LAMMPS and classical molecular dynamics for materials modeling

Steve Plimpton Sandia National Laboratories

OLCF User Meeting June 2015 - Oak Ridge National Labs

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Presentation: SAND2015-5705 PE

Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov

• Materials modeling: soft matter, solids, mesoscale

- Particle simulator at varying length and time scales electrons \Rightarrow atomistic \Rightarrow coarse-grained \Rightarrow continuum
- Spatial-decomposition of simulation domain for parallelism
- OpenMP, GPU, Phi enhanced
- Can be coupled to other scales: QM, kMC, FE, CFD, ...

Research directions for MD

See you at the movies ...

CGI modeling advances by Pixar

Bug's Life (1998) vegetation

Monsters, Inc (2001) Finding Nemo (2003) hair water

Cars (2006) painted surfaces

Ratatouille (2007) food

Wall-E (2008) rust & decay

Moore's Law for interatomic potentials (force fields)

ReaxFF for shock-induced initiation of detonation

- Work by Ray Shan & Aidan Thompson (Sandia)
- \bullet PETN = explosive material made of organic molecules
- Simulate "slow" shock wave passing thru PETN crystal

ReaxFF for shock-induced initiation of detonation

- Work by Ray Shan & Aidan Thompson (Sandia)
- **PETN** $=$ explosive material made of organic molecules
- **•** Simulate "slow" shock wave passing thru PETN crystal

- Use a reactive force field (ReaxFF)
	- **•** detonation triggered by initiation of exothermic reactions
- **Quantify detonation sensitivity to** orientation, defects, impurities ... a safety issue

Large-scale 20 nm void simulations

8.5M atoms (300x200x1.3 nm), 500 psec 5M steps, 1500 hours on 64K cores (4 t/c) of BQ/Q

Shan, el al, Proc 15th International Detonation Symp (2015).

Sensitivity of PETN to shock stress

- Heat and stress trigger chemical reactions
- Hot-spot lowers initiation threshold stress by 30%
- **Increased sensitivity** with increasing void size

Sensitivity of PETN to shock stress

- Heat and stress trigger chemical reactions
- Hot-spot lowers initiation threshold stress by 30%
- **Increased sensitivity** with increasing void size

- Agrees with **experiment** except:
	- **e** real PFTN can have micron-scale voids
	- experiments performed at lower shock speeds
	- bigger/longer/CG simulations needed to bridge that gap

Quantum-accuracy with empirical potentials?

- \bullet GAP = Gaussian approximation potentials
	- Gábor Csányi, Albert Bartók-Partay (U Cambridge)
- $SNAP$ = spectral neighbor analysis potentials
	- Aidan Thompson and collaborators (Sandia)
- Aim for **quantum-level accuracy** in some cases:
	- \bullet interpolate to ab initio potential energy surface
	- Gaussian process: high-dimensional interpolation technique
	- trained on set of QM configurations, energy, forces
	- **e** expensive, but cost still $O(N)$ in number of atoms

Quantum-accuracy with empirical potentials?

- \bullet GAP = Gaussian approximation potentials
	- Gábor Csányi, Albert Bartók-Partay (U Cambridge)
- $SNAP$ = spectral neighbor analysis potentials
	- Aidan Thompson and collaborators (Sandia)
- Aim for **quantum-level accuracy** in some cases:
	- \bullet interpolate to ab initio potential energy surface
	- Gaussian process: high-dimensional interpolation technique
	- trained on set of QM configurations, energy, forces
	- **e** expensive, but cost still $O(N)$ in number of atoms

Reduces errors relative to DFT

```
Bartok, et al, PRL, 104, 136403
(2010).
```
Our interest: semiconductors & metals like InP, Ta, Be

Success with SNAP potential for Tantalum

Energy barrier for screw dislocation migration in bcc Ta

• **DAKOTA** optimization package used to iteratively fit Thompson, et al, J Comp Phys, 285, 316-330 (2015). \bullet

Strong scaling of SNAP on Titan

- 246K atoms on 18K nodes of Titan, /red13 atoms/GPU (!)
- SNAP optimized for GPU by Christian Trott (Sandia)
- Trott, et al, Supercomputing, in Lecture Notes Comp Sci, 8488, Springer, 1934 (2014).

Coarse graining to extend length & time scales

CRADA with companies interested in solvated nanoparticles

Spherical vs aspherical, bare vs coated, polydisperse, agglomeration, response to shear, ...

Sequence of coarse-grained models in LAMMPS

Coarse-graining of nanoparticles and solvent

Integrated LJ potential over NP volume: Everaers (PRE 2003)

 $SRD =$ stochastic rotation dynamics for solvent, then FLD : Padding (PRL 04), Kumar and Higdon, (PRE 2010)

Diffusion across time scales and volume fractions

Bolintineanu, et al, Comp Particle Mechanics, 1, 321-356 (2014).

Viscosity of nanoparticles in SRD fluid

Muller-Plathe algorithm induces V-shaped velocity profile

Arbitrary-shape aspherical NPs with and w/out solvent

Rigid bodies 2d particles are line-segmented surfaces 3d particles triangulated surfaces

Liquid crystal thin film rupture on Titan

- Mike Brown and collaborators (ORNL)
- Liquid crystal molecule $=$ coarse-grained ellipsoid
- \bullet GayBerne potential on GPU = \sim 100x faster than CPU core
- Titan GPU/CPU node is ∼7x vs two multi-core CPUs
- Nguyen, et al, Nanoscale, 6, 3083-96 (2014).

Load-balancing via recursive coordinate bisectioning

- Often needed for coarse-grained models
	- DPD, SPH, Peridynamics, granular, etc

• Worked to reduce comm with 26 neighbors to $6+$ (for 3d)

2d SPH "water" flowing over a dam Georg Ganzenmueller, Fraunhofer EMI

2d SPH "water" flowing over a dam Georg Ganzenmueller, Fraunhofer EMI

Atomic microlattice of metal struts Alex Stukowski (Tech Univ Darmstadt)

- \bullet star imbalance = 18x
- 13x speed-up for 21M atoms on 16K cores

Accelerator hardware: Aiming for MPI+X via Kokkos

- Kokkos $=$ programming model developed at Sandia
	- minimize impact of new chip designs on applications
	- https://github.com/kokkos
- Goal: write application kernels only once, run efficiently on variety of current/future hardware

Accelerator hardware: Aiming for MPI+X via Kokkos

- Kokkos $=$ programming model developed at Sandia
	- minimize impact of new chip designs on applications
	- https://github.com/kokkos
- **•** Goal: write application kernels only once, run efficiently on variety of current/future hardware
- Two major components:
	- **1** Data access abstraction via **Kokkos arrays**
		- o optimal layout & access pattern for each device GPU, Xeon Phi, etc
	- **2 Parallel dispatch** of small chunks of work
		- auto-mapped onto back-end languages CUDA, OpenMP, etc

Accelerator hardware: Aiming for MPI+X via Kokkos

- Kokkos $=$ programming model developed at Sandia
	- minimize impact of new chip designs on applications
	- https://github.com/kokkos
- **•** Goal: write application kernels only once, run efficiently on variety of current/future hardware
- Two major components:
	- **1** Data access abstraction via Kokkos arrays
		- o optimal layout & access pattern for each device GPU, Xeon Phi, etc
	- **2 Parallel dispatch** of small chunks of work
		- auto-mapped onto back-end languages CUDA, OpenMP, etc
- Key task for application is to write **kernels** so they:
	- \bullet operate at fine granularity and are thread-safe
	- use Kokkos data structures (dual-view concept)
	- \bullet unfortunately LAMMPS has $\sim\!\!1000$ "kernels"

Kokkos performance for Lennard-Jones pairwise kernel

One-node performance : dual 8-core Intel Sandy Bridge Xeon CPUs two NVIDIA Kepler GPUs

Kokkos for manybody potentials

- Completed: EAM, Tersoff, Stillinger-Weber
- \bullet Working on ReaxFF $=$ reactive bond-order potential

- About 50% complete: bond-order terms, Coulomb, LJ
- Todo: many-body, QEq (matrix solve or damped dynamics)

Multiscale & multiphysics via coupling to other codes

Goal: enable "easy" coupling of MD to QM, kMC, FE ... via Python or C-style lib interface $(C/C++/Fortran/etc)$

Thermal coupling with AtC package

Reese Jones, Jon Zimmerman, Jeremy Templeton, Greg Wagner (Sandia)

2D diffusion problem

Mechanical coupling with AtC package

Elasto-dynamic response:

Granular $+$ fluids modeling via OpenFOAM

Christoph Kloss (JKU) and add-on LIGGGHTS package www.liggghts.com/www.cfdem.com

• particles $+$ CAD mesh $+$ fluid

$MD + kMC$ for stress-driven grain growth

- SPPARKS (kMC) runs Potts model for grain growth
	- Hamiltonian includes stress term
	- send grain structure to LAMMPS
- LAMMPS (MD) treats particles at grain boundary as larger
	- relaxes system
	- send per-particle stress to SPPARKS

A think-outside-the-box example ...

LIGGGHTS package extension to LAMMPS for **granular models** and FMI (Functional Mock-up Interface) for **mesh dynamics** LIGGGHTS by C Kloss (DCS Computing) Wheelloader model by C Schubert & T Dresden (Dresden Tech U) Simulation by C. Richter & A. Katterfeld (U Magdeburg OV Guericke)

Thanks and links

- LAMMPS: http://lammps.sandia.gov
- Funding:
	- DOE (BES,BER), Sandia (ASC,LDRD)
	- NINE (university), CRADA with Corning, 3M, BASF
- **a** Joint work with:
	- LAMMPS: Aidan Thompson, Paul Crozier, Stan Moore, Ray Shan, Axel Kohlmeyer (Temple U)
	- Kokkos: Carter Edwards & Christian Trott
- Two papers with more info:
	- S. J. Plimpton and A. P. Thompson, "Computational Aspects of Many-body Potentials", MRS Bulletin, 37, 513-521 (2012).
	- D. S. Bolintineanu, et al, "Particle dynamics modeling methods for colloid suspensions", Comp Particle Mechanics, 1, 321-356 (2014).