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Separations
= Synthesis
Multicomponent non-ideal
solutions

¥

Predictive Science and New Theories
for Liquids and Their Interfaces i




Infroduction to Solvent
Extraction

= Major industrial process for separating complex mixtures in:
= Organics:
® Biomass production into chemical commodities (organics)
® |[norganics:
= Mining industry (ore - specific metal of interest)
= Chemical industry (catalysis)

= Environmental cleanup at hazardous waste sites (heavy
metals)

= Metal recycling
= Energy industry: Nuclear Energy and Next Generation NE



Working Conditions in

Extraction

Aqueous Phase
-High ionic Strength
-High acidity

-Complex mixture of
metals

Organic Phase
-single to
mulficomponent

-solutes acting as
modifiers

Extracting Ligand

-Partition to
aqueous or
interfacial region

-Often in excess




Working Conditions in
Extraction

Organic Phase

-single to
multicomponent
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Goal: Optimize Solvent Exiraction Processes By
Understanding Multiscale Interactions in Solution
and at Interface




Role of Theory and
Simulation

Experimental challenges - deconstructing complex interactions

Modeling and Simulation Theoretical Development

-

« Complex solutions have complex

« Employ realistic solution models correlations
« Requires leadership class computing « Analyze data in new ways



What Does “Realistic”
Meane

= Multiple solvents
m Binary, ternary...

= Many types of solutes
® |onic strength, ligands, interfacial modifiers

m Realistic concentrations
m > [OM solute concentrations

® Realistic reactivity
m Associated with computational method and its approximations
® Enabling dissociation (Reaxff, ab-initio, quantum molecular dynamics)

m Herein classical MD (do employ AIMD, just began collaboration with
Tom Markland for QMD)

m Realistic time
m Must accelerate dynamics in some cases



What Does “Realistic”
Meane

= Typical binary solvent system o NSO -
= 103 molecules .o
m Solutes are often small 3y

. . Ml
m 10’s of ns of simulation R e % L

m Solvent Extraction = Materials for separations
m Solutes are large (1,000 atom clusters)
= 104 molecules
® Hundreds of ns of simulations
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Realistic Simulations
Challenge Our Abillity to
Learn

= What are the challenges?
® Decomposing the average into its subcomponents (speciation)
m Rare events
m Quantifying different length and timescale behavior
® Finding correlations between different length and timescales

» What specific structural and dynamic features are related to the
physical property of interest

® |nhibits predictive capability because we don’t have a sound
theory of liquids across length and timescales

® Overcoming the challenge (computationally)

= New computational analyses, chemical theories for thinking about
liquids in complex environments



InNfermolecular Network
Theory

= Focus upon time-dependent evolution of
infermolecular interactions and patterns therein

® What are the dominant interactions in the liquid?
®» H-bonding, dispersive interactions, ion-ion interactions, etc.

m Create the network of those interactions
m Data reduction/compression
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Ozk‘onlor,A.; Clark, A. E. J. Comp. Chem., 2014, 35, 495-505.; Clark, A.E. In Ann. Rep. Comp. Chem.; Dixon, D. A., Ed.;
2015; pp 313-359.



Representation of ©
Network

® The adjacency matrix

Aij = {1,0 safisfy a criterion for the inferaction
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Ozkanlar, A.; Clark, A. E. J. Comp. Chem., 2014, 35, 495-505.; Clark, A.E. In Ann. Rep. Comp. Chem.; Dixon, D. A., Ed.;
2015; pp 313-359.



Analysis of a Network

0 1 Edge Distribution
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Other Quantities for
Local Structure

® PageRank algorithm (Google internet search engine)
= Assigns numerical weighting to each element of a hyperlinked set of

1-d PR(p;
PR(p) = ——+d Z L(S’))
J

ijM(pg)

1234 5¢7

A unigue
adjacency matrix
has a unigue PR
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Brin, S.; Page, L., In Proceedings of the 7th International Conference on the World Wide Web
(WWW). Enslow, P. H.; Ellis, A., Eds. (Elsevier: Amsterdam, 1998), p 107.




Other Quantities for

Local Structure

= The coordination about atoms/
ions is well-organized

= VSEPR, LFT

® |f you consider those as regular
polygons, they have unique
adjacency matrices

= Unigue PR

® PR becomes a data-mining tool
to search for specific geometric
configurations in a system

Number of Vertices Polygon Name Shape PageRank
4 square D 0.2441558
4 tetrahedron @ 0.200000

5 square pyramid @ 0.1892430
5 trigonal bipyramid @ 0.1772388
S wedge ﬂ 0.2035064
6 octagon. @ 0.1636142
6 pentagonal pyramid @ 0.1822820
6 trigonal prism @ 0.1929308

Mooney, B. L.; Corrales, L. R.; Clark, A. E. J. Phys. Chem. B, 2012, 116, 4263. .; Hudelson, M.; Mooney, B. L.; Clark, A. E.,

J. Math. Chem. 2012, 50, 2342



Extended Network Properties -
Geodesic analysis

m Dijkstra, or Floyd-Warshall algorithm
® Routing algorithm — basis of MapQuest

m Shortest distances between any two paths using roadways of
interactions
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Ozkanlar, A.; Clark, A. E. J. Comp. Chem., 2014, 35, 495-505



Working Conditions in
Extraction

Organic Phase

-single to
mulficomponent

p RN -solutes acting as

modifiers
Aqueous Phase Extracting Ligand
-High ionic Strength -Partition to
-High acidity agueous or

; interfacial region
-Complex mixture of ~ :
metals -Often in excess




AqQueous Phase

® What are the equilibrium concentrations of different metal
lon speciese

m Trivalent U, Np, Pu: Journal of Chemical Theory and Computation,
2015, 11, 55-63.; Inorganic Chemistry, 2015, 54, 6216-6225.

m Does the acid anion complex the metal ions of interest?
m RNh(lll): Inorganic Chemistry, 2014 53, 12315-12322.

= What is the extent and nature of ion-pairing of the
background electrolyte (if any)?

= Journal of Physical Chemistry B, 2015 DOI 10.1021/acs.jpcb.
5b07492

= How does the speciation, acidity, or ion-pairing change in
the bulk relative to the interfacial region?

® Fluid Phase Equilibria, 2015, DOI 10.1016/j.fluid.2015.07.013.



Some Interesting Results in
the Bulk

= Poly-ionic species significant and need to be quantified above 5M

= Solution composition can alter the rate of ion-pair formation
(kinetic restriction)

® H-bond structure and dynamics of solution appear to influence
dynamics of 15 solvation shell dynamics of simple ions

® Higher network connectivity and longer dynamics retard exchange
events about ions

m Rate of CIP formation should be altered by change in exchange rate
caused by kinetic restriction of solvent AND changes in metal-solvent
binding energies.

® May extend to rate of poly-ionic species formation as well



lon-Pairing Near
Aqgueous:Organic Interface
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= Change in ion distribution near interface

1.2

H,O in water:n-hexane

1.0
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CgHy4 in water:n-hexane

p (gm/cm?)

o NO; in 10M NaNO,,,:n-hexane

0.2
Na* in 10M NaNO,,,:n-hexane

0.0 10.0 20.0 30.0 40.0 50.0 60.0

Z (A)

Fluid Phase Equilibria, 2015, DOI 10.1016/].fluid.2015.07.013.



lon-Pairing Near
Aqgueous:Organic Interface

o g
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= Change in ion distribution near interface

1.2

H,O in water:n-hexane
1.0

og  He0 in 10M NaNO, . :n-hexane CeH14 in 10 M NaNOg,q):n-hexane

p (gm/cm3)

NOy- in 10M NaNOy . :n-hf CgHy4 in water:n-hexane

0.4
0.2 ,
Na* in 10M NaNO;,,,:n-hexd {
\s\\
0.0 - .
0.0 10.0 20.0 30.0 40.0 50.0 60.0
Z (A)

Fluid Phase Equilibria, 2015, DOI 10.1016/}.fluid.2015.07.013.



lon-Pairing Near
Aqgueous:Organic Interface
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= Growth of H-bonding in interfacial region caused
by H,O being less tied up in ion solvation
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Modulation of Interfacial
Tension

. H,O in water:n-hexane 2
W(z) = (p(2) =75

CgHy4 in 10 M NaNOg,,:n-hexane
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= Huge increase in interfacial tension in 10 M NaNO,

o

NaNO3 (M) Ve (dyne/cm) we (A)
0 6.3 (43.9[27[%0.0[25,26]) 1.37
1 42, . 1.254+0.03
3 45,37 +£0.32 1.20+0.004
5 49.63 4+0.88 1.154+0.01

10 83.55+0.19 0.89+£0.001




Modulation of Interfacial
Tension

Lot % y Joetefe/ y
10A 10A Z=60A

® Increased interfacial tension correlated with change in hexane
orientation correlated with high agueous ionic strength

parallel
orientation
1 0.1 N
Sz -
2y _
2(3(cosH4) — 1) 0.0 + .
_ 0 10 20 Y40 50
=-0.5-> perpendicular _* o1 P
=1 -> parallel o g eat liquid interface
= 09 —10M
»
-0.3 :
-0.4 73
perpendicular
-0.5

orientation



Working Conditions in

Extraction

Aqueous Phase
-High ionic Strength
-High acidity

-Complex mixture of
metals

Organic Phase
-single to
mulficomponent

-solutes acting as
modifiers

Extracting Ligand

-Partition to
aqueous or
interfacial region

-Often in excess




Working Conditions in
Extraction

Organic Phase
-single to
mulficomponent

-solutes acting as T~

modifiers

Aqueous Phase Extracting Ligand
-High ionic Strength -Partition to
-High acidity agueous or

; interfacial region
-Complex mixture of ~ :
metals -Often in excess



Organic Phase and
Extractants

= How does the packing ability or shape of organic
solvent influence interfacial propertiese

m Phys.Chem.Chem.Phys., 16, 12475 (2014)

= How do solutes in the organic phase influence
orientation of organic solvent -> also correlated

with interfacial tension?

= What is the extent of dynamic motion of solvent
and solutes across interface?

= Journal of Chemical Physics 142, 104707 (2015)




Inferfacial Tension

m Presence of an ampiphilic solute at the interface

(B)
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CH;
tri-butyl phosphate _
(TBP) hydrogen di-butyl phosphate
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(C) 0
Ho H, |
e C\C/ C\O/P\OH di-hydrogen mono-butyl phosphate
e | (H,MBP)

OH



Hexane Orientation with TBP at
the Interface

0.2

0.1 -

0.0 -

(
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-04 -

-0.5 -

CeHia

X=40A

Y=40A

-0.6 -

ézO

» 50 55 60 65 70 75 80

— Neat liquid
— Interface
TBP

Direct contact of hexane
and water — mostly
perpendicular orientation

zin (A)

Y. Ghadar, P. Parmar, A. C. Samuels and A. E. Clark, J. Chem. Phys. 142, 104707, 2015



Hexane Orientation with TBP at
the Interface

0.2
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— Neat liquid
— Interface
TBP
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perpendicular re
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Y. Ghadar, P. Parmar, A. C. Samuels and A. E. Clark, J. Chem. Phys. 142, 104707, 2015
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Hexane Orientation with TBP at
the Interface g

X=40A
N

CeHia H,O

Y=40A

Conflicting Forces at Interface: Aqueous ionic
strength enhances parallel orientation of
hexane while solutes can enhance
perpendicular orientation

Sz

But both increase interfacial tension

05 | perpendicular ,
hexane

zin (A)
Y. Ghadar, P. Parmar, A. C. Samuels and A. E. Clark, J. Chem. Phys. 142, 104707, 2015



Hexane Orientation with TBP at
the Interface

X=40A
CeH14 H,O
_ Y=40A
How does this alter fransport across phase
boundary?
Z o N/ r‘ — Neat liquid
| — Interface
-0.3 TBP
o4 | ENhanced
populations of
05 - | perpendicular &
hexane
-0.6 -
zin (A)

Y. Ghadar, P. Parmar, A. C. Samuels and A. E. Clark, J. Chem. Phys. 142, 104707, 2015



Working Conditions in

Extraction

Aqueous Phase
-High ionic Strength
-High acidity

-Complex mixture of
metals

Organic Phase
-single to
mulficomponent

-solutes acting as
modifiers

Extracting Ligand

-Partition to
aqueous or
interfacial region

-Often in excess




Working Conditions in
Extraction

Organic Phase
-single to
multicomponent

-solutes acting as
modifiers

Extracting Ligand

-Partition to
aqueous or
interfacial region

Aqueous Phase

-High ionic Strength
-High acidity

-Complex mixture of

metals -Often in excess

* Relative free energies
of solvation in Aq vs.
organic phase

* Ease of transport
across interface



Measurement of
Permeabillitye

= Potential of mean force

® Dragging solute across phase boundary
z=40A
22 -

J8 23 28 33 38 43 48 53 58
Organic Phase  z (A) Aqueous Phase




Measurement of
Permeabillitye

= Relationship of permeability with solvent
miscibility and interfacial tension

® Liguid:vapor analogue -> Kelvin Equation
Capillary tube 2

/ In —p — - Af‘/m
Capill -
attraction Po rRT

Partial pressure is related to surface
N tension and radius of curvature

Sir William Thomson (1871) Philosophical Magazine, series 4, 42, 448-452.; Skinner, L. M.; Sambles, J. R.
Aerosol Sci 3 (1972) 199-210.; McElroy, P. J. J. Colloid Interface Sci. 72 (1979) 147-149;



Measurement of
Permeabillitye

= Relationship of permeability with solvent
miscibility and interfacial tension

® Liguid:vapor analogue -> Kelvin Equation

P 2A!'Vm
In— = —
. Po rRT

Concentration of co-solvents on either
side of the phase boundary should be
related to interfacial tension (and
perhaps length-scale of capillary
waves)

Concentration is easily measured with
INT

Sir William Thomson (1871) Philosophical Magazine, series 4, 42, 448-452.; Skinner, L. M.; Sambles, J. R.
Aerosol Sci 3 (1972) 199-210.; McElroy, P. J. J. Colloid Interface Sci. 72 (1979) 147-149;




Microsolvation
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® Microsolvation is an event where two liquids solvate each

other

m Rarity of this event (or thermodynamics of co-solvation) leads
to formation of phase boundary

m We believe that this is related to permeability/transport

Frank H. S., Evans M. W., J. Chem. Phys. 13(11), 507, (1945)
Ghadar Y., and Clark A.E., Phys. Chem.Chem. Phys. 16, 12475, (2014)
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Solutions studied

» Water.organic
» n-Pentane
» Neopentane
» n-Hexane

0-10 M Amphiphilic
Solute (TBP, HCBP, MBP)



Microsolvation o . SR
Q.8 % %
¢ cer? e
® Despite huge changes in inferfacial tension as a function of
solution conditions.....

m only 1 system exhibited large changes in microsolvation/co-solvent
concentration

m TBP af water:hexane interface

Amphiphilic TBP



Microsolvation in Region (Il) 10-20 A

2.0 - Partial solvation Microsolvation
1.5 -
1.0 -

0.5

11 !

)11 131517 192123 2527 29 3133 3537 394143

% Observation
o
(@)

Number of H,O Solvating n-Hexane
= TBP-Region (Il)

-1.0 -

= HDBP-Region (Il)
-1.5 - ® H,MBP-Region (ll)
-2.0 -

» Only TBP increases the microsolvation in the Region |l.

Y. Ghadar, P. Parmar, A. C. Samuels and A. E. Clark, J. Chem. Phys. 142, 104707, 2015



Configuration of TBP at
Different Regions

z=40A

22 -

=) A A A AN
N A O © O
\

AA (kcal/mol)

oON A O @
|

<1 8 23 28 33 38 43 48 53 58

Organic Phase  z (A) Aqueous Phase g

> TBP adopts a “Y" shape configuration at the interface — alters hexane
orientation.

> This leads to an increase in microsolvation
Y. Ghadar, P. Parmar, A. C. Samuels and A. E. Clark, J. Chem. Phys. 142, 104707, 2015



Summary

= Bulk solution conditions alter interfacial properties
= Agueous ionic strength
= Branching of akyl solvents



Summary

Mutual miscibility of co-solvents measured by microsolvation reactions
(concentration of co-solvent)

m |5 this related to permeability to solute transporte (examining correlations with PMF's
now)



Summary

= Relationships between macroscopic interfacial properties and microsolvation
is unclear

= We need more data...want to systematically examine binary solufions from miscible
to immiscible

= Third-phase formation



Summary
dimer
m Bulk solutionconc L N L
m AQueous ionic stre dimer
® Branching of akyl

= Mutual miscibility  trimer tetramer icrosolvation reactions

(concentration of
m |s thisrelated to p xamining correlations with PMF's
now) ‘

m Relationships beW properties and microsolvation
IS unclear

Servis, M. J.; Tormey, C. A.; Wu, D. T.; Braley, J. C. J. Phys. Chem. B. 2016, ASAP article DOI: 10.1021/acs.jpcb.5b08579_

® Third-phase formation
m Solutes at inferface can have an impact even at long-range

® Analyzing higher concentration TBP data now...role of aggregation is
apparent



Summary

= Solutes at intferface can have an impact even at long-range

= Analyzing higher concentration TBP data now...role of aggregation is
apparent



Related work pertormed at
OLCF

= Materials for separation
= Metal organic frameworks

3’3“”%
® Ligand binding is accompanied by affects of | e-j‘“’*f“«»,ﬁm
confinement upon the solvent xﬁ:‘: 4 )
,‘;.,4 R,;,:‘ ;2::,‘,'@,.;
® Synthesis of these materials is incredibly pig =4
challenging

m Hydrothermal synthesis where solution
composition alters the topology
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