
PaRSEC: Distributed task-
based runtime for

scalable applications

George Bosilca

1

A history of computing paradigms

Heterogeneity Concurrency*

Resiliency

SYNC

BSP & early
message passing

MPI + X

SYNC
SYNC

MPI + X + Y

• Difficult to express the potential algorithmic parallelism
• Control flow
• Software became an amalgam of algorithm, data distribution and architecture

characteristics
• Increasing gaps between the capabilities of today’s programming

environments, the requirements of emerging applications, and the
challenges of future parallel architectures

• What is productivity ?

SYNC

MPI + X + Y + Z + …

Co
nc

ep
ts

• Clear separation of concerns: compiler optimize
each task class, developer describe
dependencies between tasks, the runtime
orchestrate the dynamic execution

• Interface with the application developers
through specialized domain specific languages
(PTG/JDF, Python, insert_task, fork/join, …)

• Separate algorithms from data distribution
• Make control flow executions a relic

Ru
nt

im
e

• Permeable portability layer for
heterogeneous architectures

• Scheduling policies adapt every
execution to the hardware &
ongoing system status

• Data movements between
producers and consumers are
inferred from dependencies.
Communications/computations
overlap naturally unfold

• Coherency protocols minimize
data movements

• Memory hierarchies (including
NVRAM and disk) integral part of
the scheduling decisions

PaRSEC: a generic runtime
system for asynchronous,
architecture aware scheduling
of fine-grained tasks on
distributed many-core
heterogeneous architectures

The PaRSEC framework

Cores Memory
Hierarchies

Coherence
Data

Movement Accelerators

Data
Movement

Pa
ra

lle
l R

un
tim

e
Ha

rd
w

ar
e

Do
m

ai
n

Sp
ec

ifi
c

Ex
te

ns
io

ns

Scheduling
SchedulingDistributed

Scheduling

Data Collections

Compact
Representation -

PTG

Dynamic Discovered
Representation -

DTG

Specialized
KernelsSpecialized

KernelsSpecialized
Kernels

Tasks
TasksTask
classes

Hard
core

Dense LA … Sparse LA Chemistry

*

DataDataData

*…

The PaRSEC machine model
• Execution flow execute tasks

sequentially
• Can be bound to physical cores or can

oversubscribe a resource

• A domain is a collection of
execution flows with particular
hardware properties: memory
locality, similar computing
capabilities, …

• A Virtual Process is a
localization domain defining
the scope of automatic
migration/delocalization
• Multiple VP can coexist on the same physical node

• Replicate over the total number
of nodes

D
om

ai
n

D
om

ai
n

D
om

ai
n

Virtual Process

D
om

ai
n

D
om

ai
n

Virtual Process

Ph
ys

ic
al

 N
od

e

D
om

ai
n

D
om

ai
n

D
om

ai
n

Virtual Process

D
om

ai
n

D
om

ai
n

Virtual Process

Ph
ys

ic
al

 N
od

e

D
om

ai
n

D
om

ai
n

D
om

ai
n

Virtual Process

D
om

ai
n

D
om

ai
n

Virtual Process

Ph
ys

ic
al

 N
od

e

D
om

ai
n

D
om

ai
n

D
om

ai
n

Virtual Process

D
om

ai
n

D
om

ai
n

Virtual Process

Ph
ys

ic
al

 N
od

e

D
om

ai
n

D
om

ai
n

D
om

ai
n

Virtual Process

D
om

ai
n

D
om

ai
n

Virtual Process

Ph
ys

ic
al

 N
od

e

D
om

ai
n

D
om

ai
n

D
om

ai
n

Virtual Process

D
om

ai
n

D
om

ai
n

Virtual Process

Ph
ys

ic
al

 N
od

e

User defined

Runtime defined

What is a task?
• An execution unit taking a set of input data

and generating, upon completion, a different set
of output data

6

Bernstein conditions

Data collections

Graph of tasks

The PaRSEC data
• A data is a manipulation token, the basic logical

element used in the description of the dataflow
• Location: have multiple coherent copies (remote

node, device, checkpoint)
• Shape: can have different memory layout
• Visibility: only accessible via the most current

version of the data
• State: can be migrated / logged

• Data collections are ensemble of data
distributed among the nodes
• Can be regular (multi-dimensional matrices)
• Or irregular (sparse data, graphs)
• Can be regularly distributed (cyclic-k) or randomly

• Data View a subset of the data collection used in a
particular algorithm (aka. submatrix, row, column,…)

Runtime defined

User defined

D
at

a
Vi

ew

D
ata Collection

A(k)

v2

v1

v2

• A data-copy is the practical unit of data
• Has a memory layout (think MPI datatype)
• Has a property of locality (device, NUMA domain,

node)
• Has a version associated with
• Multiple instances can coexist

A PaRSEC task
• A task is a state machine
• The state machine is dynamic:
• Can be altered by the runtime based on

available resources
• X and Y computing capability

detected (CUDA, Xeon Phi, …)
• Resilient runtime

• Or can be altered programmatically

• Changing states is based on
the transition return code
• Task delocalization to another (possibly

external) execution domain
• Task resubmission or reinitialization
• Atomic tasks (and many more)

constructor

destructor

scatter

acquire

prologue

hook

epilogue

ready

A PaRSEC task
• A task is a state machine
• The state machine is dynamic:
• Can be altered by the runtime based on

available resources
• X and Y computing capability

detected (CUDA, Xeon Phi, …)
• Resilient runtime

• Or can be altered programmatically

• Changing states is based on
the transition return code
• Task delocalization to another (possibly

external) execution domain
• Task resubmission or reinitialization
• Atomic tasks (and many more)

constructor

validator

acquire

prologue

hook

epilogue

ready

prologue

hook

epilogue

ready

prologue

hook

epilogue

ready

destructor

scatter

• Efficiently in terms of memory and
search

• DAG are often large
• One can hardly afford to generate them

ahead of time
• Generate it dynamically only when it is

time
• All input are available remotely
• Enough inputs are available

(prefetch)
• Merge parameterized DAGs with

dynamically generated DAGs

How to describe a graph of tasks ?

How to describe a graph of tasks ?
• Uncountable ways
• Generic: Dagguer (Charm++), Legion, ParalleX,

Parameterized Task Graph (PaRSEC), Dynamic
Task Discovery (StarPU, StarSS), Yvette (XML),
Fork/Join (spawn). CnC

• Application specific: MADNESS

• PaRSEC runtime
• The runtime is agnostic to the domain specific

language (DSL)
• Different DSL interoperate through the data

collections
• The DSL share
• Distributed schedulers
• Communication engine
• Hardware resources
• Data management (coherence,

versioning, …)
• They don’t share
• The task structure
• The dataflow

11

12

The insert_task interface dague_vector_t dDATA;
dague_vector_init(&dDATA, matrix_Integer, matrix_Tile,

nodes, rank,
1, /* tile_size*/
N, /* Global vector size*/
0, /* starting point */
1); /* block size */

dague_context_t* dague;
dague = dague_context_init(NULL, NULL); /* start the PaRSEC engine */

dague_dtd_handle_t* DAGUE_dtd_handle = dague_dtd_handle_new (dague);
dague_enqueue(dague, (dague_handle_t*) DAGUE_dtd_handle);

for(n = 0; n < N; n++) {
dague_insert_task(

DAGUE_dtd_handle,
call_to_kernel_type_write, "Task Name",
PASSED_BY_REF, DATA_AT(&dDATA, n), INOUT | REGION_FULL,
0 /* DONE */);

for(k = 0; k < K; k++) {
dague_insert_task(

DAGUE_dtd_handle,
call_to_kernel_type_read, "Read_Task",
PASSED_BY_REF, DATA_AT(&dDATA, n), INPUT | REGION_FULL,
0 /* DONE */);

}
}

dague_handle_wait(DAGUE_dtd_handle);

Define a distributed
collection of data
(vector)

Start PaRSEC

Create a tasks placeholder
and associate it with the
PaRSEC context

Keep adding tasks. A
configurable window will
limit the number of pending
tasks

Wait ’till completion

The insert_task interface

• Preliminary results
• No collective pattern detection
• No data cache

13

8 nodes * 20 threads16 nodes * 8 threads

The Parameterized Task Graph (JDF)

14

• A dataflow description based on data tracking
• A simple affine description of the algorithm can be understood and

translated by a compiler into a more complex, control-flow free, form
• Abide to all constraints imposed by current compiler technology

FOR k = 0 .. SIZE - 1

 A[k][k], T[k][k] <- GEQRT(A[k][k])

 FOR m = k+1 .. SIZE - 1

 A[k][k]|Up, A[m][k], T[m][k] <-
 TSQRT(A[k][k]|Up, A[m][k], T[m][k])

 FOR n = k+1 .. SIZE - 1

 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

 FOR m = k+1 .. SIZE - 1

 A[k][n], A[m][n] <-
 TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

GEQRT

TSQRT

UNMQR

TSMQR

The Parameterized Task Graph (JDF)

15

GEQRT

TSQRT

UNMQR

TSMQR

FOR k = 0 .. SIZE - 1

 A[k][k], T[k][k] <- GEQRT(A[k][k])

 FOR m = k+1 .. SIZE - 1

 A[k][k]|Up, A[m][k], T[m][k] <-
 TSQRT(A[k][k]|Up, A[m][k], T[m][k])

 FOR n = k+1 .. SIZE - 1

 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

 FOR m = k+1 .. SIZE - 1

 A[k][n], A[m][n] <-
 TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

MEM

n = k+1
m = k+1

k = 0

k = SIZE-1

LOWER

UPPER

Incoming Data
Outgoing Data

• A dataflow description based on data tracking
• A simple affine description of the algorithm can be understood and

translated by a compiler into a more complex, control-flow free, form
• Abide to all constraints imposed by current compiler technology

The Parameterized Task Graph (JDF)

16

GEQRT(k)
/* Execution space */
k = 0..(MT < NT) ? MT-1 : NT-1)

/* Locality */
: A(k, k)

RW A <- (k == 0) ? A(k, k)
: A1 TSMQR(k-1, k, k)

-> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
-> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
-> (k == MT-1) ? A(k, k) [type = UPPER]

WRITE T <- T(k, k)
-> T(k, k)
-> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

/* Priority */
;(NT-k)*(NT-k)*(NT-k)

BODY
zgeqrt(A, T)

END

• The resulting intermediary
language is however more
flexible

• Accept non-dense iterators
• Allow inlined C/C++ code to

augment the language

• JDF Drawbacks:
• Need to know the number of

tasks
• The dependencies had to be

globally (and statically)
defined prior to the execution
• No dynamic DAGs
• No data dependent

DAGs

Control flow is eliminated, therefore
maximum parallelism is possible

DPLASMA = ScaLAPACK interface & PaRSEC capabilities

Original pseudo- or PLASMA code is
converted by a preprocessor into
PaRSEC internal representation
(shown below)

Dataflow representation is assembled
with the runtime to create a set of
executable parameterized tasks (PT),
which can execute the kernels, and
unfold successors in the graph

Serial
Code

PaRSEC
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
librariesMPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

PaRSEC Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

1

1

2

2

GEQRT(k)
/* Execution space */
k = 0..(MT < NT) ? MT-1 : NT-1)
/* Locality */
: A(k, k)
RW A <- (k == 0) ? A(k, k)

: A1 TSMQR(k-1, k, k)
-> (k < NT-1) ? A UNMQR(k, k+1 .. NT-1) [type = LOWER]
-> (k < MT-1) ? A1 TSQRT(k, k+1) [type = UPPER]
-> (k == MT-1) ? A(k, k) [type = UPPER]

WRITE T <- T(k, k)
-> T(k, k)
-> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

/* Priority */
;(NT-k)*(NT-k)*(NT-k)

Intermediate
dataflow
representation

FOR k = 0 .. SIZE - 1

 A[k][k], T[k][k] <- GEQRT(A[k][k])

 FOR m = k+1 .. SIZE - 1

 A[k][k]|Up, A[m][k], T[m][k] <-
 TSQRT(A[k][k]|Up, A[m][k], T[m][k])

 FOR n = k+1 .. SIZE - 1

 A[k][n] <- UNMQR(A[k][k]|Low, T[k][k], A[k][n])

 FOR m = k+1 .. SIZE - 1

 A[k][n], A[m][n] <-
 TSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

Tiled	QR	algorithm:	how	
kernels	are	applied	 on	
the	matrix	during	an	
iteration	k

GEQRT

TSQRT

UNMQR

TSMQR

DPLASMA = ScaLAPACK
+ PaRSEC

Keeneland

 0

 5

 10

 15

 20

 25

 768 2304 4032 5760 7776 10080 14784 19584 23868

P
E

R
F

O
R

M
A

N
C

E
 (

T
F

L
O

P
/S

)

NUMBER OF CORES

DGEQRF performance strong scaling

LibSCI Scalapack

Systolic QR over PaRSEC (2D)Systolic QR over PULSAR

DPLASMA HQR (best single tree)

Cray XT5 (Kraken) - N = M = 41,472

What
about LU ?

Sparse supportAdvanced examples Sparse direct solver over GPUs: PaStiX

Tasks structure

POTRF
TRSM
SYRK
GEMM

(a) Dense tile task decomposition (b) Decomposition of the task
applied while processing one panel

M. Faverge - ANR SOLHAR July 3, 2014- 57

Advanced examples Sparse direct solver over GPUs: PaStiX

DAG representation

POTRF

TRSM

T=>T

TRSM

T=>T

TRSM

T=>T TRSM

T=>T

GEMM

C=>B

GEMM

C=>B

GEMM

C=>B

SYRK

C=>A C=>A

SYRK

C=>A

GEMM

C=>B

GEMM

C=>B

GEMM

C=>C

SYRK

T=>T

C=>A C=>A

SYRK

C=>A

GEMM

C=>B

GEMM

C=>C

GEMM

C=>C

SYRK

T=>T

C=>A C=>AC=>A SYRK

C=>A

TRSM

C=>C

TRSM

C=>C

TRSM

C=>C

POTRF

T=>T

T=>T T=>TT=>T

C=>B

SYRK

C=>A C=>B C=>A C=>AC=>B

T=>T

GEMM

C=>C

SYRK

T=>T

SYRK

T=>T

C=>A C=>A C=>A

TRSM

C=>C POTRF

T=>T

T=>T

TRSM

T=>T

C=>C

C=>A C=>B

SYRK

T=>T

C=>AC=>A

POTRF

T=>T

TRSM

C=>C

T=>T

C=>A

POTRF

T=>T

(c) Dense DAG

panel(7)

gemm(19)

A=>A

gemm(20)

A=>A

gemm(21)

A=>Agemm(22)

A=>A

gemm(23)

A=>A

gemm(24)

A=>A

gemm(25)

A=>A

C=>C

C=>C

panel(8)

C=>A

gemm(27)

C=>C

C=>C

gemm(29)

C=>C

gemm(31)

C=>C A=>A

gemm(28)

A=>A

A=>A

gemm(30)

A=>A

A=>A

C=>C

panel(9)

C=>A

C=>C

gemm(33)

C=>C

gemm(36)

C=>C

panel(0)

gemm(1)

A=>A

gemm(2)

A=>Agemm(3)

A=>A

gemm(4)

A=>A

C=>C

panel(1)

C=>A

C=>C

gemm(6)

C=>C

A=>A

gemm(8)

C=>C

gemm(10)

C=>C

panel(5)

gemm(14)

A=>A

gemm(15)

A=>A

panel(6)

C=>A

gemm(17)

C=>C A=>A

C=>C

panel(2)

A=>A

gemm(12)

C=>C

panel(3)

A=>A

C=>C

panel(4)

A=>A

gemm(37)

C=>C

A=>A A=>A

gemm(34)

A=>A

gemm(35)

A=>A

A=>A

gemm(38)

A=>A C=>C

C=>C

panel(10)

C=>A

C=>C

gemm(40)

C=>C

panel(11)

C=>A

A=>A

(d) Sparse DAG
representation of a
sparse LDLT factorization

M. Faverge - ANR SOLHAR July 3, 2014- 58

Total, Inria Bordeaux, Inria Pau, LaBRI, ICL

NWCHEM 6.5

A Open Source High-Performance Computational Chemistry
Conversion of NWChem CC code into dataflow form not trivial
(CCSD code generated by TCE)
• Control flow is not affine nor statically decidable:

• Loop execution space has holes,
• dataflow goes through external routines,
• conditional branches depend on program data,
• memory access completely hidden in Global Arrays layer,

etc.
à None of the traditional Compiler Analysis tools can be used

Uracil-dimer

inB4(23)

GEMM(23)

ADD_RESULT_IN_MEM(0)

inB4(15)

GEMM(15)

GEMM(16)

DFILL(0)

GEMM(0)

inB4(7)

GEMM(7)

GEMM(8)

GEMM(6)

GEMM(14)

GEMM(22)

inB2(4)

GEMM(4)

inB2(2)

GEMM(2)

inB2(0)

GEMM(1)

inB4(16)

GEMM(17)

inB4(11)

GEMM(11)

inB4(10)

GEMM(10)

inB4(9)

GEMM(9)

inB4(8)

inB4(6)

inB4(5)

GEMM(5)

inB4(3)

GEMM(3)

inB4(1)

inB4(17)

GEMM(18)

inB4(18)

GEMM(19)

inB4(19)

GEMM(20)

GEMM(12)

inB4(20)

GEMM(21)

inB4(12)

GEMM(13)

inB4(21)

inB4(13)

inB4(22)

inB4(14)

Legend

inB_X(i)

GEMM(i)

DFILL()

ADD_RESULT_IN_MEM()

Be
st

 lo
ca

lit
y

bu
t b

ad
 p

ar
al

le
lis

m

Other interactions with PaRSEC
With Teresa Windus, Heike Jagode
and Anthony Danalis

Integration of PaRSEC in CCSD

21

PARSEC-enabled version in 2 steps:
1. Traverse execution space and

evaluate IF branches, without
executing the actual
computation (Since the data
that affects the control flow is
immutable at run-time, this
step only needs to be
performed once)

2. Create PTG – which includes
lookups into our meta-data
vectors populated by step 1.

Elimination of synchronization
points by describing data
dependencies between matrix
blocks
Finer grained (pure) tasks to allow
for exploitation of more parallelism

NWCHEM 6.5

A Open Source High-Performance Computational Chemistry
Conversion of NWChem CC code into dataflow form not trivial
• Control flow is not affine nor statically decidable:

• Loop execution space has holes,
• dataflow goes through external routines,
• conditional branches depend on program data,
• memory access completely hidden in Global Arrays layer,

etc.
à None of the traditional Compiler Analysis tools can be used

Most significant outcomes of porting CC over PARSEC:
1. Ability of expressing tasks and their data dependencies

at a finer granularity
2. Decoupling of computation and communication enable

more advanced communication patterns than serial
chains

Cascade @ EMSL/PNNL

C40H56

Unbounded parallelism

• The only requirement is that upon a task
completion the potential descendants are
known
• Uncountable DAGs
• ” %option nb_local_tasks_fn = …”
• Need user defined global termination

• Add support for dynamic DAGs
• Already in the language
• Properties of the algorithm / tasks
• ”hash_fn = …”
• ”find_deps_fn = …”

23

DIP: Elastodynamic Wave Propagation

24

Geophysics - wave equation

Geophysics simulation

Figure : Elastic wave propagation in 3D (2D slice view)

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 6 / 30

Task based programming Task dataflow

Fine granularity

Figure : Subdivision example

More than one domain per CPU

exhibit deeper parallelism

allow dynamic flexibility

reduce the boundary size

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 18 / 30

Dynamically redistribute the data
- use PAPI counters to estimate the

imbalance
- reshuffle the frontiers to converge

to a load balanced scenario

Geophysics - wave equation

DIVA sequential algorithm

Quasi-explicit reformulation
(
v

n+1
h

= v

n

h

+M

�1
v

[�tR��
n+1/2
h

] UpdateVelocity

�n+3/2
h

= �n+1/2
h

+M

�1
� [�tR

v

v

n+1
h

] UpdateStress

Algorithme 3 : DIVA sequential
Data : N

h

,�
t

,N
t

Result : v
h

, �
h

[v1
h

,�3/2
h

] Initialization(N
h

,�
t

);

for n = 1..N
t

do
for K = 1..N

h

do

v

n+1
h

K

 UpdateVelocity(vn
h

K

,�n+1/2
h

K

,�
t

);

end
for K = 1..N

h

do

�n+3/2
h

K

 UpdateStress(�n+1/2
h

K

, vn+1
h

K

,�
t

);

end

end

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 8 / 30

Runtimes DAG of DIP

DIP algorithm

For n = 1 : n timesteps T

Communication(�n+1/2
h

)

vn+1
h

 computeVelocity(vn

h

,�n+1/2
h

,�
t

)
Communication(vn+1

h

)

�n+3/2
h

 computeStress(�n+1/2
h

, vn+1
h

,�
t

)
End For t

Let’s rename the algorithm steps:

EXCHANGE VS

COMPUTE V

EXCHANGE VV

COMPUTE S

Let’s divide the EXCHANGE task into SEND, RECV and COPY tasks

Lionel BOILLOT (INRIA – TOTAL) HPC: runtime & coprocessors ICL Lunch 13 / 1

Finer grain partitioning compared
with MPI
Increased communications but also
increased potential for parallelism
Need for load-balancing

Total, Inria Bordeaux, Inria Pau, ICL

DIP: Elastodynamic Wave Propagation

25 Total, Inria Bordeaux, Inria Pau, ICL

Numerical illustration

Intel Xeon Phi results - e�ciency

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 60 120 240

e
ff
ic

ie
n
cy

number of threads

Perfect
PaRSEC

MPI

Lionel BOILLOT (Inria) Task-based programming 04-mar-15 22 / 23

N
ot

 ye
t H

T
re

ad
y

Numerical illustration

Trace comparison

Figure: MPI-based t = 2.517s

Figure: PaRSEC version (NUMA-aware, granularity x6) t = 2.060s

Lionel BOILLOT (Inria) Task-based programming 04-mar-15 20 / 23

Numerical illustration

Trace comparison

Figure: MPI-based t = 2.517s

Figure: PaRSEC version (NUMA-aware, granularity x6) t = 2.060s

Lionel BOILLOT (Inria) Task-based programming 04-mar-15 20 / 23

2517s

2060s

Resilience: Data Logging Strategy

• Minimize the amount of tasks reexecutions by logging data
• Checkpoint interval β, a process will save

a copy of each data every β updates.
• Input of failed task:
• The same tile checkpointed at most
β updates ago

• Final output of another task (validated)
• Max number of re-executions is β

for factorizations

Checkpoint Beginning Middle End No Failure

β (NB/N)3 β6(NB/N)3 β6(NB/N)3 0

never (NB/N)3 12.5% 100% 0

β = 2

Checkpoint Beginning Middle End No Failure

β (NB/N)3 β6(NB/N)3 β6(NB/N)3 0

never (NB/N)3 12.5% 100% 0

Resilience: Data Logging Strategy

Conclusions
• Don’t make hardware a serious impediment to

scientific simulation
• Programming must be made easy(ier)
• Portability: inherently take advantage of all hardware capabilities
• Efficiency: deliver the best performance on several families of algorithms

• Build a scientific enabler allowing
different communities to focus on
different problems
• Application developers on their algorithms
• Language specialists on Domain Specific Languages
• System developers on system issues
• Compilers on optimizing the task code

The PaRSEC
ecosystem
• Support for many different types of applications
• Dense Linear Algebra: DPLASMA, MORSE/Chameleon
• Sparse Linear Algebra: PaSTIX
• Geophysics: Total - Elastodynamic Wave Propagation
• Chemistry: NWChem Coupled Cluster, MADNESS,

TiledArray
• *: ScaLAPACK, MORSE/Chameleon

• A set of tools to understand
the performance

29

Physics & Maths background Geophysics context

RTM context

Geophysics:
Hydrocarbons detection: petroleum or natural gas
Earth medium: seismic waves, heterogeneous complex domain

Simulation:
Seismic imaging: find the subsurface layers
Equations: elastic/acoustic wave in 2D/3D

Reverse Time Migration (RTM)

Iterative method based on multiple wave equation resolutions

Lionel BOILLOT (INRIA – TOTAL) HPC: runtime & coprocessors ICL Lunch 7 / 1

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 11. Power Profiles of the Cholesky Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Figure 12. Power Profiles of the QR Factorization.

smaller number of cores. The engine could then decide to
turn off or lower the frequencies of the cores using Dynamic
Voltage Frequency Scaling [16], a commonly used technique
with which it is possible to achieve reduction of energy
consumption.

ACKNOWLEDGMENT

The authors would like to thank Kirk Cameron and Hung-
Ching Chang from the Department of Computer Science at
Virginia Tech, for granting access to their platform.

Cores Library Cholesky QR

128 ScaLAPACK 192000 672000
DPLASMA 128000 540000

256 ScaLAPACK 240000 816000
DPLASMA 96000 540000

512 ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Figure 13. Total amount of energy (joule) used for each test based on the
number of cores

REFERENCES

[1] MPI-2: Extensions to the message passing interface standard.
http://www.mpi-forum.org/ (1997)

[2] Agullo, E., Hadri, B., Ltaief, H., Dongarra, J.: Comparative
study of one-sided factorizations with multiple software pack-
ages on multi-core hardware. SC ’09: Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis pp. 1–12 (2009)

[3] Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Demmel,
J.W., Dongarra, J.J., Croz, J.D., Greenbaum, A., Hammarling,
S., McKenney, A., Sorensen, D.C.: LAPACK User’s Guide,
3rd edn. Society for Industrial and Applied Mathematics,
Philadelphia (1999)

[4] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar,
A., Herault, T., Kurzak, J., Langou, J., Lemarinier, P., Ltaief,
H., Luszczek, P., YarKhan, A., Dongarra, J.: Flexible Devel-
opment of Dense Linear Algebra Algorithms on Massively
Parallel Architectures with DPLASMA. In: the 12th IEEE
International Workshop on Parallel and Distributed Scientific
and Engineering Computing (PDSEC-11). ACM, Anchorage,
AK, USA (2011)

[5] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T.,
Lem arinier, P., Dongarra, J.: DAGuE: A generic dis-
tributed DAG engine for high performance computing.
Tech. Rep. 231, LAPACK Working Note (2010). URL
http://www.netlib.org/lapack/lawnspdf/lawn231.pdf

[6] Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P., Don-
garra, J.: DAGuE: A generic distributed DAG engine for high
performance computing (2011)

[7] Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of
parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing 35(1), 38–53 (2009)

[8] Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrou-
chov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.:
ScaLAPACK, a portable linear algebra library for distributed
memory computers-design issues and performance. Computer
Physics Communications 97(1-2), 1–15 (1996)

[9] Cosnard, M., Jeannot, E.: Compact DAG representation and
its dynamic scheduling. Journal of Parallel and Distributed
Computing 58, 487–514 (1999)

[10] Dongarra, J., Beckman, P.: The International Exascale Soft-
ware Roadmap. International Journal of High Performance
Computer Applications 25(1) (2011)

