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Group Mission and Vision

Design and build creative solutions for data-driven
discovery in science domains at scale and
performance using diverse compute architectures.

On-Demand Data, Analytics and Workflows




Group Future : Scientific Data Facility

Spallation Neutron Source

Facilities of the future
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We need your help.

Survey Link:
http://goo.gl/QCit1z
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w— g Data Portals

Peta-byte scale
“Github” for
Scientific Data

2016 Status: Pilot

Work with Sudharshan Vazhkudai

Collaboration with Technology Integration
Group @ OLCF, OSTland CADES



Least Squares > xxT PCA, ICA, Naive Bayes, Linear
Regression, Logistic Regression

- Fourier, wavelet, z-transforms,
f(s)a*dt deep learning, blind separation,
image reconstruction

Convolution

Distance |X; _lek Covariance matrix, ray-tracing, k-
means, k-NN

Matrix min || X — WH |2 Recommender systems,

WELIED Spatiotemporal data mining, signal

processing

Decomposition

Optimization X1 aPXt+ (1—-a)g Label propagation,iterative
optimization

Sequence lev, ,(i,)) Approximate text-search,
processing max(i,j) if min(i, j) - sequence alignmentproblems

levy (i —1,j) -
mln leva}b(irj - 1) 1
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Graph-theoretic det(QAQT) N-ary search, pattern extraction
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The Lifecycle of Data-Driven Discovery

Querying and Retrieval

e.g. Google, Databases

Interrogation

Data :fusion

Association e.g Mashups

Modeling,
Simulation, &

Predictive Modeling Validation

e.g Climate Cbange Prediction

Domain Scientist’'s View

The Process of Data-Driven Discovery

Science of scalable predictive functions

Pattern Discovery Pattern Recognition

e.g. Hypothesis generation e.g. C]assiﬁcation, Clustering

Science of data (Data-aware)

e.g Deep ]eaming, Feature extraction, Meta-ta gging

Data science (Infrastructure-aware)

Shared-storage, shared-memory, shared-nothing

Data Scientist’s View



Analytic services

Data Semantic
mining analysis

Utility

HPC compute compute

Data services Simulation services

Metadata Indexing,
harvesting/ discovery,
management  dissemination

Simulation Scalable Scientific
frame-works debuggers libraries

Data transfer
tools

System software and middleware services

Key value Graph SQL Message
stores databases databases queues

Infrastructure services

Advanced Parallel file Network

networking systems storage Archival storage Object storage



Data (Structured)
Data (Unstructured)
Visualization

Validation
Extract, Transform, Load
Search (Query)

Funding Model

Science

Vector, Matrix, Tensor
Mesh, Images (Physics-based)
Voxel, Surface, Point Clouds

Cross-validation (ROC curves, statistical
significance)

Fourier, Wavelet, Laplace, efc.
Cartesian, Radial, Toroidal, etc.

Properties such as periodicity, self-similarity,
anomaly, etc.

Non-profit grand challenge
(Answer matters)

Industry

Table, Key-Values, Objects
Documents, Images (Camera)
Word Cloud, Parallel Co-ordinates, BI Tools

Manual / Subject matter expert, A/B testing

File-format transformations
e.g. CSVto VRML

SQL, SPARQL, etc.
(Sum, Average, Groupby)

Value-driven
(Cost matters)
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HPC: Forward Problem

F(u) =ji 1 (x)e ™ dx
HPC : f(x) =sin(x)

—— Execute

PARALLEL FILE SYSTEM 7 ” COMPUTE CLUSTERWITH ~ ~
MINIMAL LOCAL !
D STORAGE

Data analysis algorithms are designed for
functionality. Scaling and performance is an
afterthought.

Speed-up and scale-up are a function of architecture,
data characteristics and algorithmic-workflow (as
viewed from the Amdahl’'s law perspective).

Big Data: Inverse Problem

Latency Real-time (with interactivity)
Expectation

Batch (response time not critical)

Access Random (unpredictable access)

Pattern Sequential (list-like access)

Permutation (data is moved re-distributed often)

Working All
Set Partial
Itﬂative

DataType  Structured (tables, matrices)

Unstructured (text, binary files)

Media (images, video)

i/lo profile  Read-heavy (loading data to memory)

Write-heavy (large intermediate result sets)

Complexity Low (data access with small compute operations)

Medium

High (data and compute intensive operations)
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« Either, invest in customized hardware that are expensive ($1-10 M) and will NOT allow
popular open-source/commercial software tools.

» Or, implement scalable theory-inspired algorithms on commodity or HPC clusters
which in general takes a lot of effort without performance guarantees.

Massively parallel processing databases

Greenplum
. Neo4j

PostgreSQL

0 mongoDB

“Analytics is retrieval”

Distributed Analytics on Storage

& lEnEEE
Spark® Uk

“Take compute to cheap storage”

Distributed-memory Analytics

Knowledge
Discovery
Toolbox

“Algorithm is made to work on
distributed memory-chunks”



object SVD {

Work with Seung-Hwan Lim
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def main(args: Array[String]) {

if (args.length 1= 1) {
System.err.println("Usage: SVD <input>")
System.exit(1l)

}

// Spark context
val conf = new SparkConf().setAppName("SVD")
val sc = new SparkContext(conf)

// Load and parse the data file. Spark nOW runS
val rows = sc.textFile(args(@)).map { line =>

val values = line.split(' ').map(_.toDouble)

Vectors.dense(values)

} - mgw
rows. cacheO)| 100000 Singular Value Decomposition

val mat = new RowMatrix(rows)

// Compute SVD.
val svd = mat.computeSVD(50)

// Relevant Qutput
val singular = svd.s T
- e
val u = svd.U e i eescecesc0cc0s0ssescene
val v = svd.V
1000x65536 (15B)
e 10000X 65536 (36GB)
sc.stop(D 10000x 100000000 (160G)
65536x 1000 (1GB)
oo oo 0 65536x10000 (36GB)
« + 100000000x 10000 (160G)
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Work with George Ostrouchov

Tutorial and demos presented on Day 0 sessions
and will be available on the OLCF website
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General Visualization Tools: Vislt,
Paraview, Ensight, NICE DCV

Domain Visualization Tools: VMD,
vaa3d, vapor

Libraries: ADIOS, OpenGL, OptiX

Rendering Tools: Maya, Unity,
Blender, Custom

Hardware: Everest, Titan GPUs




Oculus Rift

lll ParaView

EVEREST@OLCF




Science Input |

Name -
List
Files
Input
Sets 9

Accelerated Climate]
for Energy

\ Configuration Ul +

Rule engine to
guide valid configs

or Ensemble

Configure
ESM Case

Science Input

- Configuration Manually Model
Information Provided Source

(Store and/or Retrieve) File(s) (svn/git)

Configuration
Legend Status

- Retrieve required
Datasets
- Store manually
provided files

- Build status

Rapid, reliable, secure data transport and sy

—>>
Monitoring & Provenance
Dataflow (Simulation Manager) *

—>>
Dataset Dataflow ESGF

TN—

Titan queue .
PanDA server )
\

Pegasus (Internal

Fireworks
@ SNS

Eos m Rhea

UV-CDAT & Dakota

Reverse
SSL

Titan install queue Regular
% Jot
\ —
% ‘ "Pilot's

BigPanDA
Monitoring

PANDA

[ ————

External
Storage

launcher”
——

JOC

Data Transfer
Node (DTN)

Oak Ridge LCF

Job scheduler

.

{ Muiticore WN
< ~‘ Muiticore WN
{ Muiticore WN
{ Multicore WN

{ Muiticore WN

RSQsim

Earthquake Rupture
Simulator

Shared FS /

HPC Scratch

Earthquake Rupture
Forecast

UCERE3

Bellerophon
(BEAM) seau wet s s e

NTTPS

Caoes sty Comptng

S e

CyberShalke

Ground Motion
Simulator

Extended
ERF

round-Motion
Prediction Eqn

NGA-I2 GMPE;s

synthefic Pegasus
seismograms (External)

[ Physics-based
1 simulations

Ground
Motions

A 4

-Empm'cal
models

Intensity
Measures

response
spectra
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Compute-intensive

(e.g. SCEC)

Data-intensive
(e.g. ACME)

Experimental workflows
(e.g. GWAS)

Data Portals
(e.g. HACC)

Constant
availability and
resiliency

Capability of
launching jobs

Notification of job
termination status

Capability of
transferring
input/output

Work with Byung Park

Real-time
Monitoring

Real-time
intervention on
jobs

Overseeing
multiple
compute/storage
resources

Mini workflow
manager

o Suggestions?

Flexibility in
inserting new jobs

Seamless
integration with the
rest of workflow

Should act as a
work component

Suggestions?
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User Stories

%

OAK RIDGE

National LLaboratos
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Ran simulations on Titan and evaluated state-of-the-art neuron reconstruction methods
on EVEREST. (Over 100 TBs of image data processed and analyzed in 3 days)

Attendees representing 13 organizations representing North America, Australia and Asia
(INCF, OECD) in government and the private sector — Allen Institute for Brain Sciences,
George Mason University, etc.
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A workflow to predict and interactively visualize artifacts such as porosities and
structural deformities based on 3D-printer logs.
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Scale-up: Instrument captures 1024 by 1024 Speed-up: Principal component analysis of the
image at 16000 different spectral bands image sequence

PCA analysis
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Matlab Hadoop on Rhea Hadoop on the Cloud

Given a data analysis algorithm of interest to a domain scientist, we can
recommend optimal ‘analytic’ architecture for speed-up and scale-up.

quantify performance (cost and latency) trade-offs while using accessible
instead of optimal hardware.
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Matlab

PCA analysis

2014
4 GB per dataset

Hadoop on Rhea Hadoop on the Cloud

-~
o

Speed-up
# of
Cores Fat-node
1 1.00x
2 1.65x
4 2.46x
8 2.96x

Performance difference between normal SVD vs. RSVD

Rhea
1.00x
1.75x
2.87x
3.65x

Execution time
(seconds)

Fat-node Rhea

2747 4188
1663 2396
1117 1459

928 1146

—

—

1000 -

100 -

10 A

Performance on
8-nodes on 4 different architectures

Multi-threaded

Normal
Node

In-memory

Fat Node
(1 TB)

MPI

HPC
(Titan)

MPI

HPC
(Rhea)

Map-Reduce

Sparkon
Rhea

Map-Reduce

Sparkon
CADES

Performance on Titan, Rhea and Eos
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How can we help you ? Please chat with our members
when you get a chance.....

Collect surveys.....
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 What hardware to buy/use ?
* |nvestment $
« Technology
 Flexibility for growth

« What is the cost of performance ?
» Portability
* Energy
* Time-to solution



