### **Probing TeV Physics in the Nucleon using large scale simulations of Lattice QCD**

#### Rajan Gupta Laboratory Fellow Theoretical Division Los Alamos National Laboratory, USA



LA-UR 15-25075

Oak Ridge: May 24, 2016

## Collaboration of Collaborations

#### PNDME collaboration

- Tanmoy Bhattacharya
- Vincenzo Cirigliano
- Huey-Wen Lin
- Boram Yoon
- E. Mereghetti
- S. Cohen
- A. Joseph

#### LHPC collaboration

- Michael Engelhardt
- Jeremy Green
- John Negele
- Andrew Pochinsky
- Sergey Syritsyn

Jlab and W&M collaboration

- Balint Joo
- Kostas Orginos
- David Richards
- Frank Winter

Bhattacharya et al, PRD85 (2012) 054512 Bhattacharya et al, PRD89 (2014) 094502 Bhattacharya et al, PRD92 (2015) 114026 Bhattacharya et al, PRL 115 (2015) 212002 Bhattacharya et al, PRD92 (2015) 094511

Yoon et al, arXiv:1601.07737

## Outline

- Physics Motivation
  - $-g_A$
  - Novel Scalar and Tensor Interactions ( $\sim 10^{-3} G_F$ )
  - Novel Sources of CP violation
- Lattice QCD
- Status of control over systematic errors
- $g_A$ ,  $g_S$ ,  $g_T$
- Neutron Electric Dipole Moment

# Why are these calculations interesting and exciting

- Nucleons charges
  - Provide the strength with which nucleons interact
- Form factors
  - How probes at different  $q^2$  couple & see the neutron
  - Size of the nucleon: charge radii
- Neutron Electric Dipole Moment
  - A very sensitive probe of CP violation
  - The universe is observed to be mainly matter
  - Need additional CP violation to explain baryogenesis

## Lattice QCD



- Non-perturbative field theory
- Simulations provide properties of hadrons in terms of quarks and gluons.
- QCD corrections to matrix elements of weak operators

#### Feynman Path Integral Formulation of QCD

$$Z_{QCD} = \int d\psi d\overline{\psi} dA \ e^{-S_G - S_F}$$
$$= \int dA \ \det(M) \ e^{-S_G}$$
$$= \int DA \ e^{-S_G + Tr \ln M}$$



The contribution of the "sea" of each fermion flavor is given by the non-local weight det(M) after integration of  $\psi$ . It depends only on the gauge field  $U_{\mu} = \exp\{iaA_{\mu}\}$  and the quark mass *m*.

M is the discretized Dirac Action: a  $(3x4xLxLxT)^2$  sparse matrix  $S_F = \int d^4 x \, \overline{\psi}(x) (iD + m) \psi(x) \xrightarrow{lattice} \sum_{i,j} \overline{\psi}_i M_{ij} \psi_j$ 

Physics is extracted from expectation values given by

$$\left< \Omega \right> = \int DA \ \Omega e^{-S_G + Tr \ln M}$$

#### What hogs the computer time? Inversion of the Dirac matrix

 $S_F(x,y) = \frac{1}{M(x,y)}$  where the Dirac Action =  $\overline{\psi}(x)M(x,y)\psi(y)$ 

 $S_F(x,y)$  is the non-perturbative Feynman propagator: Amplitude of a quark to go from source x to sink y



A very useful identity:  $S_F(x,y) = \gamma_5 S_F^+(y,x) \gamma_5$ 

**Propagation of stable states in Euclidean time** 







 $H_{int}$  is made up of quark bilinears  $\bar{u}\gamma_{\mu}d(\vec{q})$ 

Need to calculate two types of Feynman diagrams: "connected" and "disconnected"



#### Connected

#### Disconnected

## A number of matrix elements within nucleon states become accessible

- Iso-vector charges  $g_A$ ,  $g_S$ ,  $g_T$
- Axial vector form factors
- Vector form factors
- Flavor diagonal matrix elements
- Quark EDM and quark chromo EDM
- Generalized Parton Distribution Functions

 $\begin{array}{l} \left\langle p | \overline{u} \Gamma d | n \right\rangle \\ \left\langle p(\vec{q}) | \overline{u} \gamma_{\mu} \gamma_{5} d(\vec{q}) | n(0) \right\rangle \\ \left\langle p(\vec{q}) | \overline{u} \gamma_{\mu} d(\vec{q}) | n(0) \right\rangle \\ \left\langle p | \overline{q} q | p \right\rangle \end{array}$ 

## I will focus on two quantities

- Iso-vector scalar and tensor charges needed to probe novel scalar and tensor interactions at the TeV scale.
- g<sub>A</sub> is the benchmark charge
- The contributions of the
  \* Θ-term,
  - \* quark EDM
  - \* quark chromo EDM
  - to the neutron electric dipole moment





Status of numerical simulations being done on Titan at OLCF

> As Titan hums we shake off slumber sharping our tools dive into the frigid neutron in the outpour of numbers hides the cosmic structure

#### Achieving <10% uncertainty in nuclear charges $< p|\overline{u} \Gamma d|n >$



- Reached 10% uncertainty in nuclear charges. It required:
  - High Statistics (O(50,000) O(128,000) measurements)
  - Demonstrating control over all Systematic Errors:
    - · Contamination from excited states
    - Non-perturbative renormalization of bilinear operators (RI<sub>smom</sub> scheme)
    - Finite volume effects
    - > Chiral extrapolation to physical  $m_u$  and  $m_d$  (simulate at physical point)
    - > Extrapolation to the continuum limit (lattice spacing  $a \rightarrow 0$ )

 $m_{s}$  "tuned" to its physical value using  $M_{s\bar{s}}$ 

 $M_{d} = m_{u}$  is lowered to its physical value displaying the dependence of physical quantities on the quark mass

| a(fm) | Lattice<br>Volume     | M <sub>π</sub> L | M <sub>π</sub><br>(MeV) | # of<br>Configs | HP<br>Measure | Low-precision<br>Measure |
|-------|-----------------------|------------------|-------------------------|-----------------|---------------|--------------------------|
| 0.114 | 32 <sup>3</sup> × 96  | 5.55             | 316                     | 1000            | 4x1000        | 128x1000                 |
| 0.081 | 32 <sup>3</sup> × 64  | 4.08             | 312                     | 1005            | 3x1005        | 96x1005                  |
| 0.080 | 48 <sup>3</sup> × 96  | 4.09             | 210                     | 629             | 4x629         | 128x629                  |
| 0.080 | 64 <sup>3</sup> x 128 | 5.46             | 210                     | 350             | 5x350         | 160x350                  |

## AMA analysis on 4 ensembles

$$C_{AMA} = \frac{1}{N_{LP}} \sum C_{LP} + \frac{1}{N_{HP}} \sum (C_{HP} - C_{LP})$$

Blum, Izubuchi, Shintani, PRD88, 094503 (2013)

- LP=Low precision; HP=high-precision
- Cost: 64 LP measurements  $\approx$  4(HP-LP) bias correction
- 128 well-separated source points on 4 time slices. (use random source points for smaller correlations compared to fixed source locations)
- A low cost way to improve statistics (≈16x)

Next level of precision requires: O(2000) configurations with O(100) AMA measurements on each.

## Reducing excited state contamination: 3-pt fn. Assuming 1 excited state, the 3-point function is given by $\Gamma^{3}(t_{f},t,t_{i}) = |A_{0}|^{2} \langle 0|O|0 \rangle e^{-M_{0}\Delta t} + |A_{1}|^{2} \langle 1|O|1 \rangle e^{-M_{0}\Delta t} e^{-\Delta M\Delta t} + A_{0}A_{1}^{*} \langle 0|O|1 \rangle e^{-M_{0}\Delta t} e^{-\Delta M(\Delta t-t)} + A_{0}^{*}A_{1} \langle 1|O|0 \rangle e^{-\Delta M t} e^{-M_{0}\Delta t}$

Where  $M_0$  and  $M_1$  are the masses of the ground & excited state and  $A_0$  and  $A_1$  are the corresponding amplitudes.



Make a simultaneous fit to data at multiple  $\Delta t = t_{sep} = t_f - t_i$ 

#### **Manifestation of excited state contamination**



## Signal for the charges



#### Renormalization of bilinear operators

• Non-perturbative renormalization factors  $Z_{\Gamma}$  using the RI-sMOM scheme  $(p_1^2 = p_2^2 = q^2)$ 

- Need quark propagator in momentum space

- Need to demonstrate: there exists a window  $\Lambda_{QCD} << p << \pi/a$
- Smearing introduces artifacts
  - Gluon momentum above  $(\sim 1/a)$  are averaged out
  - May shrink the  $\Lambda_{QCD} \ll p \ll \pi/a$  window
- Renormalized results presented in  $\overline{MS}@2$  GeV:
  - 2-loop matching
  - 3-loop running to 2 GeV



Analyzing lattice data  $\Omega(a, M_{\pi}, M_{\pi}L)$ : Extrapolations in  $a, M_{\pi}^2, M_{\pi}L$ 

We use lowest order corrections when fitting lattice data w.r.t.

- Lattice spacing: a
- Dependence on light quark mass:  $m_q \sim M_{\pi}^2$
- Finite volume:  $M_{\pi}L$

$$g(a, M_{\pi}, L) = g + A a + B M_{\pi}^{2} + C e^{-M_{\pi}L} + \dots$$

AMA: Simultaneous extrapolation in *a*,  $M_{\pi}^2$ ,  $M_{\pi}L$ 



Status of results on iso-vector charges (preliminary– to appear June, 2016)

\*\* 
$$g_A = 1.23$$
  
\*\*  $g_S = 1.02$   
\*\*\*  $g_T = 1.01$ 

Expt.  $g_A = 1.276(3)$ 

Vector and Axial form-factors



What is needed for obtaining isovector charges with 2% total errors?

2000 lattices (10–15K trajectories) with large volume  $M_{\pi} L \ge 4$ 

a = 0.1, 0.075, 0.05 fm $M_{\pi} = 300, 200, 140 \text{ MeV}$ 

O(200,000) measurements

This is attainable by 2020

What is needed for obtaining isovector charges with 2% total errors?

2000 lattices (10–15K trajectories) with large volume  $M_{\pi} L \ge 4$ 

a = 0.1, 0.08, 0.05 fm $M_{\pi} = 300, 200, 140 \text{ MeV}$ 

O(200,000) measurements

This is attainable by 2020

#### **Constraints on** $[\varepsilon_S, \varepsilon_T]$ : $\beta$ -decay versus LHC



- LHC can provide constraints comparable to low-energy ones with  $\delta g_S/g_S \sim 10\%$  and b,  $b_v \sim 10^{-3}$
- LHC @ 14 TeV and 300 fb<sup>-1</sup>: look for events with an electron and missing energy at high transverse mass



## Neutron Electric Dipole Moment

- New (larger) CP violation needed to explain weak scale Baryogenesis
- All CPV interactions contribute to the nEDM
- nEDM provides stringent constraints on BSM theories
- Need precise values of matrix elements of CP violating effective operators to convert bounds on nEDM into bounds on BSM parameters.



## nEDM: History & Promise



e cm

 $d_n \le 2.9 \times 10^{-26}$ 

Future: UCN experimental sensitivity:  $S \propto E \sqrt{N\tau}$ 

• ORNL

- Sussex
- ILL
- PSI
- Munich
- TRIUMF
- LANL

## Principle of the Measurement

 $E \wedge B$  VFor B ~ 10mG v = 30 Hz

$$v = -[2\mu_n B \pm 2d_n E] / h$$
$$\Delta v = -4d_n E / h$$
$$d_n = h \frac{\Delta v}{4E}$$

For E = 50kV/cm  $d_n = 4x10^{-27}e \cdot cm$   $\Delta v = 0.2 \mu Hz$ (~60 days for  $2\pi$  rotation) Sensitivity of Ramsey Method

$$S \propto E \sqrt{N\tau}$$



#### **Quark Chromo EDM: 4-pt functions**



## **Connected Contribution**









## **Disconnected Contribution**









#### Reweight by the ratio of determinants

$$\frac{Det[\mathcal{D} + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{SW}G_{\mu\nu} + i\varepsilon\tilde{G}_{\mu\nu})]}{Det[\mathcal{D} + m - \frac{r}{2}D^2 + c_{SW}\Sigma^{\mu\nu}G_{\mu\nu}]}$$

$$= \exp\{Tr Ln[1 + i\varepsilon \Sigma^{\mu\nu} \tilde{G}_{\mu\nu} (D + m - \frac{r}{2}D^{2} + c_{SW} \Sigma^{\mu\nu} G_{\mu\nu})^{-1}]\}$$

$$\approx \exp\{Tr \, i\varepsilon \Sigma^{\mu\nu} \tilde{G}_{\mu\nu} (D + m - \frac{r}{2}D^2 + c_{SW} \Sigma^{\mu\nu} G_{\mu\nu})^{-1}\}\$$



### Does the method work?

With CP violation 
$$u_N(p)_N \overline{u}(p) = e^{i\alpha_N \gamma_5} (ip + M_N) e^{i\alpha_N \gamma_5}$$

2-pt function: The phase  $\alpha$  should be linear in  $\varepsilon$  for small  $\varepsilon$ 



## Connected part of F<sub>3</sub> with the chromo EDM operator



## What Next

- Write up all the results obtained this year
- Develop and demonstrate signal (10% error) in all the pieces of the chromo EDM operator
- Resources for generating the lattices to do a credible study versus a,  $M_{\pi}$  and the lattice volume