
Jeff Larkin, NVIDIA Developer Technologies

INTRODUCTION TO ACCELERATED

COMPUTING WITH OPENACC

2

AGENDA

NVIDIA Introduction

Accelerated Computing Basics

What are Compiler Directives?

Accelerating Applications with OpenACC

Identifying Available Parallelism

Exposing Parallelism

Optimizing Data Locality

Next Steps

3

NVIDIA Introduction

4

PC DATA CENTER MOBILE

ENTERPRISE
VIRTUALIZATION

AUTONOMOUS
MACHINES

HPC & CLOUD
SERVICE PROVIDERSGAMING DESIGN

The World Leader in Visual Computing

5

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for
Parallel Tasks

ACCELERATED COMPUTING
10X PERFORMANCE & 5X ENERGY EFFICIENCY

6

ACCELERATING

DISCOVERIES

USING A SUPERCOMPUTER POWERED BY 3,000 TESLA

PROCESSORS, UNIVERSITY OF ILLINOIS SCIENTISTS

PERFORMED THE FIRST ALL-ATOM SIMULATION OF THE

HIV VIRUS AND DISCOVERED THE CHEMICAL STRUCTURE

OF ITS CAPSID — “THE PERFECT TARGET FOR FIGHTING

THE INFECTION.”

WITHOUT GPU, THE SUPERCOMPUTER WOULD NEED TO

BE 5X LARGER FOR SIMILAR PERFORMANCE.

7

DevelopmentData Center Infrastructure

GPU

Accelerators
Interconnect

System

Management

Compiler

Solutions

GPU Boost
GPU Direct

NVLink NVML LLVM

Profile and

Debug

CUPTI

Development

Tools

Programming

Languages

Infrastructure

Management
CommunicationSystem Solutions

/

Software

Solutions

Accelerated

Libraries

cuBLAS

TESLA ACCELERATED COMPUTING PLATFORM

Enterprise Services Support & Maintenance

8

ACCELERATED COMPUTING BASICS

9

WHAT IS ACCELERATED COMPUTING?

Application Execution

+

GPUCPU

High Data Parallelism
High Serial

Performance

10

SIMPLICITY & PERFORMANCE

Accelerated Libraries

Little or no code change for standard libraries; high performance

Limited by what libraries are available

Compiler Directives

High Level: Based on existing languages; simple and familiar

High Level: Performance may not be optimal

Parallel Language Extensions

Expose low-level details for maximum performance

Often more difficult to learn and more time consuming to implement

Simplicity

Performance

11

CODE FOR SIMPLICITY & PERFORMANCE

Libraries
• Implement as much as possible using

portable libraries.

Directives
• Use directives to rapidly

accelerate your code.

Languages • Use lower level languages
for important kernels.

12

WHAT ARE COMPILER DIRECTIVES?

13

WHAT ARE COMPILER DIRECTIVES?

program myscience

... serial code ...

do k = 1,n1

do i = 1,n2

...

enddo

enddo

...

end program myscience

CPU GPU

Your original

Fortran, C, or C++

code

Insert portable compiler
directives

Compiler parallelizes code and
manages data movement

Programmer optimizes
incrementally

Designed for multi-core CPUs,
GPUs & many-core Accelerators

program myscience

... serial code ...

!$acc parallel loop

do k = 1,n1

do i = 1,n2

...

enddo

enddo

...

end program myscience

14

OPENACC:
THE STANDARD FOR GPU DIRECTIVES

Simple: Easy path to accelerate compute intensive
applications

Open: Open standard that can be implemented anywhere

Portable: Represents parallelism at a high level making it
portable to any architecture

15

OPENACC MEMBERS AND PARTNERS

16

ACCELERATING APPLICATIONS WITH
OPENACC

17

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

18

EXAMPLE: JACOBI ITERATION

Iteratively converges to correct value (e.g. Temperature), by
computing new values at each point from the average of
neighboring points.

Common, useful algorithm

Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙,𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

19

JACOBI ITERATION: C CODE

19

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

20

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

21

IDENTIFY PARALLELISM

21

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Independent loop

iterations

Independent loop

iterations

Data dependency

between iterations.

22

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

23

Don’t forget acc

OPENACC DIRECTIVE SYNTAX

C/C++

#pragma acc directive [clause [,] clause] …]

…often followed by a structured code block

Fortran

!$acc directive [clause [,] clause] …]

...often paired with a matching end directive surrounding a structured code
block:
!$acc end directive

24

OPENACC PARALLEL LOOP DIRECTIVE

24

parallel - Programmer identifies a block of code containing parallelism.
Compiler generates a kernel.

loop - Programmer identifies a loop that can be parallelized within the
kernel.

NOTE: parallel & loop are often placed together

#pragma acc parallel loop

for(int i=0; i<N; i++)

{

y[i] = a*x[i]+y[i];

}

Parallel

kernel
Kernel:

A function that runs

in parallel on the

GPU

25

PARALLELIZE WITH OPENACC

25

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Parallelize loop on

accelerator

Parallelize loop on

accelerator

* A reduction means that all of the N*M values

for err will be reduced to just one, the max.

26

BUILDING THE CODE

26

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits

55, Accelerator kernel generated

55, Max reduction generated for error
56, #pragma acc loop gang /* blockIdx.x */

58, #pragma acc loop vector(256) /* threadIdx.x */

55, Generating copyout(Anew[1:4094][1:4094])
Generating copyin(A[:][:])

Generating Tesla code

58, Loop is parallelizable

66, Accelerator kernel generated
67, #pragma acc loop gang /* blockIdx.x */
69, #pragma acc loop vector(256) /* threadIdx.x */

66, Generating copyin(Anew[1:4094][1:4094])

Generating copyout(A[1:4094][1:4094])
Generating Tesla code

69, Loop is parallelizable

27

OPENACC KERNELS DIRECTIVE

27

The kernels construct expresses that a region may contain
parallelism and the compiler determines what can safely be
parallelized.

#pragma acc kernels

{

for(int i=0; i<N; i++)
{

x[i] = 1.0;
y[i] = 2.0;

}

for(int i=0; i<N; i++)
{

y[i] = a*x[i] + y[i];
}
}

kernel 1

kernel 2

The compiler identifies

2 parallel loops and

generates 2 kernels.

28

PARALLELIZE WITH OPENACC KERNELS

28

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc kernels

{

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

Look for parallelism

within this region.

29

BUILDING THE CODE

29

$ pgcc -fast -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Loop not vectorized/parallelized: potential early exits

55, Generating copyout(Anew[1:4094][1:4094])

Generating copyin(A[:][:])
Generating copyout(A[1:4094][1:4094])

Generating Tesla code

57, Loop is parallelizable
59, Loop is parallelizable

Accelerator kernel generated

57, #pragma acc loop gang /* blockIdx.y */

59, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
63, Max reduction generated for error

67, Loop is parallelizable

69, Loop is parallelizable

Accelerator kernel generated
67, #pragma acc loop gang /* blockIdx.y */

69, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

30

OPENACC PARALLEL LOOP VS. KERNELS

KERNELS

• Compiler performs parallel
analysis and parallelizes what
it believes safe

• Can cover larger area of code
with single directive

• Gives compiler additional
leeway to optimize.

30

PARALLEL LOOP

• Requires analysis by
programmer to ensure safe
parallelism

• Will parallelize what a
compiler may miss

• Straightforward path from
OpenMP

Both approaches are equally valid and can perform equally well.

31

1.00X

1.82X

3.13X

3.90X

4.38X

0.85X

0.00X

0.50X

1.00X

1.50X

2.00X

2.50X

3.00X

3.50X

4.00X

4.50X

5.00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC

Speed-up (Higher is Better)

Why did OpenACC

slow down here?

Intel Xeon E5-

2698 v3 @

2.30GHz

(Haswell)

vs.
NVIDIA Tesla

K40

32

Very low

Compute/Memcpy

ratio

Compute 5.0s

Memory Copy 62.2s

33

EXCESSIVE DATA TRANSFERS

while (err > tol && iter < iter_max)

{

err=0.0;

...

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] +

A[j][i-1] + A[j-1][i] +

A[j+1][i]);

err = max(err, abs(Anew[j][i] –

A[j][i]);

}

}

...

A, Anew resident

on host

A, Anew resident

on host

A, Anew resident on

accelerator

A, Anew resident on

accelerator

These copies

happen every

iteration of the

outer while
loop!

C

o

p

y
C

o

p

y

34

IDENTIFYING DATA LOCALITY
while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Does the CPU need the data

between these loop nests?

Does the CPU need the data

between iterations of the

convergence loop?

35

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

36

DEFINING DATA REGIONS

The data construct defines a region of code in which GPU
arrays remain on the GPU and are shared among all kernels in
that region.

#pragma acc data

{

#pragma acc parallel loop

...

#pragma acc parallel loop

...

}

Data Region

Arrays used within the

data region will remain

on the GPU until the

end of the data region.

37

DATA CLAUSES

copy (list) Allocates memory on GPU and copies data from
host to GPU when entering region and copies
data to the host when exiting region.

copyin (list) Allocates memory on GPU and copies data from
host to GPU when entering region.

copyout (list) Allocates memory on GPU and copies data to
the host when exiting region.

create (list) Allocates memory on GPU but does not copy.

present (list) Data is already present on GPU from another
containing data region.

and present_or_copy[in|out], present_or_create, deviceptr.

38

ARRAY SHAPING

Compiler sometimes cannot determine size of arrays

Must specify explicitly using data clauses and array “shape”

C/C++

#pragma acc data copyin(a[0:size]) copyout(b[s/4:3*s/4])

Fortran

!$acc data copyin(a(1:end)) copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel, or kernels

39

OPTIMIZE DATA LOCALITY
#pragma acc data copy(A) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Create Anew as a device

temporary.

40

REBUILDING THE CODE

40

$ pgcc -fast -acc -ta=tesla -Minfo=all laplace2d.c

main:

40, Loop not fused: function call before adjacent loop

Generated vector sse code for the loop

51, Generating copy(A[:][:])

Generating create(Anew[:][:])

Loop not vectorized/parallelized: potential early exits
56, Accelerator kernel generated

56, Max reduction generated for error

57, #pragma acc loop gang /* blockIdx.x */
59, #pragma acc loop vector(256) /* threadIdx.x */

56, Generating Tesla code

59, Loop is parallelizable

67, Accelerator kernel generated
68, #pragma acc loop gang /* blockIdx.x */
70, #pragma acc loop vector(256) /* threadIdx.x */

67, Generating Tesla code

70, Loop is parallelizable

41

VISUAL PROFILER: DATA REGION

41

Iteration 1 Iteration 2

Was 104ms

42

1.00X
1.82X

3.13X
3.90X 4.38X

27.30X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

Single Thread 2 Threads 4 Threads 6 Threads 8 Threads OpenACC

Speed-Up (Higher is Better)

Socket/Socket:

6.24X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)

vs.

NVIDIA Tesla K40

43

OPENACC PRESENT CLAUSE

function laplace2D(double[N][M] A,n,m)

{

#pragma acc data present(A[n][m]) create(Anew)

while (err > tol && iter < iter_max) {

err=0.0;

...

}

}

function main(int argc, char **argv)

{

#pragma acc data copy(A)

{

laplace2D(A,n,m);

}

}

It’s sometimes necessary for a data region to

be in a different scope than the compute

region.

When this occurs, the present clause can be

used to tell the compiler data is already on

the device.

Since the declaration of A is now in a higher
scope, it’s necessary to shape A in the present

clause.

High-level data regions and the present clause

are often critical to good performance.

44

Identify
Available

Parallelism

Parallelize
Loops with
OpenACC

Optimize
Data Locality

Optimize
Loop

Performance

Watch S5195 - Advanced

OpenACC Programming on

gputechconf.com

45

NEXT STEPS

46

ACCELERATING WITH OPENACC
1. Identify Available Parallelism

What important parts of the code have available parallelism?

2. Parallelize Loops

Express as much parallelism as possible and ensure you still get
correct results.

Because the compiler must be cautious about data movement,
the code will generally slow down.

3. Optimize Data Locality

The programmer will always know better than the compiler what
data movement is unnecessary.

4. Optimize Loop Performance

Don’t try to optimize a kernel that runs in a few us or ms until
you’ve eliminated the excess data motion that is taking many
seconds.

47

Step 2
Parallelize Loops

with OpenACC

TYPICAL PORTING EXPERIENCE
WITH OPENACC DIRECTIVES

A
p
p
li
c
a
ti

o
n
 S

p
e
e
d
-u

p

Development Time

Step 1

Identify Available

Parallelism

Step 3

Optimize Data

Locality

Step 4
Optimize Loops

48

FOR MORE INFORMATION

Check out http://openacc.org/

Watch tutorials at http://www.gputechconf.com/

Share your successes at WACCPD at SC15.
http://www.openacc.org/content/Events/waccpd_2015

Take a self-paced lab at https://nvidia.qwiklab.com/

http://openacc.org/
http://www.gputechconf.com/
http://www.openacc.org/content/Events/waccpd_2015
https://nvidia.qwiklab.com/

