Parallel Programming for
the Next Decade

Michael Wolfe
PGl compiler engineer

michael.wolfe@pgroup.com

OpenACC Timeline

- 2008 - PGI Accelerator Model (targeting NVIDIA GPUs)
- 2011 - OpenACC 1.0 (targeting NVIDIA GPUs, AMD GPUs)

data regions, compute regions, gang/worker/vector

2013 - OpenACC 2.0

procedures, dynamic data lifetimes

- 2015 - OpenACC 2.5

minor fixes, additions

2015/16 - OpenACC 3.0
deep copy

Modern HPC Node

High
Capacity
Memory

: High Bandwidth
) Memory

Modern HPC Node

=T 1 1 N <!

Capacity
Memory

\/
: High Bandwidth
J Memory

Modern HPC Node

High
Capacity
Memory

High Bandwidth
Memory

Modern HPC Node

Capacity
Memory

Hardware vs Software

- Caches vs. Scratchpad memories

- VLIW vs. Multiscalar ILP

- Delay Slots vs. Branch Prediction

- Instruction Scheduling vs. Out-of-order Execution
Virtual Memory vs. Out-of-core and Overlays

Hide, Virtualize, Expose

- Register Allocation (Hide)

- Vector instructions (Virtualize)

- OpenMP threads (Virtualize)

- Virtual memory (Virtualize)
MPI (Expose)

OpenACC: Control

- Parallelism, lots and lots of parallelism
-~ Multiple styles of parallelism: MIMD, SIMD
1. Exposing parallelism: done during application development
2. Expressing parallelism: done during program creation
3. Exploiting parallelism: done at a) compile time and b) runtime

how much target-specific information needs to be known at steps 1, 2, 3a
how many values (number of cores / threads, SIMD length, ...) need to be known

Parallel Loop: OpenACC

!Sacc parallel loop reduction (+:ss)
do i =1, n

a(i) = b(i) + c(i)

ss = ss + a(i)
enddo

Parallel Loop: OpenMP

Somp parallel do reduction (+:ss)
do i =1, n

a(i) = b(i) + c(i)

ss = ss + a(i)
enddo

Parallel Loop: Fortran

do concurrent(i =1 : n)
a(i) = b(i) + c(i)
enddo

ss = sum(a(l:n))

Parallel Loop: C++xx?

for each(par vec, 1, n, [=](int 1) {
al[i] = b[i] + c[1];
})
?? reduction ?? [there is a way, | don’t have my reference]

OpenACC: Data

- control data movement to high bandwidth memory
- manage coherence of multiple copies

OpenACC: Data

- Separate Memories (Kepler)
data must be copied to HBM, multiple data copies, coherence

Single Memory (APU)
no HBM, cache coherence

LCM + HBM (Near + Far, KNL)

HBM as cache: OS/hardware data migration
HBM as separate memory: data copied to HBM, multiple copies, coherence

HBM as separate memory: data moved to HBM, single copy

Unified Address Space (Volta)

HBM as separate memory: driver data migration
HBM as separate memory: software data migration

Additional Complexity

- Multiple Accelerator Devices
» Host Multicore as a Device

