GPU Rendering in Rhea and Titan

Benjamin Hernandez

Advanced Data and Workflows Group

GPU Rendering in OLCF

 For traditional or custom applications that uses intensively the GPU for visualization, OLCF supports VirtualGL/TurboVNC.

 So if you have software or a custom visualization tool you can take advantage of this feature.

 ParaView implement their own mechanism for delivering frames to the user's desktop through a client-server architecture.

GPU Rendering in OLCF

Traditional X-forwarding.

ssh -X user@titan.ccs.ornl.gov

GPU based rendering is quite different to X forwarding

GPU Rendering in OLCF

What about NoMachine's NX ?

- It uses X compression
- But do not take advantage of remote GPUs

VirtualGL/TurboVNC

Prerequisites

- You'll need to have turboVNC installed on your machine.
- TurboVNC uses 59XX ports for tunneling
- You'll need to open 3 Terminals

Specs

Titan

- 16 600+ nodes
- 16 600+ K20, 6GB
- 32 GB RAM
- 16 CPU Cores, 2.2 GHz

Rhea (Analysis Cluster)

- 512 nodes
- 9 Fat nodes:
 - 2x NV K80, 24 GB
 - 1 TB RAM
 - 2x CPU 28 Cores 2.3GHz

GPU Rendering on Rhea Terminal 1:

Login to Rhea using login 5 node

```
ssh user@rhea-login5.ccs.ornl.gov
```

Submit an interactive job in the GPU partition

```
qsub -I -lnodes=1, walltime=01:00:00, partition=gpu -A abc123
```

Launch x-server

xinit&

Launch the vncserver

Check where is running the vnc server, e.g.

```
New 'rhea-gpu3:1 (user)' desktop is rhea-gpu3
```

• Type export DISPLAY=:1

GPU Rendering on Rhea

Terminal 2:

 We will open a tunneling connection to the node running vncserver, in this case rhea-gpu3 through rhea-login5

```
ssh user@rhea-login5.ccs.ornl.gov -L 5901:rhea-gpu3:5901
```

Terminal 3:

In your machine run VNC viewer using the tunneling port

```
vncviewer -medqual localhost:5901
```


GPU Rendering on Titan Terminal 1:

Login to Titan and allocate compute resources through the batch system

From within the batch job, set-up the environment

 After loading the module, you'll see the node name where is running your job, e.g.

nid02410

 From within the batch job, run a script on the compute nodes that starts X and runs a test.

```
aprun -n $PBS_NUM_NODES $MEMBERWORK/abc123/job.sh
```


GPU Rendering on Titan Interactive Job

```
#!/bin/sh
startx &
sleep 5
starttvnc :1 &
export DISPLAY=:1
vglrun -np 4 ./yourapp
```


GPU Rendering on Titan

Terminal 2:

 We will open a tunneling connection to the node running vncserver, in this case nid02410 through titan-internal

```
ssh user@titan-internal.ccs.ornl.gov -L 5901:nid02410:5901
```

Terminal 3:

In your machine run VNC viewer using the tunneling port

```
vncviewer -medqual localhost:5901
```


More Info. and help

https://www.olcf.ornl.gov/kb_articles/gpu-rendering-on-titan/

help@olcf.ornl.gov

Thanks!

