Present and Future Leadership Computers at OLCF

Buddy Bland OLCF Project Director

Presented at: OLCF User Group

June 25, 2015

ORNL is managed by UT-Battelle for the US Department of Energy

tional Laboratorv

Oak Ridge Leadership Computing Facility

Mission: Deploy and operate the computational and data resources required to tackle global challenges

- Providing world-leading computational and data resources and specialized services for the most computationally intensive problems
- Providing stable hardware/software path of increasing scale to maximize productive applications development
- Providing the resources to investigate otherwise inaccessible systems at every scale: from galaxy formation to supernovae to earth systems to automobiles to nanomaterials
- With our partners, deliver transforming discoveries in materials, biology, climate, energy technologies, and basic science

Our Science requires that we continue to advance OLCF's computational capability over the next decade on the roadmap to Exascale and beyond.

Since clock-rate scaling ended in 2003, HPC performance has been achieved through increased parallelism. Jaguar scaled to 300,000 cores. Titan has >560K. Titan and beyond deliver hierarchical parallelism with very powerful nodes. MPI plus thread level parallelism through OpenACC or OpenMP plus vectors

National Laboratory | COMPUTING FACILITY

Today's Leadership System - Titan Hybrid CPU/GPU architecture, Hierarchical Parallelism

Vendors: Cray[™] / NVIDIA[™]

- 27 PF peak
- 18,688 Compute nodes, each with
 - 1.45 TF peak
 - NVIDIA Kepler™ GPU 1,311 GF
 - 6 GB GDDR5 memory
 - AMD Opteron[™]- 141 GF
 - 32 GB DDR3 memory
 - PCIe2 link between GPU and CPU
- Cray Gemini 3-D Torus Interconnect
- 32 PB / 1 TB/s Lustre[®] file system

Where do we go from here?

 Provide the Leadership computing capabilities needed for the DOE Office of Science mission from 2018 through 2022

Capabilities for INCITE and ALCC science projects

- CORAL was formed by grouping the three Labs who would be acquiring Leadership computers in the same timeframe (2017).
 - Benefits include:
 - Shared technical expertise
 - Decreases risks due to the broader experiences, and broader range of expertise of the collaboration
 - Lower collective cost for developing and responding to RFP

CORAL <u>Collaboration</u> <u>ORNL</u>, <u>ANL</u>, <u>LLNL</u>)

Objective - Procure 3 leadership computers to be sited at Argonne, Oak Ridge and Lawrence Livermore in 2017. Two of the contracts have been awarded with the Argonne contract in process.

Current DOE Leadership Computers

Titan (ORNL) 2012 - 2017 Sequoia (LLNL)

Mira (ANL) 2012 - 2017

Leadership Computers RFP requests >100 PF, 2 GB/core main memory, local NVRAM, and science performance 4x-8x Titan or Sequoia

Approach

- Competitive process one RFP (issued by LLNL) leading to 2 R&D contracts and 3 computer procurement contracts
- For risk reduction and to meet a broad set of requirements, 2 architectural paths will be selected and Oak Ridge and Argonne must choose different architectures
- Once Selected, Multi-year Lab-Awardee relationship to co-design computers
- Both R&D contracts jointly managed by the 3 Labs

National Laboratory

- Each lab manages and negotiates its own computer procurement contract, and may exercise options to meet their specific needs
- Understanding that long procurement lead-time may impact architectural characteristics and designs of procured computers

Two Architecture Paths for Today and Future Leadership Systems

Power concerns for large supercomputers are driving the largest systems to either Hybrid or Many-core architectures

Hybrid Multi-Core (like Titan)

- CPU / GPU hybrid systems
- Likely to have multiple CPUs and GPUs per node
- Small number of very powerful nodes
- Expect data movement issues to be much easier than previous systems – coherent shared memory within a node
- Multiple levels of memory on package, DDR, and non-volatile

Many Core (like Sequoia/Mira)

- 10's of thousands of nodes with millions of cores
- Homogeneous cores
- Multiple levels of memory on package, DDR, and non-volatile
- Unlike prior generations, future products are likely to be self hosted

2017 OLCF Leadership System Hybrid CPU/GPU architecture

At least 5X Titan's Application Performance

Approximately 3,400 nodes, each with:

- Multiple IBM POWER9 CPUs and multiple NVIDIA Tesla® GPUs using the NVIDIA Volta architecture
- CPUs and GPUs connected with high speed NVLink
- Large coherent memory: over 512 GB (HBM + DDR4)
 - all directly addressable from the CPUs and GPUs
- An additional 800 GB of NVRAM, which can be configured as either a burst buffer or as extended memory
- over 40 TF peak performance

Dual-rail Mellanox[®] EDR-IB full, non-blocking fat-tree interconnect

IBM Elastic Storage (GPFS[™]) - 1TB/s I/O and 120 PB disk capacity.

INTRODUCING NVLINK AND HBM MEMORY TRANSFORMATIVE TECHNOLOGY FOR 2016 WITH POWER 8+[®], AND BEYOND

NVLINK

GPU high speed interconnect
5X-12X PCI-E Gen3 Bandwidth
Planned support for POWER[®] CPUs

HBM (Stacked) Memory

- 4x Higher Bandwidth (~1 TB/s)
- 3x Larger Capacity
- 4x More Energy Efficient per bit

Summit's High-Speed Interconnect Mellanox Technologies® Dual-Rail EDR Infiniband

InfiniBand Interconnect Three-level Fat Tree Interconnect

- 3-Level Fat Tree
- 23 GB/s (dual plane 100Gb/s)
- 5 hops max
- Adaptive routing

Summit Key Software Components

System

- Linux®
- IBM Elastic Storage (GPFS™)
- IBM Platform Computing[™] (LSF)
- IBM Platform Cluster Manager™ (xCAT)

Programming Environment

- Compilers supporting OpenMP and OpenACC
 - IBM XL, PGI, LLVM, GNU, NVIDIA
- Libraries
 - IBM Engineering and Scientific Subroutine Library (ESSL)
 - FFTW, ScaLAPACK, PETSc, Trilinos, BLAS-1,-2,-3, NVBLAS
 - cuFFT, cuSPARSE, cuRAND, NPP, Thrust
- Debugging
 - Allinea DDT, IBM Parallel Environment Runtime Edition (pdb)
 - Cuda-gdb, Cuda-memcheck, valgrind, memcheck, helgrind, stacktrace
- Profiling
 - IBM Parallel Environment Developer Edition (HPC Toolkit)
 - VAMPIR, Tau, Open|Speedshop, nvprof, gprof, Rice HPCToolkit

How does Summit compare to Titan

Feature	Summit	Titan		
Application Performance	5-10x Titan	Baseline		
Number of Nodes	~3,400	18,688		
Node performance	> 40 TF	1.4 TF		
Memory per Node	>512 GB (HBM + DDR4)	38GB (GDDR5+DDR3)		
NVRAM per Node	800 GB	0		
Node Interconnect	NVLink (5-12x PCIe 3)	PCIe 2		
System Interconnect (node injection bandwidth)	Dual Rail EDR-IB (23 GB/s)	Gemini (6.4 GB/s)		
Interconnect Topology	Non-blocking Fat Tree	3D Torus		
Processors	IBM POWER9 NVIDIA Volta™	AMD Opteron™ NVIDIA Kepler™		
File System	120 PB, 1 TB/s, GPFS™	32 PB, 1 TB/s, Lustre [®]		
Peak power consumption	10 MW	9 MW		

Preparing Applications for Summit

Center for Accelerated Application Readiness (CAAR)

- Each team will consist of multidisciplinary teams of code owners/developers, IBM & NVIDIA COE, OLCF Liaison, Postdoc
- Goal is to prepare app for science on day 1
- Selected 13 applications for intensive work to prepare for Summit – Diverse algorithms

Training

- Workshops with OLCF training team and COE members
- Build on knowledge gained from CAAR work on Titan and Summit
- Classes will be on-site, webcast, and archived for self paced study
- Systems include Titan, POWER8, POWER8+ & POWER9 testbeds
- Prepare for Summit availability in 2018

Early Science Period

- Call for proposals in 2017
- Substantial time on Summit to produce early results
- Help shake out any problems not detected during acceptance testing

Titan & Summit Application Differences

- Fewer but much more powerful nodes
 - 1/6th the number of nodes on Summit vs. Titan
 - Summit nodes are ~25x more powerful than Titan's nodes
- Must exploit more node-level parallelism
 - Multiple CPUs and GPU to keep busy
 - Likely requires OpenMP or OpenACC programming model
- Very large memory
 - Summit has ~15 times more memory per node than Titan
- Interconnect is only ~3x the bandwidth of Titan
 - Need to exploit data locality within nodes to minimize message passing traffic

But there is far more to a simulation environment than just compute platform

Data is the lifeblood of research

- Data Storage
 - Spider II file system provides high-bandwidth access to data stored on disk. 32 petabyte capacity, 1 TB/sec
 - HPSS High Performance Storage System provides long-term storage of data on disk cache and tape
- Data Analysis
 - Rhea 512 node Linux cluster for pre- and postprocessing of data
 - Sith 40 node Linux cluster for workflow management

Data environment

Data Visualization

- EVEREST visualization lab
 - Two ultra-high resolution display screens offering 3-D capability
- Visualization Liaisons
 - Here to help you get the most out of your data

Data Liaisons

Team of people who can help with I/O, analysis, and workflow needs

Where are we going with data?

- New Advanced Data and Workflow Group
 - Bring together our data team into one group to focus on user needs
 - The group was formed in the spring and we are interviewing candidates for the group leader
 - The group is up and running today Talk to the helpline if you would like to discuss their services and how they can help you

CADES – Compute and Data Environment for Science

CADES is an **integrated compute and data science infrastructure** and **service portfolio** in support of ORNL Projects and Staff

- A diverse computing and data ecosystem
- Matrix staff with expertise in computing and data science
- Focused on the technical computing needs of the scientific and engineering R&D communities across ORNL
- Designed to deliver solutions to many projects

Designed to support projects and staff with demanding requirements

AK RIDG tional Laborate	COMPUTING F	Satema Understander		CLIMATE RESEARCH F/ BIOE	BESC	CALLAND SPALLATION	Simulatio	n Services
Data Mining	Semantic Analysis		Data Transfer Tools	Metadata Harvesting & Management	Indexing, Discovery & Dissemination	Simulation Frameworks	Scalable Debuggers	Scientific Libraries
MI	PI ADIOS	Map Redu		n Software 8 Key Value Stores	& Middleware \$ Graph Databases	Services SQL Databases	Message Queues	SDN
		Utility ompute	Advanced Networking	Infrastruc Parallel File Systems				alization onments

Cray's Urika systems for Data Analytics

Urika-GD

- Graph Discovery
- Purpose built for discovery analytics
 - Massively multithreaded hardware accelerator to speed access to large, shared memory
 - Graph representation, SPARQL query language
 - Uncover hidden linkages and patterns

Urika-XA

- Extreme Analytics
- Supports wide range of analytic applications
 - Hadoop, Spark, and future workloads
 - Batch and lowlatency
 - Data mining, machine learning, interactive data exploration

New Services – coming soon

- DOI registration and serving reference data in your papers through a DOI and we will archive and serve the data to those who want to see it.
- Integration of ORNL's CADES environment for OLCF users
- Faster networks ESnet is working on bandwidth upgrades
- More to come ...

Summary

- The OLCF is providing Leadership Computing to you, our users, and has a well defined plan to continue this into the future
- DOE will continue to invest in multiple computing architectures including hybrid multi-core, and manycore systems
- The OLCF has a rich set of data management and analysis capabilities and is adding to these capabilities
- As a user facility, our job is to make you successful. If you need something that you are not getting today, ASK!

BlandAS@ornl.gov

OLCF Users Group Meeting – June 2015

This research used resources of the Oak Ridge Leadership 22 OLCF Users Group – 6/25/15 - Blan Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725

