries

BLAS and LAPACK are also directly engaged from R.

Probably not faster than R direct but not having to come back out to R if C++ code
needs to use linear algebra can produce gains.

RcppArmadillo Example: Eigenvalue calculation

cat eigen.cpp

1 #include <RcppArmadillo.h>

2 //[[Rcpp:: depends(RcppArmadillo)]]

3 //[[Rcpp:: export]]

4
5 arma::vec getEigenValues(arma::mat M)

6 {

7 return (arma::eig_sym(M));

8 }

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC Speeding Things Up with Compiled Code

RcppArmadillo Example (con’d): Eigenvalue calculation
cat eigen.r

1 library(Rcpp)

2 library(RcppArmadillo)

3 Sys.setenv("PKG_CXXFLAGS" = "-I

/sw/redhat6/r/3.3.0/rhel6_gnu4 .8.2/lib64/R/library/RcppArmadillo/include")

4 Sys.setenv("PKG_LIBS"="-lm"

5)

6 sourceCpp("eigen.cpp")

7
8 set.seed(27)

9 X <- matrix(rnorm(4 * 4), 4, 4)

10 Z <- X %*% t(X)

11 print("RcppArmadillo")

12 getEigenValues(Z)

13
14 print("R")

15 eigen(Z)$values

Rscript eigen.r

1 [1] "RcppArmadillo"

2 [,1]

3 [1,] 0.03779289

4 [2,] 0.85043786

5 [3,] 2.03877658

6 [4,] 17.80747601

7 [1] "R"

8 [1] 17.80747601 2.03877658 0.85043786 0.03779289

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC I/O

I/O

I/O Packages

function fread in package data.table: fast and easy csv

rhdf5: fast and easy HDF5 I/O

pbdNCDF4: fast NetCDF4 collective read and write

pbdADIOS (on GitHub, under developent): fast bp I/O with ADIOS
staging capability

pbdIO (on GitHub, under development): Easy parallel I/O, includes
parallel csv with load balance

Parallel chunking: Read the most natural way from disk

C: by blocks of rows

FORTRAN: by blocks of columns

CSV best with groups of files

Parallel best with binary, fixed format

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC I/O

rhdf5 Example: Write and then read a matrix
cat wr hdf5.r

1 library(rhdf5)

2 print("Writing hdf5")

3 h5createFile("test.h5")

4 h5createGroup("test.h5", "MainGroup")

5 X <- matrix(rnorm(3 * 3), ncol = 3, nrow = 3)

6 X

7 h5write(X, file = "test.h5", "MainGroup/Matrix", write.attributes = FALSE)

8 h5ls("test.h5")

9 print("Reading hdf5")

10 Y <- h5read("test.h5", "/MainGroup/Matrix")

11 Y

Rscript wr hdf5.r

1 Loading required package: methods

2 [1] "Writing hdf5"

3 [1] TRUE

4 [1] TRUE

5 [,1] [,2] [,3]

6 [1,] 0.9124038 1.0390048 -1.1731370

7 [2,] -0.8973774 0.3447025 -0.1201449

8 [3,] 1.6489298 -0.1993730 1.1330055

9 group name otype dclass dim

10 0 / MainGroup H5I_GROUP

11 1 /MainGroup Matrix H5I_DATASET FLOAT 3 x 3

12 [1] "Reading hdf5"

13 [,1] [,2] [,3]

14 [1,] 0.9124038 1.0390048 -1.1731370

15 [2,] -0.8973774 0.3447025 -0.1201449

16 [3,] 1.6489298 -0.1993730 1.1330055

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Introduction to R and HPC I/O

rhdf5 Example (con’d): Check file contents outside of R

h5dump test.h5

1 HDF5 "test.h5" {

2 GROUP "/" {

3 GROUP "MainGroup" {

4 DATASET "Matrix" {

5 DATATYPE H5T_IEEE_F64LE

6 DATASPACE SIMPLE { (3, 3) / (3, 3) }

7 DATA {

8 (0,0): 0.912404 , -0.897377 , 1.64893 ,

9 (1,0): 1.039 , 0.344703 , -0.199373 ,

10 (2,0): -1.17314, -0.120145 , 1.13301

11 }

12 }

13 }

14 }

15 }

Note: rhdf5 enables reading chunks and slabs of HDF5 file arrays in R for
fast parallel reads from the lustre file system.

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR

Why R? Programming with Big Data

pbdR Core Team
Wei-Chen Chen, FDA
George Ostrouchov, ORNL & UTK
Drew Schmidt, UTK

Developers
Christian Heckendorf, Pragneshkumar Patel,
Gaurav Sehrawat

Contributors
Whit Armstrong, Ewan Higgs, Michael
Lawrence, David Pierce, Brian Ripley, ZhaoKang
Wang, Hao Yu

Engage parallel libraries at scale

R language unchanged

New distributed concepts

New profiling capabilities

New interactive SPMD

In situ distributed capability

In situ staging capability via ADIOS

Plans for DPLASMA GPU capability

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR Cluster Computer Architectures

HPC Cluster with NVRAM and Parallel File System

Today’s HPC Cluster Parallel
File System

Disk
Storage
Servers

Compute Nodes I/O Nodes

Login Nodes Your Laptop

B
ig

 D
at

a

“Little Data”

Solid State
Disk

Multicore

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR The ppppppbbbbbbddddddRRRRRR Project

ppppppbbbbbbddddddRRRRRR Interfaces to Libraries: Sustainable Path

Local Memory

Co-Processor

GPU: Graphical Processing Unit

MIC: Many Integrated Core

Interconnection Network

PROC
+ cache

PROC
+ cache

PROC
+ cache

PROC
+ cache

Mem Mem Mem Mem

Distributed Memory

Memory

CORE
+ cache

CORE
+ cache

CORE
+ cache

CORE
+ cache

Network

Shared Memory

Trilinos

PETSc

PLASMA

DPLASMALibSci (Cray)
MKL (Intel)

ScaLAPACK
PBLAS
BLACS

cuBLAS (NVIDIA)

MAGMA

PAPI

Tau

MPI
mpiP

fpmpi

NetCDF4

ADIOS

ACML (AMD)

CombBLAS

cuSPARSE (NVIDIA)

pbdDMATpbdDMATpbdDMAT
pbdDMAT

pbdBASE
pbdSLAP

ZeroMQ

Profiling

I/O

Learning pbdR

Released Under Development

pbdADIOS

pbdNCDF4

pbdPAPI

pbdPROF pbdPROF pbdPROF
pbdMPI

pbdDEMO

pbdCS
pbdZMQ
remoter
getPass

pbdIO

Machine Learning

pbdML

HDF5
rhdf5

Why use HPC libraries?

Many science communities are invested in their API.

Data analysis uses much of the same basic math as simulation science

The libraries represent 30+ years of parallel algorithm research

They’re tested. They’re fast. They’re scalable.

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdMPI

pbdMPI: a High Level Interface to MPI

API is simplified: defaults in control objects.

S4 methods: extensible to complex R objects.

Additional error checking

Array and matrix methods without serialization: faster than Rmpi.

pbdMPI (S4) Rmpi
allreduce mpi.allreduce

allgather mpi.allgather, mpi.allgatherv, mpi.allgather.Robj
bcast mpi.bcast, mpi.bcast.Robj
gather mpi.gather, mpi.gatherv, mpi.gather.Robj
recv mpi.recv, mpi.recv.Robj
reduce mpi.reduce

scatter mpi.scatter, mpi.scatterv, mpi.scatter.Robj
send mpi.send, mpi.send.Robj

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdMPI

SPMD: Copies of One Code Run Asynchronously

A simple SPMD allreduce

allreduce.r

1 library(pbdMPI , quiet = TRUE)

2
3 ## Your local computation

4 n <- comm.rank() + 1

5
6 ## Now "Reduce" and give the result to all

7 all_sum <- allreduce(n) # Sum is default

8
9 text <- paste("Hello: n is", n, "sum is", all_sum)

10 comm.print(text , all.rank=TRUE)

11
12 finalize ()

Execute this batch script via:

1 mpirun -np 2 Rscript allreduce.r

Output:

1 COMM.RANK = 0

2 [1] "Hello: n is 1 sum is 3"

3 COMM.RANK = 1

4 [1] "Hello: n is 2 sum is 3"

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdMPI: Machine Learning: Random Forest

Machine Learning Example: Random Forest

Example: Letter Recognition data from package mlbench (20,000 × 17)

1 [,1] lettr capital letter

2 [,2] x.box horizontal position of box

3 [,3] y.box vertical position of box

4 [,4] width width of box

5 [,5] high height of box

6 [,6] onpix total number of on pixels

7 [,7] x.bar mean x of on pixels in box

8 [,8] y.bar mean y of on pixels in box

9 [,9] x2bar mean x variance

10 [,10] y2bar mean y variance

11 [,11] xybar mean x y correlation

12 [,12] x2ybr mean of x^2 y

13 [,13] xy2br mean of x y^2

14 [,14] x.ege mean edge count left to right

15 [,15] xegvy correlation of x.ege with y

16 [,16] y.ege mean edge count bottom to top

17 [,17] yegvx correlation of y.ege with x

P. W. Frey and D. J. Slate (Machine Learning Vol 6/2 March 91): ”Letter Recognition Using Holland-style Adaptive Classifiers”.

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdMPI: Machine Learning: Random Forest

Example: Random Forest Code
(build many simple models from subsets, use model averaging to predict)

Serial Code 4 rf s.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition) # 26 Capital Letters Data 20,000 x 17

4 set.seed(seed =123)

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test ,]

9 test <- LetterRecognition[i_test ,]

10
11 ## train random forest

12 rf.all <- randomForest(lettr ~ ., train , ntree =500, norm.votes=FALSE)

13
14 ## predict test data

15 pred <- predict(rf.all , test)

16 correct <- sum(pred == test$lettr)

17 cat("Proportion Correct:", correct/(n_test), "\n")

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdMPI: Machine Learning: Random Forest

Example: Random Forest Code
(Split learning by blocks of trees. Split prediction by blocks of rows.)

Parallel Code 4 rf p.r

1 library(randomForest)

2 library(mlbench)

3 data(LetterRecognition)

4 comm.set.seed(seed =123, diff=FALSE) # same training data

5 n <- nrow(LetterRecognition)

6 n_test <- floor (0.2*n)

7 i_test <- sample.int(n, n_test) # Use 1/5 of the data to test

8 train <- LetterRecognition[-i_test ,]

9 test <- LetterRecognition[i_test ,][get.jid(n test),]

10
11 comm.set.seed(seed=1e6*runif(1), diff=TRUE)

12 my.rf <- randomForest(lettr ~ ., train , ntree =500%/%comm.size(), norm.votes=FALSE)

13 rf.all <- do.call(combine, allgather(my.rf))

14
15 pred <- predict(rf.all , test)

16 correct <- allreduce(sum(pred == test$lettr))

17 comm.cat("Proportion Correct:", correct/(n_test), "\n")

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdDMAT

Distributed Matrix and Vector Operations

A matrix is mapped to a processor grid shape

[
0 1 2 3 4 5

]

(a) 1 × 6

[
0 1 2
3 4 5

]

(b) 2 × 3




0 1
2 3
4 5




(c) 3 × 2




0
1
2
3
4
5




(d) 6 × 1

Table: Processor Grid Shapes with 6 Processors

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdDMAT

Distributed Matrix and Vector Operations pbdDMAT

Powered by ScaLAPACK, PBLAS, and BLACS (MKL, SciLIB, or ACML)

Block-cyclic data layout for scalability and efficiency

No change in R syntax

High-level convenience for data layout redistributions

Row-major data: read row-block then convert to block-cyclic
Column-major data: read column-block then convert to block-cyclic

Global and local views of block-cyclic on a 2 × 3 processor grid


x11 x12 x13 x14 x15 x16 x17 x18 x19
x21 x22 x23 x24 x25 x26 x27 x28 x29
x31 x32 x33 x34 x35 x36 x37 x38 x39
x41 x42 x43 x44 x45 x46 x47 x48 x49
x51 x52 x53 x54 x55 x56 x57 x58 x59
x61 x62 x63 x64 x65 x66 x67 x68 x69
x71 x72 x73 x74 x75 x76 x77 x78 x79
x81 x82 x83 x84 x85 x86 x87 x88 x89
x91 x92 x93 x94 x95 x96 x97 x98 x99


9×9


x11 x12 x17 x18
x21 x22 x27 x28
x51 x52 x57 x58
x61 x62 x67 x68
x91 x92 x97 x98


5×4


x13 x14 x19
x23 x24 x29
x53 x54 x59
x63 x64 x69
x93 x94 x99


5×3


x15 x16
x25 x26
x55 x56
x65 x66
x95 x96


5×2

x31 x32 x37 x38
x41 x42 x47 x48
x71 x72 x77 x78
x81 x82 x87 x88


4×4


x33 x34 x39
x43 x44 x49
x73 x74 x79
x83 x84 x89


4×3


x35 x36
x45 x46
x75 x76
x85 x86


4×2

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR pbdDMAT

ppppppbbbbbbddddddRRRRRR No change in syntax. Data redistribution functions.

1 x <- x[-1, 2:5]

2 x <- log(abs(x) + 1)

3 x.pca <- prcomp(x)

4 xtx <- t(x) %*% x

5 ans <- svd(solve(xtx))

The above (and over 100 other functions) runs on 1 core with R
or 10,000 cores with ppppppbbbbbbddddddRRRRRR ddmatrix class

1 > showClass("ddmatrix")

2 Class "ddmatrix" [package "pbdDMAT"]

3 Slots:

4 Name: Data dim ldim bldim ICTXT

5 Class: matrix numeric numeric numeric numeric

1 > x <- as.rowblock(x)

2 > x <- as.colblock(x)

3 > x <- redistribute(x, bldim=c(8, 8), ICTXT = 0)

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR rSVD

Truncated SVD from random projections1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ALGORITHMS FOR MATRIX APPROXIMATION 227

Prototype for Randomized SVD
Given an m × n matrix A, a target number k of singular vectors, and an
exponent q (say, q = 1 or q = 2), this procedure computes an approximate
rank-2k factorization UΣV ∗, where U and V are orthonormal, and Σ is
nonnegative and diagonal.
Stage A:
1 Generate an n× 2k Gaussian test matrix Ω.
2 Form Y = (AA∗)qAΩ by multiplying alternately with A and A∗.
3 Construct a matrix Q whose columns form an orthonormal basis for

the range of Y .
Stage B:
4 Form B = Q∗A.
5 Compute an SVD of the small matrix: B = ŨΣV ∗.
6 Set U = QŨ .
Note: The computation of Y in step 2 is vulnerable to round-off errors.
When high accuracy is required, we must incorporate an orthonormalization
step between each application of A and A∗; see Algorithm 4.4.

The theory developed in this paper provides much more detailed information
about the performance of the proto-algorithm.

• When the singular values of A decay slightly, the error ‖A − QQ∗A‖ does
not depend on the dimensions of the matrix (sections 10.2–10.3).

• We can reduce the size of the bracket in the error bound (1.8) by combining
the proto-algorithm with a power iteration (section 10.4). For an example,
see section 1.6 below.

• For the structured random matrices we mentioned in section 1.4.1, related
error bounds are in force (section 11).

• We can obtain inexpensive a posteriori error estimates to verify the quality
of the approximation (section 4.3).

1.6. Example: Randomized SVD. We conclude this introduction with a short
discussion of how these ideas allow us to perform an approximate SVD of a large data
matrix, which is a compelling application of randomized matrix approximation [113].

The two-stage randomized method offers a natural approach to SVD compu-
tations. Unfortunately, the simplest version of this scheme is inadequate in many
applications because the singular spectrum of the input matrix may decay slowly. To
address this difficulty, we incorporate q steps of a power iteration, where q = 1 or
q = 2 usually suffices in practice. The complete scheme appears in the box labeled
Prototype for Randomized SVD. For most applications, it is important to incorporate
additional refinements, as we discuss in sections 4 and 5.

The Randomized SVD procedure requires only 2(q + 1) passes over the matrix,
so it is efficient even for matrices stored out-of-core. The flop count satisfies

TrandSVD = (2q + 2) k Tmult +O(k
2(m+ n)),

where Tmult is the flop count of a matrix–vector multiply with A or A∗. We have the
following theorem on the performance of this method in exact arithmetic, which is a
consequence of Corollary 10.10.

Theorem 1.2. Suppose that A is a real m × n matrix. Select an exponent q
and a target number k of singular vectors, where 2 ≤ k ≤ 0.5min{m,n}. Execute the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

244 N. HALKO, P. G. MARTINSSON, AND J. A. TROPP

Algorithm 4.3: Randomized Power Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � Gaussian random matrix Ω.
2 Form the m× � matrix Y = (AA∗)qAΩ via alternating application

of A and A∗.
3 Construct an m× � matrix Q whose columns form an orthonormal

basis for the range of Y , e.g., via the QR factorization Y = QR.
Note: This procedure is vulnerable to round-off errors; see Remark 4.3. The
recommended implementation appears as Algorithm 4.4.

Algorithm 4.4: Randomized Subspace Iteration
Given an m× n matrix A and integers � and q, this algorithm computes an
m× � orthonormal matrix Q whose range approximates the range of A.
1 Draw an n× � standard Gaussian matrix Ω.
2 Form Y0 = AΩ and compute its QR factorization Y0 = Q0R0.
3 for j = 1, 2, . . . , q

4 Form Ỹj = A∗Qj−1 and compute its QR factorization Ỹj = Q̃jR̃j .

5 Form Yj = AQ̃j and compute its QR factorization Yj = QjRj .
6 end
7 Q = Qq.

Algorithm 4.3 targets the fixed-rank problem. To address the fixed-precision
problem, we can incorporate the error estimators described in section 4.3 to obtain
an adaptive scheme analogous with Algorithm 4.2. In situations where it is critical to
achieve near-optimal approximation errors, one can increase the oversampling beyond
our standard recommendation � = k + 5 all the way to � = 2k without changing
the scaling of the asymptotic computational cost. A supporting analysis appears in
Corollary 10.10.

Remark 4.3. Unfortunately, when Algorithm 4.3 is executed in floating-point
arithmetic, rounding errors will extinguish all information pertaining to singular
modes associated with singular values that are small compared with ‖A‖. (Roughly,
if machine precision is µ, then all information associated with singular values smaller
than µ1/(2q+1) ‖A‖ is lost.) This problem can easily be remedied by orthonormalizing
the columns of the sample matrix between each application of A and A∗. The result-
ing scheme, summarized as Algorithm 4.4, is algebraically equivalent to Algorithm 4.3
when executed in exact arithmetic [93, 125]. We recommend Algorithm 4.4 because
its computational costs are similar to those of Algorithm 4.3, even though the former
is substantially more accurate in floating-point arithmetic.

4.6. An Accelerated Technique for General Dense Matrices. This section de-
scribes a set of techniques that allow us to compute an approximate rank-� factor-
ization of a general dense m× n matrix in roughly O(mn log(�)) flops, in contrast to
the asymptotic cost O(mn�) required by earlier methods. We can tailor this scheme
for the real or complex case, but we focus on the conceptually simpler complex case.
These algorithms were introduced in [138]; similar techniques were proposed in [119].

The first step toward this accelerated technique is to observe that the bottleneck
in Algorithm 4.1 is the computation of the matrix product AΩ. When the test matrix

Serial R

1 rSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− matrix(rnorm(n*2*k),
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q(qr (Y))
8 At <− t (A)
9 f o r (i i n 1 : q)

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q(qr (Y))
13 Y <− A %∗% Q
14 Q <− qr .Q(qr (Y))
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[, 1 : k]
22 }

1Halko, Martinsson, and Tropp. 2011. Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions SIAM Review 53 217–288

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR rSVD

Truncated SVD from random projections

Serial R

1 rSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− m a t r i x (rnorm (n∗2∗k) ,

nrow=n , n c o l=2∗k)
5 Y <− A %∗% Omega
6 Q <− qr .Q(qr (Y))
7 At <− t (A)
8 f o r (i i n 1 : q)
9 {

10 Y <− At %∗% Q
11 Q <− qr .Q(qr (Y))
12 Y <− A %∗% Q
13 Q <− qr .Q(qr (Y))
14 }
15
16 ## Stage B
17 B <− t (Q) %∗% A
18 U <− La . svd (B) $u
19 U <− Q %∗% U
20 U[, 1 : k]
21 }

Parallel pbdR

1 rSVD <− f u n c t i o n (A, k , q=3)
2 {
3 ## Stage A
4 Omega <− ddmatrix(”rnorm”,
5 nrow=n, ncol=2*k)
6 Y <− A %∗% Omega
7 Q <− qr .Q(qr (Y))
8 At <− t (A)
9 f o r (i i n 1 : q)

10 {
11 Y <− At %∗% Q
12 Q <− qr .Q(qr (Y))
13 Y <− A %∗% Q
14 Q <− qr .Q(qr (Y))
15 }
16
17 ## Stage B
18 B <− t (Q) %∗% A
19 U <− La . svd (B) $u
20 U <− Q %∗% U
21 U[, 1 : k]
22 }

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR rSVD

From journal to scalable code and scaling data in one day.

●●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 128
Cores

S
pe

ed
up

Algorithm ● ●full randomized

30 Singular Vectors from a 100,000 by 1,000 Matrix

●

●
●

●

●
●

●

5

10

15

1 2 4 8 16 32 64 128
Cores

S
pe

ed
up

30 Singular Vectors from a 100,000 by 1,000 Matrix
Speedup of Randomized vs. Full SVD

Speedup relative to 1 core rSVD speedup relative to full SVD

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR Benchmarking (134 GB) SVD Calculations with ppppppbbbbbbddddddRRRRRR

host: eos host: rhea host: titan

100

200

500

1000

2500

25 50 100 200 25 50 100 200 25 50 100 200
Number of Nodes

T
im

e
(s

ec
)

method

rsvd

svd

RSVD vs SVD Performance

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR Benchmarking (134 GB) SVD Calculations with ppppppbbbbbbddddddRRRRRR

host: eos host: rhea host: titan

50

100

200

500

1000

2500

100 1000 5000 100 1000 5000 100 1000 5000
Number of Cores

T
im

e
(s

ec
)

as.factor(npernode)

2

16

method

rsvd

svd

RSVD vs SVD Performance

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR Benchmarking (134 GB) SVD Calculations with ppppppbbbbbbddddddRRRRRR

1 suppressMessages(library(rhdf5))

2 suppressMessages(library(pbdDMAT , quiet=TRUE))

3 suppressMessages(library(pbdML , quiet=TRUE))

4
5 start.time = Sys.time()

6 init.grid()

7 end.time = Sys.time()

8 barrier()

9 comm.print(paste("initgrid = ", end.time - start.time))

10
11 args = commandArgs(trailingOnly = TRUE)

12
13 meth = args[1]

14 npernode = strtoi(args[2])

15 n_keep = strtoi(args[3])

16 block_row = strtoi(args[4])

17 block_col = strtoi(args[5])

18
19 nproc <- comm.size()

20
21 rows <- 12390000 %/% nproc

22 cols <- 1250

23
24 len <- rows*cols*4

25 start <- comm.rank()*len

26
27 ## this one has individual files

28
29 if (nproc == 2) fn <- paste("X/X2", comm.rank(), "h5", sep=".")

30 if (nproc == 4) fn <- paste("X/X4", comm.rank(), "h5", sep=".")

31 if (nproc == 5) fn <- paste("X/X5", comm.rank(), "h5", sep=".")

32 if (nproc == 10) fn <- paste("X/X10", comm.rank(), "h5", sep=".")

33 if (nproc == 20) fn <- paste("X/X20", comm.rank(), "h5", sep=".")

34 if (nproc == 100) fn <- paste("X/X100", comm.rank(), "h5", sep=".")

35 if (nproc == 200) fn <- paste("X/X200", comm.rank(), "h5", sep=".")

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR Benchmarking (134 GB) SVD Calculations with ppppppbbbbbbddddddRRRRRR

36 if (nproc == 400) fn <- paste("X/X400", comm.rank(), "h5", sep=".")

37 if (nproc == 600) fn <- paste("X/X600", comm.rank(), "h5", sep=".")

38 if (nproc == 1000) fn <- paste("X/X1000", comm.rank(), "h5", sep=".")

39 if (nproc == 2000) fn <- paste("X3/X2000", comm.rank(), "h5", sep=".")

40 if (nproc == 3000) fn <- paste("X3/X3000", comm.rank(), "h5", sep=".")

41 if (nproc == 5000) fn <- paste("X5/X5000", comm.rank(), "h5", sep=".")

42 if (nproc == 30000) fn <- paste("X/X30000", comm.rank(), "h5", sep=".")

43
44 start.time = Sys.time()

45 A <- h5read(fn , "/dataset")

46 end.time = Sys.time()

47 barrier()

48 comm.print(paste("io = ", end.time - start.time))

49
50 ## comm.print(A[1:5, 1:5], all.rank = TRUE)

51 ## comm.print(dim(A), all.rank = TRUE)

52 start.time = Sys.time()

53 A <- new("ddmatrix", Data=A, dim=c(12390000 , 1250), ldim=dim(A), bldim=dim(A),

ICTXT=2)

54
55 ## comm.print(dim(submatrix(A)), all.rank = TRUE)

56 ## comm.print(submatrix(A)[1:5, 1:5], all.rank = TRUE)

57 ## comm.print(A, all.rank = TRUE)

58
59 A <- as.blockcyclic(A, bldim = c(block_row , block_col))

60
61 ## comm.print(A[1:5, 1:5], all.rank = TRUE)

62 ## comm.print(dim(A), all.rank = TRUE)

63
64 end.time = Sys.time()

65 barrier()

66 comm.print(paste("blockcyclic = ", end.time - start.time))

67
68 ## comm.print(A, all.rank = TRUE)

69 ## comm.print(submatrix(A)[1:5, 1:5], all.rank = TRUE)

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

ppppppbbbbbbddddddRRRRRR Benchmarking (134 GB) SVD Calculations with ppppppbbbbbbddddddRRRRRR

70 comm.print("Starting computation")

71 start.time = Sys.time()

72 if (meth == "rsvd")

73 Res <- rsvd(A, k = n_keep , q = 3, retu = TRUE , retv = TRUE)

74 if (meth == "gpu_rsvd")

75 Res <- rsvd(A, k = n_keep , q = 3, retu = TRUE , retv = TRUE)

76 if (meth == "gpu_svd")

77 Res <- svd(A, nu = n_keep , nv = n_keep)

78 if (meth == "svd")

79 Res <- svd(A, nu = n_keep , nv = n_keep)

80 end.time = Sys.time()

81 barrier()

82 comm.print(paste("compute = ", end.time - start.time))

83
84 comm.print(Res$d)

85 mesg <- paste("Finished ... method =", meth , "nproc =", nproc , "npernode =",

npernode , "keep =", n_keep , "blocking =", block_row)

86 comm.print(mesg)

87
88 finalize()

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

Future Work

Where to learn more?

http://r-pbd.org/

pbdDEMO vignette

Googlegroup:RBigDataProgramming

ppppppbbbbbbddddddRRRRRR Installations: OLCF, NERSC, SDSC, TACC, IU, BSC Spain,
CSCS Switzerland, IT4I Czech, ISM Japan, and many more

Support
This work used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This material is based upon work supported by the National Science Foundation Division of Mathematical Sciences under Grant
No. 1418195.

This work also used resources of National Institute for Computational Sciences at the University of Tennessee, Knoxville, which
is supported by the U.S. National Science Foundation.

ppppppbbbbbbddddddRRRRRR Programming with Big Data in R

http://r-pbd.org/
Google group: RBigDataProgramming

	Introduction to R and HPC
	Speeding Things Up with Compiled Code
	I/O

	blackpblackbblackdblackR
	Cluster Computer Architectures
	The blackpblackbblackdblackR Project
	pbdMPI
	pbdMPI: Machine Learning: Random Forest
	pbdDMAT
	rSVD
	Benchmarking (134 GB) SVD Calculations with blackpblackbblackdblackR

	Future Work

