®

<A NVIDIA

INTRODUCTION TO ACCELERATED
COMPUTING WITH OPENACC

NVIDIA Developer Technologies

)

Jeff Larkin

AGENDA

> NVIDIA Introduction

- Accelerated Computing Basics

~ What are Compiler Directives?

- Accelerating Applications with OpenACC
- ldentifying Available Parallelism
- Exposing Parallelism
- Optimizing Data Locality

» Next Steps

W

AR
RRE
Zmﬁ ‘
I

W

I

Juil
:
I
w,‘%

NVIDIA Introduction

i

W

LN

) AV
A
3

, il

0RAINY

B
A

Y

Emzﬂnmmmzaﬂz

NARNNNNNNNNN

W
LY

llﬂﬂﬂﬂﬂﬂﬂﬂ(
RRSSse=SETS

1
|
|
|

ENTERPRISE HPC & CLOUD AUTONOMOUS
GAMING DESIGN VIRTUALIZATION SERVICE PROVIDERS MACHINES

PC DATACENTER MOBILE

The World Leader in Visual Computing

ACCELERATED COMPUTING

10X PERFORMANCE & 5X ENERGY EFFICIENCY

GPU Accelerator

CPU Optimized for

Optimized for Parallel Tasks

Serial Tasks A ——————
EEEEEEEE EEEEEEEE
EEEEEESE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEREE

Atomic
structure
of the AIDS
pathogen’s
protein coat

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

THE HIV-1

=

ACCELERATING
DISCOVERIES

USING A SUPERCOMPUTER POWERED BY 3,000 TESLA
PROCESSORS, UNIVERSITY OF ILLINOIS SCIENTISTS
PERFORMED THE FIRST ALL-ATOM SIMULATION OF THE
HIV VIRUS AND DISCOVERED THE CHEMICAL STRUCTURE
OF ITS CAPSID — “THE PERFECT TARGET FOR FIGHTING
THE INFECTION.”

WITHOUT GPU, THE SUPERCOMPUTER WOULD NEED TO
BE 5X LARGER FOR SIMILAR PERFORMANCE.

TESLA ACCELERATED COMPUTING PLATFORM

Data Center Infrastructure Development

Programming

System Solutions Languages

C/C

Ll Fortran

=" OpenACC

m & python VAMPIR

ACCELERATED COMPUTING BASICS

WHAT IS ACCELERATED COMPUTING?

Application Execution

e

P P

High Serial [
Performance

C oe—

] High Data Parallelism

(@)

| e—

A

v
R =

Simplicity

Performance

SIMPLICITY & PERFORMANCE

» Accelerated Libraries
» Little or no code change for standard libraries; high performance
» Limited by what libraries are available
» Compiler Directives
» High Level: Based on existing languages; simple and familiar
» High Level: Performance may not be optimal
> Parallel Language Extensions
» Expose low-level details for maximum performance

> Often more difficult to learn and more time consuming to implement

CODE FOR SIMPLICITY & PERFORMANCE

r

Libraries

~

J

portable libraries.

-

Directives

~

_J

e Implement as much as possible using

e Use directives to rapidly
accelerate your code.

(R

Languages

_ J

e Use lower level languages
for important kernels.

WHAT ARE COMPILER DIRECTIVES?

WHAT ARE COMPILER DIRECTIVES?

%
M

ARAAARAR
ARAAARAN II II
nannaAann ﬂﬂl‘lﬂﬂﬂl‘lﬂ

AOANAGAN MAnnRAnn
ABANAGAM AANAAANA
AGARAGAR AAGARAGA

rogram myscience
. serial code ...
!Sacc parallel loop
do k = 1,nl
do i =1,n2

enddo
enddo

end program myscience

Your original
Fortran, C, or C++
code

" |nsert portable compiler
directives

= Compiler parallelizes code and
manages data movement

" Programmer optimizes
incrementally

" Designed for multi-core CPUs,
GPUs & many-core Accelerators

OPENACC:
THE STANDARD FOR GPU DIRECTIVES

- Simple: Easy path to accelerate compute intensive
applications

> Open: Open standard that can be implemented anywhere

- Portable: Represents parallelism at a high level making it
portable to any architecture

ACC

Directives fFor Accelerators

OPENACC MEMBERS AND PARTNERS

Ree PGI

nal Labor

ToTAL

TECHNISCHE Sandia
UNIVERSITAT \00 CSCS @ National
DRESDEN Laboratories

ﬁl —ToKyd /I SCH— Q
Lsu / NVIDIA.

embedded a"inea P%To ’epCC‘

ACCELERATING APPLICATIONS WITH
OPENACC

EXAMPLE: JACOBI ITERATION

- Iteratively converges to correct value (e.g. Temperature), by
computing new values at each point from the average of
neighboring points.

- Common, useful algorithm
AGI*H) Lo e Laot AV \/
e LtXample: >olve Laplace equationin 2D: V4 f(x,y) =

A(-1,5)® 7@ A(i+1,])

A(i,
L4 (1,J) A(i—1L,)H)+A,>G+1,)+A,0Gj—1) +A,0G +1)

A(],J'1) Ak+1(i;j) = 4

JACOBI ITERATION: C CODE

while (err > tol && iter < iter max) {
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[j-1][1i] + A[3+1][i]);

err = max (err, abs(Anew[j][i] - A[j]1[i]));

}
}

for(int j = 1; j < n-1; j++) {
for(int i =1; 1i < m-1; i++) {
A[jl[i] = Anew[]][i];
}
}

iter++;
}

~
Optimize
Loop

Performance
_

~

_/

s

_

Parallelize
Loops with
OpenACC

r

o

\

Optimize
Data Locality

_/

IDENTIFY PARALLELISM

while (err > tol && iter < iter max) ({ <1
err=0.0;

Data dependency
between iterations.

for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {

4

Anew[j][i] = 0.25 * (A[j][i+1] + A[j]1[i-1] +
A[3-1][i] + A[3+1][i]);

err = max (err, abs(Anew[]j][i] - A[]j]1[i])):
}

}
for(int j = 1; j < n-1; j++) {
for(int i =1; i < m-1; i++) {

A[j][i] = Anew[]j][i]’
}
}

iter++;

'

=

~
|ldentify

Available

Parallelism
Y,

~
Optimize
Loop

Performance
_

~

_/

r

o

\

Optimize
Data Locality

_/

OPENACC DIRECTIVE SYNTAX

» C/C++

#pragma acc directive [clause [,] clause] ..]
...often followed by a structured code block

» Fortran

'Sacc directive [clause [,] clause] ..]
...often paired with a matching end directive surrounding a structured code
block:

1Sacc end directive

A Don’t forget acc

OPENACC PARALLEL LOOP DIRECTIVE

parallel - Programmer identifies a block of code containing parallelism.
Compiler generates a kernel.

loop - Programmeridentifies a loop that can be parallelized within the
kernel.

NOTE: parallel & loop are often placed together
#pragma acc parallel loop
for(int i=0; i<N; i++)

{

yli]l = a*x[1]+y[1i];

PARALLELIZE WITH OPENACC

while (err > tol && iter < iter max) ({
err=0.0;

#pragma acc parallel loop reduction (max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {

4

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[3-1][1i] + A[3+1][i]);

err = max (err, abs(Anew[]j][i] - A[]j]1[i])):
}
}

for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[jl[i] = Anew[]][i]’
}
}

Teerl Ly _

iter++;

BUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40,

51,
55,

55,

58,
66,

66,

69,

Loop not fused: function call before adjacent loop
Generated vector sse code for the loop

Loop not vectorized/parallelized: potential early exits
Accelerator kernel generated

55, Max reduction generated for error

56, #pragma acc loop gang /* blockIdx.x */

58, #pragma acc loop vector(256) /* threadIdx.x */
Generating copyout (Anew[1:4094][1:4094])
Generating copyin(A[:]1[:1)

Generating Tesla code

Loop is parallelizable

Accelerator kernel generated

67, #pragma acc loop gang /* blockIdx.x */

69, #pragma acc loop vector(256) /* threadIdx.x */
Generating copyin(Anew[1:4094] [1:4094])

Generating copyout (A[1:4094][1:4094])

Generating Tesla code

Loop is parallelizable

26

OPENACC KERNELS DIRECTIVE

The kernels construct expresses that a region may contain

parallelism and the compiler determines what can safely be
parallelized.

#pragma acc kernels

{
for (int i=0; i<N; i++)
{

x[i] = 1.0: kernel 1
y[i] = 2.0;

}

for(int i=0; i<N; i++)

{
y[i] = a*x[i] + y[i]; kernel 2

27

PARALLELIZE WITH OPENACC KERNELS

while (err > tol && iter < iter max) ({
err=0.0;

o ‘_
{

for(int j = 1; j < n-1; Jj++) {
for(int i = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]l[i+1] + A[jI[i-1] +
A[j-1][1i] + A[3+1][i]);

err = max (err, abs(Anew[j][i] - A[J]1[i])):
}
}

for(int j = 1; j < n-1; j++) {
for(int i =1; 1i < m-1; i++) {
A[j]l[i] = Anew[]][i]’
}

}

}
iter++;

} 28

BUILDING THE CODE

$ pgcc -fast -ta=tesla -Minfo=all laplace2d.c
main:

40, Loop not fused: function call before adjacent loop
Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits

55, Generating copyout (Anew[1:4094][1:4094])
Generating copyin(A[:][:1])
Generating copyout (A[1:4094][1:4094])
Generating Tesla code

57, Loop is parallelizable

59, Loop is parallelizable
Accelerator kernel generated
57, #pragma acc loop gang /* blockIdx.y */
59, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
63, Max reduction generated for error

67, Loop is parallelizable

69, Loop is parallelizable
Accelerator kernel generated
67, #pragma acc loop gang /* blockIdx.y */
69, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

29

OPENACC PARALLEL LOOP VS. KERNELS

PARALLEL LOOP KERNELS

» Requires analysis by « Compiler performs parallel
programmer to ensure safe analysis and parallelizes what
parallelism it believes safe

» Will parallelize what a » Can cover larger area of code
compiler may miss with single directive

» Straightforward path from » Gives compiler additional
OpenMP leeway to optimize.

Both approaches are equally valid and can perform equally well.

30

Speed-up (Higher is Better) Intel Xeon E5-

N 2698 V3 @
] 2.30GHz
4307 Why did OpenACC 20GH
slow down here? 4.38X (Haswell)
4.00X / S
3.50X 390 NVIDIA Tesla
| K40
3008 3.13X
2.50X
2.00X
1.82X
1.50X
1.00X ——
(IN00).¢ —
0.50X — .
0.00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC

& NVIDIA Visual Profiler

File View Run Help
IIID =LU .{D -
% *NewSession1 &2

=n

| b e,

=| Process "a.out" (11803)
—| Thread 3991209728
Driver API
Profiling Overhead
—=| [0] Tesla K20c
—| Context 1 (CUDA)
W MemCpy (HtoD)
W MemCpy (DtoH)
=/ Compute
" 59.5% main_61_gpu
T 35.3% main_72_gpu
T 5.2% main_65_gpu_red

=| Streams
@ Analysis 22

1. CUDA Application Analysis

Co) Details| B Console|C

2. Check Overall GPU Usage

The analysis results on the right
indicate potential problems in how
your application is taking advantage
of the GPU's available compute and
data movement capabilities. You
should examine the information
provided with each result to
determine if you can make changes
to your application to increase GPU

Very low
Compute/Memcpy
ratio

n Settings

Results

% Low Compute / Memcpy Efficiency [5.073 s

0 e S 0 it et required for |
More... | |7

v

memcpy.
% Low Memcpy/Compute Overlap [0 ns /50735 = 0%]
The percentage of time when memcpy is being performed in parallel ComPUt 5 d OS
% Low Kernel Concurrency [0 ns/5.073 5 =0%] Memory Copy 62.25
The percentage of time when two kernels are being executed in paral

% Low Memcpy Throughput |

EXCESSIVE DATA TRANSFERS

while (err > tol && iter < iter max)

{

err=0.0; #pragma acc parallel loop

A, Anew resident : :
A, Alew residaert oOri
on host " accelerator
for(int j = 1; j < n-1; j++) {
- for(int 1 = 1; i < m-1; i++) {
These copies Anew([j][i] = 0.25 * (A[j][i+1] +
happen every A[j][i-1] + A[3-1][1] +

- - A[3+1][i]);
iteration Of. the err = max (err, abs(Anew[]j][i] -
outer while A[5114]) ;

loop! }

A, Anew resident
on host

IDENTIFYING DATA LOCALITY

while (err > tol && iter < iter max) {
err=0.0;

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Does the CPU need the data

Anew[j]1[i] = 0.25 * (A[J][i+1] + A[jI[i-1] + between these loop nests?
A[j-11[i] + A[j+1]1[i]);

err = max (err, abs(Anew[j][i] - A[]][i])):
}
} Does the CPU need the data

between iterations of the
for(int j = 1; j < n-1; j++) { convergence loop?
for(int 1 = 1; i < m-1; i++) {
A[j]l[i] = Anew[]][i];

#pragma acc parallel loop

}
}

iter++;

'

=

|ldentify
Available
Parallelism

4)

Optimize
Loop

Performance
_ Y,

~
Parallelize

Loops with

OpenACC
-

DEFINING DATA REGIONS

- The data construct defines a region of code in which GPU

arrays remain on the GPU and are shared among all kernels in
that region.

#pragma acc data
{
#pragma acc parallel loop

> Data Region
#pragma acc parallel loop

i..

DATA CLAUSES

copy (list) Allocates memory on GPU and copies data from
host to GPU when entering region and copies
data to the host when exiting region.

copyin (1ist) Allocates memory on GPU and copies data from
host to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to
the host when exiting region.

create (1ist) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another
containing data region.

and present or copyl[in|out], present or create, deviceptr.

ARRAY SHAPING

» Compiler sometimes cannot determine size of arrays

» Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0O:size]) copyout(b[s/4:3*s/4])

Fortran

1Sacc data copyin(a(l:end)) copyout(b(s/4:3*s/4))

 Note: data clauses can be used on data, parallel, or kernels

OPTIMIZE DATA LOCALITY

#pragma acc data copy (A) create (Anew)
while (err > tol && iter < iter max) {
err=0.0;
#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[3-1][1i] + A[3+1][i]);

err = max (err, abs(Anew[]j][i] - A[]j]1I[i])):

}
}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int 1i = 1; i < m-1; i++) {
A[jl[i] = Anew[]][i];

REBUILDING THE CODE

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40,

51,

56,

56,
59,
67,

67,
70,

Loop not fused: function call before adjacent loop
Generated vector sse code for the loop

Generating copy (A[:]1[:1)

Generating create(Anew[:][:])

Loop not vectorized/parallelized: potential early exits
Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */

59, #pragma acc loop vector(256) /* threadIdx.x */
Generating Tesla code

Loop is parallelizable

Accelerator kernel generated

68, #pragma acc loop gang /* blockIdx.x */

70, #pragma acc loop vector(256) /* threadIdx.x */
Generating Tesla code

Loop is parallelizable

40

VISUAL PROFILER: DATA REGION

& MNVIDIA Visual Profiler
File Wiew Run Help

09 = =, by &g Was 104ms

§ "NewSession2 i3
0,903 s

Process "a.out” (25815])

—| Thread 42283871936
Driver AFI ize | cuMemcpyDtoHAsync | cuStrearmSynchronize custreamsynchronize

Profiling Overhead

[0] Tesla K20¢

—| Context1 [CUDA)
o MemCpy [HtoD)
" MemCpy [DtoH)

=| Compute h gpL rrain_BT_gpu

" 55.4% main_56_gpu :
7 443% main_s7_gpu [} ' main.67_gp
¥ 03% main_56_gpu_..

=| Streams

Stream 13 A gpu main_¥_gpu

Iteration 1 Iteration 2

30.00X

25.00X

20.00X

15.00X

10.00X

5.00X

0.00X

Speed-Up (Higher is Better)

Socket/Socket: ==

6.24X

niel Aeon = V Z aswe
VS.
NVIDIA Tesla K40
- 1.82X
Single Thread 2 Threads 4 Threads CRINGELH 8 Threads

OpenACC

OPENACC PRESENT CLAUSE

It’s sometimes necessary for a data region to
be in a different scope than the compute
region.

When this occurs, the present clause can be
used to tell the compiler data is already on
the device.

Since the declaration of A is now in a higher
scope, it’s necessary to shape A in the present
clause.

High-level data regions and the present clause
are often critical to good performance.

function main(int argc, char **argv)

{

}

{
laplace2D(A,n,m) ;

}

function laplace2D (double[N][M] A,n,m)
{

#fpragma acc data create (Anew)
while (err > tol && iter < iter max) {
err=0.0;

- ™)
|ldentify

Available

Parallelism
g Y,

. ™\
Parallelize

Loops with

OpenACC
- v

e ™\ Watch S5195 - Advanced
OpenACC Programming on

Optimizg gputechconf.com
Data Locality

o _/

NEXT STEPS

ACCELERATING WITH OPENACC

1. Identify Available Parallelism
b What important parts of the code have available parallelism?
2. Parallelize Loops

S Express as much parallelism as possible and ensure you still get
correct results.

b Because the compiler must be cautious about data movement,
the code will generally slow down.

3. Optimize Data Locality

8 The programmer will always know better than the compiler what
data movement is unnecessary.

4. Optimize Loop Performance

> Don’t try to optimize a kernel that runs in a few us or ms until
you’vcce’ eliminated the excess data motion that is taking many
seconds.

Application Speed-up

Step 1
Identify Available
Parallelism

TYPICAL PORTING EXPERIENCE
WITH OPENACC DIRECTIVES

Step 3
Optimize Data
Locality

FOR MORE INFORMATION

> Check out http://openacc.org/

» Watch tutorials at http://www.gputechconf.com/

> Share your successes at WACCPD at SC15.
http://www.openacc.org/content/Events/waccpd 2015

> Take a self-paced lab at https://nvidia.qwiklab.com/

http://openacc.org/
http://www.gputechconf.com/
http://www.openacc.org/content/Events/waccpd_2015
https://nvidia.qwiklab.com/

