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Group Mission and Vision

Mission:
Design and build creative solutions for data-driven
discovery in science domains at scale and
performance using diverse compute architectures.

Vision:
On-Demand Data, Analytics and Workflows
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Group Future : Scientific Data Facility

Spallation Neutron Source

Center for Nanophase Material Sciences 

Manufacturing Demonstration Facility 

Facilities of the future=
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The “Data” Group : People Data Science Liaisons
Rangan Sukumar
John Harney
Valentine Anantharaj
Scott Klasky (M)
George Ostrouchov (M)

Visualization Liaisons
Mike Matheson
Jamison Daniel
Benjamin Hernandez-Arreguin
Kat Engstrom
David Pugmire (M)

Production/Software
Dale Stansberry
Brian Smith
Norbert Podhroszki (M)

Admin: Jessica West

April 2016
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We need your help.

Survey Link: 
http://goo.gl/QCit1z
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Roadmap: On-Demand Data

DOIs

Data Portals

Peta-byte scale 
“Github” for 

Scientific Data

Collaboration with Technology Integration
Group @ OLCF, OSTI and CADES

2016 Status: Pilot
Work with Sudharshan Vazhkudai
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Roadmap: On-Demand Analytics

The “Analytic” App-Store

Deep-
learning 

as a 
service

R on 
Rhea, 

Eos and 
Titan

Spark-
on-

demand

Architecture-Agnostic Analytic App-Store

Kernel Mathematical Form Algorithms

Least Squares ∑ 𝑋𝑋# PCA, ICA, Naïve Bayes, Linear 
Regression, Logistic Regression

Convolution $𝑓 𝑠 𝑎()𝑑𝑡
Fourier, wavelet, z-transforms, 
deep learning, blind separation, 
image reconstruction

Distance 𝑋, −𝑋.
/ Covariance matrix, ray-tracing, k-

means, k-NN

Matrix 
Decomposition

min
345,745

∥ 𝑋− 𝑊𝐻 ∥;< Recommender systems, 
Spatiotemporal data mining, signal 
processing

Optimization 𝑋)=> → 𝛼𝑃𝑋) + 1− 𝛼 𝑔 Label propagation, iterative 
optimization

Sequence 
processing

𝑙𝑒𝑣H,I 𝑖, 𝑗

=

max 𝑖 , 𝑗 	𝑖𝑓min 𝑖, 𝑗 =

𝑚𝑖𝑛R
𝑙𝑒𝑣H,I 𝑖 − 1, 𝑗 +
𝑙𝑒𝑣H,I 𝑖, 𝑗 − 1 +

𝑙𝑒𝑣H,I 𝑖 − 1, 𝑗 − 1

Approximate text-search, 
sequence alignment problems

Graph-theoretic 𝑑𝑒𝑡(𝑄𝐴𝑄#) N-ary search,pattern extraction

2016: Mini-Apps for Big Data
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Roadmap: On-Demand Workflows
2016: Testing Today’s Tools

Workflow Infrastructure

Federated ID 
Management

Pilot Job 
Launcher

HPC

Resource 
Manager

Streaming 
(FPGA)

Certificate 
Management

Data-
Transfer

Globus 
endpoints

Workflow 
State 

Tracker

Graph

Eos 2.0 ?
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What have we started doing ? Data Science Support

Interrogation

Association

Modeling,	
Simulation,	&	
Validation

Querying and Retrieval 
e.g.  Google, Databases 

Data-fusion
e.g. Mashups

The Lifecycle of Data-Driven Discovery

Predictive Modeling
e.g. Climate Change Prediction

Better
Data Collection

Data	science	(Infrastructure-aware)

Science	of	data	(Data-aware)

Pattern	Discovery Pattern	Recognition

Science	of	scalable	predictive	functions

Shared-storage, shared-memory, shared-nothing

e.g. Deep learning, Feature extraction, Meta-tagging

e.g. Hypothesis generation e.g. Classification, Clustering

The Process of Data-Driven Discovery

Domain Scientist’s View Data Scientist’s View

Building Knowledge Discovery Ecosystems
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Infrastructure services

Analytic services Data services Simulation services

What have we started doing ? Data Science Support

Metadata 
harvesting/ 

management 

Indexing, 
discovery, 

dissemination
Semantic 
analysis

Data 
mining

Simulation 
frame-works

Scalable 
debuggers

Scientific 
libraries

Data 
fusion

Data transfer 
tools

Network 
storage Archival storageUtility 

computeHPC compute Object storage . . .Advanced 
networking

Parallel file 
systems

System software and middleware services

Key value 
stores

Graph 
databasesADIOSMPI SQL 

databases
Message 
queues . . .Map

reduce HIVE

Integrate with Compute and Data Environment for Science
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What are we learning ? Science vs. Industry

Big Data Science Industry

Data  (Structured) Vector, Matrix, Tensor Table, Key-Values, Objects

Data (Unstructured) Mesh, Images (Physics-based) Documents, Images (Camera)

Visualization Voxel, Surface, Point Clouds Word Cloud, Parallel Co-ordinates, BI Tools

Validation Cross-validation (ROC curves, statistical 
significance)

Manual / Subject matter expert, A/B testing

Extract, Transform, Load Fourier, Wavelet, Laplace, etc.
Cartesian, Radial, Toroidal, etc.

File-format transformations 
e.g. CSV to VRML

Search (Query) Properties such as periodicity, self-similarity, 
anomaly, etc.

SQL, SPARQL, etc.
(Sum, Average, Groupby)

Funding Model Non-profit grand challenge
(Answer matters)

Value-driven
(Cost matters)
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What are we learning ? : HPC vs. Big Data

Latency
Expectation

Real-time (with interactivity)

Batch (response time not critical)

Access 
Pattern

Random (unpredictable access)
Sequential (list-like access)
Permutation (data is moved re-distributed often)

Working 
Set

All
Partial
Iterative

Data Type Structured (tables, matrices)
Unstructured (text, binary files)
Media (images, video)

i/o profile Read-heavy (loading data to memory)

Write-heavy (large intermediate result sets)

Complexity Low (data access with small compute operations)
Medium
High (data and compute intensive operations)

HPC: Forward Problem Big Data: Inverse Problem

( ) ( )
)sin()(:

2

xxfHPC

dxexfuF uxi

=

= ∫
∞

∞−

− π

• Data analysis algorithms are designed for
functionality. Scaling and performance is an
afterthought.

• Speed-up and scale-up are a function of architecture,
data characteristics and algorithmic-workflow (as
viewed from the Amdahl’s law perspective).

Store Fetch

Execute

Different algorithms have different workload patterns
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What are we learning ?

Massively parallel processing databases Distributed Analytics on Storage Distributed-memory Analytics

“Analytics is retrieval” “Take compute to cheap storage” “Algorithm is made to work on 
distributed memory-chunks”

• Either, invest in customized hardware that are expensive ($1-10 M) and will NOT allow 
popular open-source/commercial software tools. 

• Or, implement scalable theory-inspired algorithms on commodity or HPC clusters 
which in general takes a lot of effort without performance guarantees.
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How are we solving some of these challenges ?
Apache Spark on Demand R on Rhea, Eos and Titan

Tutorial and demos presented on Day 0 sessions 
and will be available on the OLCF website

Work with George Ostrouchov

Spark now runs 
on Rhea

Work with Seung-Hwan Lim
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General Visualization Tools: VisIt,
Paraview, Ensight, NICE DCV

Domain Visualization Tools: VMD,
vaa3d, vapor

Libraries: ADIOS, OpenGL, OptiX

Rendering Tools: Maya, Unity,
Blender, Custom

Hardware: Everest, Titan GPUs

What have we started doing ? Visualization Support
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What are we learning ?

Power-Wall 
Visualization

Personalized 
Visualization

Remote
Visualization

Oculus Rift

EVEREST@OLCF

HoloLens
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What have we started doing ? Workflow Support

Pegasus 
(External)

Pegasus (Internal)

Fireworks 
@ SNS

Bellerophon 
(BEAM)

PANDA
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What are we learning ? 

Minimum

Constant 
availability and 

resiliency

Capability of 
launching jobs

Notification of job 
termination status

Capability of 
transferring 
input/output

Extended

Real-time 
Monitoring

Real-time 
intervention on 

jobs

Overseeing 
multiple 

compute/storage 
resources

Mini workflow 
manager

Suggestions?

Interface

Flexibility in 
inserting new jobs

Seamless 
integration with the 

rest of workflow

Should act as a 
work component

Suggestions?

Ta
xo

no
m

y 
of

 W
or

kf
lo

w
s

Compute-intensive 
(e.g. SCEC)

Data-intensive 
(e.g. ACME)

Experimental workflows 
(e.g. GWAS)

Data Portals 
(e.g. HACC)

Work with Byung Park
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User  Stories
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Use Case: Big Neuron Hackathon

Ran simulations on Titan  and evaluated state-of-the-art neuron reconstruction methods 
on EVEREST. (Over 100 TBs of image data processed and analyzed in 3 days)

Attendees representing 13 organizations representing North America, Australia and Asia 
(INCF, OECD) in government and the private sector – Allen Institute for Brain Sciences, 
George Mason University, etc. 
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Use Case: Manufacturing Demonstration Facility

A workflow to predict and interactively visualize artifacts such as porosities and
structural deformities based on 3D-printer logs.
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Use Case: Center for Nanophase Materials

Scale-up: Instrument captures 1024 by 1024 
image at 16000 different spectral bands

Speed-up: Principal component analysis of the 
image sequence

Given a data analysis algorithm of interest to a domain scientist, we can

• recommend optimal ‘analytic’ architecture for speed-up and scale-up.

• quantify performance (cost and latency) trade-offs while using accessible 
instead of optimal hardware.

How a data scientist can help the domain scientist ?
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Use Case: Center for Nanophase Materials

Performance difference between normal SVD vs. RSVD
Performance on Titan, Rhea and Eos
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Fat Node 
(1 TB)

HPC 
(Titan)

HPC 
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Spark on 
Rhea

Spark on 
CADES

Performance on 
8-nodes on 4 different architectures

2014
4 GB per dataset

2016: 134 GB per dataset
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Thank You… Questions ?

• How can we help you ? Please chat with our members 
when you get a chance…..

–Collect surveys…..
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How are we helping our science users ?

• What hardware to buy/use ?
• Investment $
• Technology
• Flexibility for growth

• What is the cost of performance ?
• Portability
• Energy
• Time-to solution

Algorithm Code Program


