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A history of computing paradigms

Heterogeneity Concurrency*

Resiliency

SYNC

BSP & early 
message passing

MPI + X

SYNC
SYNC

MPI + X + Y

• Difficult to express the potential algorithmic parallelism
• Control flow
• Software became an amalgam of algorithm, data distribution and architecture 

characteristics
• Increasing gaps between the capabilities of today’s programming 

environments, the requirements of emerging applications, and the 
challenges of future parallel architectures

• What is productivity ?

SYNC

MPI + X + Y + Z + …
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• Clear separation of concerns: compiler optimize
each task class, developer describe 
dependencies between tasks, the runtime 
orchestrate the dynamic execution

• Interface with the application developers 
through specialized domain specific languages 
(PTG/JDF, Python, insert_task, fork/join, …)

• Separate algorithms from data distribution
• Make control flow executions a relic

Ru
nt

im
e

• Permeable portability layer for 
heterogeneous architectures

• Scheduling policies adapt every 
execution to the hardware & 
ongoing system status

• Data movements between 
producers and consumers are 
inferred from dependencies. 
Communications/computations 
overlap naturally unfold

• Coherency protocols minimize 
data movements

• Memory hierarchies (including 
NVRAM and disk) integral part of 
the scheduling decisions

PaRSEC: a generic runtime 
system for asynchronous, 
architecture aware scheduling 
of fine-grained tasks on 
distributed many-core 
heterogeneous architectures



The PaRSEC framework
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The PaRSEC machine model
• Execution flow execute tasks 

sequentially
• Can be bound to physical cores or can 

oversubscribe a resource

• A domain is a collection of 
execution flows with particular 
hardware properties: memory 
locality, similar computing 
capabilities, …

• A Virtual Process is a 
localization domain defining 
the scope of automatic 
migration/delocalization
• Multiple VP can coexist on the same physical node

• Replicate over the total number 
of nodes
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What is a task?
• An execution unit taking a set of input data

and generating, upon completion, a different set 
of output data

6

Bernstein conditions

Data collections

Graph of tasks



The PaRSEC data
• A data is a manipulation token, the basic logical 

element used in the description of the dataflow
• Location: have multiple coherent copies (remote 

node, device, checkpoint)
• Shape: can have different memory layout
• Visibility: only accessible via the most current 

version of the data
• State: can be migrated / logged

• Data collections are ensemble of data 
distributed among the nodes
• Can be regular (multi-dimensional matrices)
• Or irregular (sparse data, graphs)
• Can be regularly distributed (cyclic-k) or randomly

• Data View a subset of the data collection used in a 
particular algorithm (aka. submatrix, row, column,…)

Runtime defined

User defined

D
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a 
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D
ata Collection

A(k)

v2

v1

v2

• A data-copy is the practical unit of data
• Has a memory layout (think MPI datatype)
• Has a property of locality (device, NUMA domain, 

node)
• Has a version associated with
• Multiple instances can coexist



A PaRSEC task
• A task is a state machine
• The state machine is dynamic:
• Can be altered by the runtime based on 

available resources
• X and Y computing capability 

detected (CUDA, Xeon Phi, …)
• Resilient runtime

• Or can be altered programmatically

• Changing states is based on 
the transition return code
• Task delocalization to another (possibly 

external) execution domain
• Task resubmission or reinitialization
• Atomic tasks (and many more)

constructor

destructor

scatter

acquire

prologue

hook

epilogue

ready



A PaRSEC task
• A task is a state machine
• The state machine is dynamic:
• Can be altered by the runtime based on 

available resources
• X and Y computing capability 

detected (CUDA, Xeon Phi, …)
• Resilient runtime

• Or can be altered programmatically

• Changing states is based on 
the transition return code
• Task delocalization to another (possibly 

external) execution domain
• Task resubmission or reinitialization
• Atomic tasks (and many more)

constructor

validator

acquire

prologue

hook

epilogue

ready

prologue

hook

epilogue

ready

prologue

hook

epilogue

ready

destructor
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• Efficiently in terms of memory and 
search

• DAG are often large
• One can hardly afford to generate them 

ahead of time
• Generate it dynamically only when it is 

time
• All input are available remotely
• Enough inputs are available 

(prefetch)
• Merge parameterized DAGs with 

dynamically generated DAGs

How to describe a graph of tasks ?



How to describe a graph of tasks ?
• Uncountable ways
• Generic: Dagguer (Charm++), Legion, ParalleX, 

Parameterized Task Graph (PaRSEC), Dynamic 
Task Discovery (StarPU, StarSS), Yvette (XML), 
Fork/Join (spawn). CnC

• Application specific: MADNESS

• PaRSEC runtime
• The runtime is agnostic to the domain specific 

language (DSL)
• Different DSL interoperate through the data 

collections
• The DSL share
• Distributed schedulers
• Communication engine
• Hardware resources
• Data management (coherence, 

versioning, …)
• They don’t share
• The task structure
• The dataflow
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The insert_task interface dague_vector_t dDATA;
dague_vector_init( &dDATA, matrix_Integer, matrix_Tile,

nodes, rank,
1, /* tile_size*/
N, /* Global vector size*/
0, /* starting point */
1 );  /* block size */

dague_context_t* dague;
dague = dague_context_init(NULL, NULL);  /* start the PaRSEC engine */

dague_dtd_handle_t* DAGUE_dtd_handle = dague_dtd_handle_new (dague);
dague_enqueue(dague, (dague_handle_t*) DAGUE_dtd_handle);

for( n = 0; n < N; n++ ) {
dague_insert_task(

DAGUE_dtd_handle,
call_to_kernel_type_write,     "Task Name",
PASSED_BY_REF, DATA_AT(&dDATA, n),   INOUT | REGION_FULL,
0 /* DONE */);

for( k = 0; k < K; k++ ) {
dague_insert_task(

DAGUE_dtd_handle,
call_to_kernel_type_read,     "Read_Task",
PASSED_BY_REF,    DATA_AT(&dDATA, n),   INPUT | REGION_FULL,
0  /* DONE */ );

}
}

dague_handle_wait( DAGUE_dtd_handle );

Define a distributed 
collection of data 
(vector)

Start PaRSEC

Create a tasks placeholder 
and associate it with the 
PaRSEC context

Keep adding tasks. A 
configurable window will 
limit the number of pending 
tasks

Wait ’till completion



The insert_task interface

• Preliminary results
• No collective pattern detection
• No data cache

13

8 nodes * 20 threads16 nodes * 8 threads



The Parameterized Task Graph (JDF)
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• A dataflow description based on data tracking
• A simple affine description of the algorithm can be understood and 

translated by a compiler into a more complex, control-flow free, form
• Abide to all constraints imposed by current compiler technology

FOR k = 0 .. SIZE - 1

    A[k][k], T[k][k]  <-  GEQRT( A[k][k] )

    FOR m = k+1 .. SIZE - 1

        A[k][k]|Up, A[m][k], T[m][k]  <-
            TSQRT( A[k][k]|Up, A[m][k], T[m][k] )

    FOR n = k+1 .. SIZE - 1

        A[k][n] <- UNMQR( A[k][k]|Low, T[k][k], A[k][n] )

        FOR m = k+1 .. SIZE - 1

            A[k][n], A[m][n] <-
                TSMQR( A[m][k], T[m][k], A[k][n], A[m][n] )

GEQRT

TSQRT

UNMQR

TSMQR



The Parameterized Task Graph (JDF)
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GEQRT

TSQRT

UNMQR

TSMQR

FOR k = 0 .. SIZE - 1

    A[k][k], T[k][k]  <-  GEQRT( A[k][k] )

    FOR m = k+1 .. SIZE - 1

        A[k][k]|Up, A[m][k], T[m][k]  <-
            TSQRT( A[k][k]|Up, A[m][k], T[m][k] )

    FOR n = k+1 .. SIZE - 1

        A[k][n] <- UNMQR( A[k][k]|Low, T[k][k], A[k][n] )

        FOR m = k+1 .. SIZE - 1

            A[k][n], A[m][n] <-
                TSMQR( A[m][k], T[m][k], A[k][n], A[m][n] )

MEM

n = k+1
m = k+1

k = 0

k = SIZE-1

LOWER

UPPER

Incoming Data
Outgoing Data

• A dataflow description based on data tracking
• A simple affine description of the algorithm can be understood and 

translated by a compiler into a more complex, control-flow free, form
• Abide to all constraints imposed by current compiler technology



The Parameterized Task Graph (JDF)
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GEQRT(k)
/* Execution space */
k = 0..( MT < NT ) ? MT-1 : NT-1 )

/* Locality */
: A(k, k)

RW A <- (k == 0)    ? A(k, k) 
: A1 TSMQR(k-1, k, k)

-> (k < NT-1)  ? A UNMQR(k, k+1 .. NT-1)  [type = LOWER]
-> (k < MT-1)  ? A1 TSQRT(k, k+1) [type = UPPER]
-> (k == MT-1) ? A(k, k) [type = UPPER]

WRITE T <- T(k, k)
-> T(k, k)
-> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

/* Priority */
;(NT-k)*(NT-k)*(NT-k)

BODY
zgeqrt( A, T )

END

• The resulting intermediary 
language is however more 
flexible

• Accept non-dense iterators
• Allow inlined C/C++ code to 

augment the language

• JDF Drawbacks:
• Need to know the number of 

tasks
• The dependencies had to be 

globally (and statically) 
defined prior to the execution
• No dynamic DAGs
• No data dependent 

DAGs

Control flow is eliminated, therefore 
maximum parallelism is possible



DPLASMA = ScaLAPACK interface & PaRSEC capabilities

Original pseudo- or PLASMA code is 
converted by a preprocessor into 
PaRSEC internal representation 
(shown below)

Dataflow representation is assembled 
with the runtime to create a set of 
executable parameterized tasks (PT), 
which can execute the kernels, and 
unfold successors in the graph

Serial
Code

PaRSEC
compiler

Dataflow
representation

Dataflow
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
librariesMPI

CUDA
pthreads

PLASMA
     MAGMA

Application code &
Codelets

PaRSEC Toolchain

Domain
Specific
Extensions

Data
distribution

Supercomputer

1

1

2

2

GEQRT(k)
/* Execution space */
k = 0..( MT < NT ) ? MT-1 : NT-1 )
/* Locality */
: A(k, k)
RW A <- (k == 0)    ? A(k, k) 

: A1 TSMQR(k-1, k, k)
-> (k < NT-1)  ? A UNMQR(k, k+1 .. NT-1)  [type = LOWER]
-> (k < MT-1)  ? A1 TSQRT(k, k+1) [type = UPPER]
-> (k == MT-1) ? A(k, k) [type = UPPER]

WRITE T <- T(k, k)
-> T(k, k)
-> (k < NT-1) ? T UNMQR(k, k+1 .. NT-1)

/* Priority */
;(NT-k)*(NT-k)*(NT-k)

Intermediate 
dataflow 
representation

FOR k = 0 .. SIZE - 1

    A[k][k], T[k][k]  <-  GEQRT( A[k][k] )

    FOR m = k+1 .. SIZE - 1

        A[k][k]|Up, A[m][k], T[m][k]  <-
            TSQRT( A[k][k]|Up, A[m][k], T[m][k] )

    FOR n = k+1 .. SIZE - 1

        A[k][n] <- UNMQR( A[k][k]|Low, T[k][k], A[k][n] )

        FOR m = k+1 .. SIZE - 1

            A[k][n], A[m][n] <-
                TSMQR( A[m][k], T[m][k], A[k][n], A[m][n] )

Tiled	QR	algorithm:	how	
kernels	are	applied	 on	
the	matrix	during	an	
iteration	k

GEQRT

TSQRT

UNMQR

TSMQR



DPLASMA = ScaLAPACK
+ PaRSEC

Keeneland
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DPLASMA HQR (best single tree)

Cray XT5 (Kraken) - N = M = 41,472

What 
about LU ?



Sparse supportAdvanced examples Sparse direct solver over GPUs: PaStiX

Tasks structure

POTRF
TRSM
SYRK
GEMM

(a) Dense tile task decomposition (b) Decomposition of the task
applied while processing one panel

M. Faverge - ANR SOLHAR July 3, 2014- 57

Advanced examples Sparse direct solver over GPUs: PaStiX

DAG representation
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NWCHEM 6.5

A Open Source High-Performance Computational Chemistry
Conversion of NWChem CC code into dataflow form not trivial
(CCSD code generated by TCE)
• Control flow is not affine nor statically decidable:

• Loop execution space has holes,
• dataflow goes through external routines,
• conditional branches depend on program data,
• memory access completely hidden in Global Arrays layer, 

etc.
à None of the traditional Compiler Analysis tools can be used

Uracil-dimer
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Other interactions with PaRSEC
With Teresa Windus, Heike Jagode
and Anthony Danalis



Integration of PaRSEC in CCSD

21

PARSEC-enabled version in 2 steps:
1. Traverse execution space and 

evaluate IF branches, without 
executing the actual 
computation (Since the data 
that affects the control flow is 
immutable at run-time, this 
step only needs to be 
performed once)

2. Create PTG – which includes 
lookups into our meta-data 
vectors populated by step 1.

Elimination of synchronization 
points by describing data 
dependencies between matrix 
blocks
Finer grained (pure) tasks to allow 
for exploitation of more parallelism 



NWCHEM 6.5

A Open Source High-Performance Computational Chemistry
Conversion of NWChem CC code into dataflow form not trivial
• Control flow is not affine nor statically decidable:

• Loop execution space has holes,
• dataflow goes through external routines,
• conditional branches depend on program data,
• memory access completely hidden in Global Arrays layer, 

etc.
à None of the traditional Compiler Analysis tools can be used

Most significant outcomes of porting CC over PARSEC:
1. Ability of expressing tasks and their data dependencies 

at a finer granularity
2. Decoupling of computation and communication enable 

more advanced communication patterns than serial 
chains

Cascade @ EMSL/PNNL

C40H56



Unbounded parallelism

• The only requirement is that upon a task 
completion the potential descendants are 
known
• Uncountable DAGs
• ” %option nb_local_tasks_fn = …”
• Need user defined global termination

• Add support for dynamic DAGs
• Already in the language
• Properties of the algorithm / tasks
• ”hash_fn = …” 
• ”find_deps_fn = …”

23



DIP: Elastodynamic Wave Propagation 
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Geophysics - wave equation

Geophysics simulation

Figure : Elastic wave propagation in 3D (2D slice view)

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 6 / 30

Task based programming Task dataflow

Fine granularity

Figure : Subdivision example

More than one domain per CPU

exhibit deeper parallelism

allow dynamic flexibility

reduce the boundary size

Lionel BOILLOT (Inria) Task-based programming 12-apr-16 18 / 30

Dynamically redistribute the data
- use PAPI counters to estimate the 

imbalance
- reshuffle the frontiers to converge 

to a load balanced scenario

Geophysics - wave equation

DIVA sequential algorithm

Quasi-explicit reformulation
(
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end
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end

end
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Runtimes DAG of DIP

DIP algorithm

For n = 1 : n timesteps T

Communication(�n+1/2
h

)

vn+1
h

 computeVelocity(vn

h

,�n+1/2
h

,�
t

)
Communication(vn+1

h

)

�n+3/2
h

 computeStress(�n+1/2
h

, vn+1
h

,�
t

)
End For t

Let’s rename the algorithm steps:

EXCHANGE VS

COMPUTE V

EXCHANGE VV

COMPUTE S

Let’s divide the EXCHANGE task into SEND, RECV and COPY tasks

Lionel BOILLOT (INRIA – TOTAL) HPC: runtime & coprocessors ICL Lunch 13 / 1

Finer grain partitioning compared
with MPI
Increased communications but also
increased potential for parallelism
Need for load-balancing

Total, Inria Bordeaux, Inria Pau, ICL



DIP: Elastodynamic Wave Propagation 
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Numerical illustration

Intel Xeon Phi results - e�ciency
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Numerical illustration

Trace comparison

Figure: MPI-based t = 2.517s

Figure: PaRSEC version (NUMA-aware, granularity x6) t = 2.060s

Lionel BOILLOT (Inria) Task-based programming 04-mar-15 20 / 23

Numerical illustration

Trace comparison

Figure: MPI-based t = 2.517s

Figure: PaRSEC version (NUMA-aware, granularity x6) t = 2.060s

Lionel BOILLOT (Inria) Task-based programming 04-mar-15 20 / 23

2517s

2060s



Resilience: Data Logging Strategy

• Minimize the amount of tasks reexecutions by logging data
• Checkpoint interval β, a process will save

a copy of each data every β updates.
• Input of failed task:
• The same tile checkpointed at most
β updates ago

• Final output of another task (validated)
• Max number of re-executions is β 

for factorizations

Checkpoint Beginning Middle End No Failure

β (NB/N)3 β6(NB/N)3 β6(NB/N)3 0

never (NB/N)3 12.5% 100% 0

β = 2



Checkpoint Beginning Middle End No Failure

β (NB/N)3 β6(NB/N)3 β6(NB/N)3 0

never (NB/N)3 12.5% 100% 0

Resilience: Data Logging Strategy



Conclusions
• Don’t make hardware a serious impediment to 

scientific simulation
• Programming must be made easy(ier)
• Portability: inherently take advantage of all hardware capabilities
• Efficiency: deliver the best performance on several families of algorithms

• Build a scientific enabler allowing
different communities to focus on
different problems
• Application developers on their algorithms
• Language specialists on Domain Specific Languages
• System developers on system issues
• Compilers on optimizing the task code



The PaRSEC
ecosystem
• Support for many different types of applications
• Dense Linear Algebra: DPLASMA, MORSE/Chameleon
• Sparse Linear Algebra: PaSTIX
• Geophysics: Total - Elastodynamic Wave Propagation
• Chemistry: NWChem Coupled Cluster, MADNESS,

TiledArray
• *: ScaLAPACK, MORSE/Chameleon

• A set of tools to understand
the performance
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Physics & Maths background Geophysics context

RTM context

Geophysics:
Hydrocarbons detection: petroleum or natural gas
Earth medium: seismic waves, heterogeneous complex domain

Simulation:
Seismic imaging: find the subsurface layers
Equations: elastic/acoustic wave in 2D/3D

Reverse Time Migration (RTM)

Iterative method based on multiple wave equation resolutions
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Figure 11. Power Profiles of the Cholesky Factorization.
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Figure 12. Power Profiles of the QR Factorization.

smaller number of cores. The engine could then decide to
turn off or lower the frequencies of the cores using Dynamic
Voltage Frequency Scaling [16], a commonly used technique
with which it is possible to achieve reduction of energy
consumption.
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# Cores Library Cholesky QR

128 ScaLAPACK 192000 672000
DPLASMA 128000 540000

256 ScaLAPACK 240000 816000
DPLASMA 96000 540000

512 ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Figure 13. Total amount of energy (joule) used for each test based on the
number of cores
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