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• Motivations for large HPC campaigns:                                                                                                                  

              1) Quantitative predictions for complex, nonlinear systems                           
              2) Discover/Expose physical mechanisms 
              3) System-scale simulations (‘impossible experiments’) 
              4) Large-Scale inverse problems and optimization 

• Driven by a wide variety of data sources, computational 
cosmology must address ALL of the above  

• Role of scalability/performance: 
              1) Very large simulations necessary, but not just a matter of  
               running a few large simulations 
              2) High throughput essential (short wall clock times) 
              3) Optimal design of simulation campaigns (parameter scans) 
              4) Large-scale data-intensive applications                                                                                                                                                                                                                      

Motivating HPC: The Computational Ecosystem 



Supercomputing: Hardware Evolution 

• Power	
  is	
  the	
  main	
  constraint	
  
‣ 30X performance gain by 2020  
‣ ~10-20MW per large system 
‣ power/socket roughly const. 

• Only	
  way	
  out:	
  more	
  cores	
  
‣ Several design choices 
‣ None good from scientist’s perspective 

• Micro-­‐architecture	
  gains	
  sacrificed	
  
‣ Accelerate specific tasks 
‣ Restrict memory access structure 

(SIMD/SIMT) 
• Machine	
  balance	
  sacrifice	
  

‣ Memory/Flops; comm BW/Flops — all 
go in the wrong direction 

‣ (Low-level) code must be refactored
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Supercomputing: Systems View 

• HPC	
  is	
  not	
  what	
  it	
  used	
  to	
  be!	
  
‣ HPC systems were meant to be balanced under certain metrics — 

nominal scores of unity (1990’s desiderata) 
‣ These metrics now range from ~0.1 to ~0.001 on the same system 

currently and will get worse (out of balance systems) 
‣ RAM is expensive: memory bytes will not scale like compute flops, 

era of weak scaling (fixed relative problem size) has ended 
• Challenges	
  

‣ Strong scaling regime (fixed absolute problem size) is much harder 
than weak scaling (since metric really is ‘performance’ and not 
‘scaling’) 

‣ Machine models are complicated (multiple hierarchies of compute/
memory/network) 

‣ Codes must add more physics to use the available compute, adding 
more complexity 

‣ Portability across architecture choices must be addressed 
(programming models, algorithmic choices, trade-offs, etc.)



Supercomputing Challenges: Sociological View 

• Codes	
  and	
  Teams	
  
‣ Most codes are written and maintained by small teams working 

near the limits of their capability (no free cycles) 
‣ Community codes, by definition, are associated with large inertia 

(not easy to change standards, untangle lower-level pieces of code 
from higher-level organization, find the people required that have 
the expertise, etc.) 

‣ Lack of consistent programming model for “scale-up” 
‣ In some fields at least, something like a “crisis” is approaching (or 

so people say) 
• What	
  to	
  do?	
  

‣ We will get beyond this (the vector to MPP transition was worse) 
‣ Transition needs to be staged (not enough manpower to entirely 

rewrite code base) 
‣ Prediction: There will be no ready made solutions 
‣ Realization — “You have got to do it for yourself”



Co-Design vs. Code Design 

• HPC	
  Myths	
  
‣ The magic compiler  
‣ The magic programming model/language  
‣ Special-purpose hardware 
‣ Co-Design (not now anyway, but maybe in 

the future —) 
• Dealing	
  with	
  Today’s	
  Reality	
  

‣ Code teams must understand all levels of 
the system architecture, but not be 
enslaved by it (software cycles are long)! 

‣ Must have a good idea of the ‘boundary 
conditions’ (what may be available, what is 
doable, etc.) 

‣ ‘Code Ports’ is ultimately a false notion 
‣ Start thinking out of the box — domain 

scientists and computer scientists and 
engineers must work together

Future heterogeneous manycore 
system, Borkar and Chien (2011)



HACC Application

Simulations with 6 orders of dynamic range, exploiting 
all supercomputing architectures

The Outer Rim Simulation

CMB SZ Sky Map Strong Lensing Synthetic Catalog

Large Scale  
Structure Scientific Inference: Cosmological Parameters Merger 

Trees 



Large Scale Structure: Vlasov-Poisson Equation

Cosmological 
Vlasov-Poisson 

Equation

• Properties of the Cosmological Vlasov-Poisson Equation:  
• 6-D PDE with long-range interactions, no shielding, all scales 

matter; models gravity-only, collisionless evolution 
• Jeans instability drives structure formation at all scales from 

smooth Gaussian random field initial conditions 
• Extreme dynamic range in space and mass (in many applications, 

million to one in both space and density, ‘everywhere’) 
!



Large Scale Structure Simulation Requirements

• Force and Mass Resolution:  
• Galaxy halos ~100kpc, hence force 

resolution has to be ~kpc; with Gpc 
box-sizes, a dynamic range of a 
million to one 

• Ratio of largest object mass to lightest 
is ~10000:1  

• Physics:  
• Gravity dominates at scales greater 

than ~Mpc 
• Small scales: galaxy modeling, semi-

analytic methods to incorporate gas 
physics/feedback/star formation 

• Computing ‘Boundary Conditions’:  
• Total memory in the PB+ class 
• Performance in the 10 PFlops+ class 

• Wall-clock of ~days/week, in situ 
analysis

Can the Universe be run 
as a short computational 

‘experiment’?
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Architectural Challenges: The HACC Story

Mira/Sequoia

Roadrunner: 
Prototype for 
modern 
accelerated 
architectures, 
first to break 
the PFlops 
barrier

 Architectural ‘Features’ 
• Complex heterogeneous nodes 
• Simpler cores, lower memory/core, no real 

cache 
• Skewed compute/communication balance 
• Programming models? 
• I/O? File systems? 
• Effect on code longevity 

HACC team meets Roadrunner



Combating Architectural Diversity with HACC
  

• Architecture-independent performance/scalability: 
‘Universal’ top layer + ‘plug in’ node-level components; 
minimize data structure complexity and data motion 

• Programming model: ‘C++/MPI + X’ where X = 
OpenMP, Cell SDK, OpenCL, CUDA, -- 

• Algorithm Co-Design: Multiple algorithm options, 
stresses accuracy, low memory overhead, no external 
libraries in simulation path 

• Analysis tools: Major analysis framework, tools 
deployed in stand-alone and in situ modes  

Roadrunner

Hopper

Mira/Sequoia

Titan

Edison
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HACC Structure: Universal vs. Local Layers

Mira/Sequoia

Newtonian  
Force

Noisy CIC PM Force

6th-Order sinc-Gaussian 
spectrally filtered PM 
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HACC Top Layer:  
3-D domain decomposition 
with particle replication at 
boundaries (‘overloading’) 
for Spectral PM algorithm 

(long-range force)

HACC ‘Nodal’ Layer:  
Short-range solvers 

employing combination 
of flexible chaining mesh 
and RCB tree-based force 

evaluations

RCB tree 
levels

~50 Mpc ~1 Mpc

Host-side: Scaling  
controlled by FFT

Performance controlled 
by short-range solver



HACC: Algorithmic Features and Options
  

• Fully Spectral Particle-Mesh Solver: 6th-order Green function, 4th-order Super-
Lanczos derivatives, high-order spectral filtering, high-accuracy polynomial for 
short-range forces 

• Custom Parallel FFT: Pencil-decomposed, high-performance FFT (up to 15K^3) 
• Particle Overloading: Particle replication at ‘node’ boundaries to reduce/delay 

communication (intermittent refreshes), important for accelerated systems 
• Flexible Chaining Mesh: Used to optimize tree and P3M methods 
• Optimal Splitting of Gravitational Forces: Spectral Particle-Mesh melded with 

direct and RCB (‘fat leaf’) tree force solvers (PPTPM), short hand-over scale 
(dynamic range splitting ~ 10,000 X 100); pseudo-particle method for multipole 
expansions 

• Mixed Precision: Optimize memory and performance (GPU-friendly!) 
• Optimized Force Kernels: High performance without assembly  
• Adaptive Symplectic Time-Stepping: Symplectic sub-cycling of short-range 

force timesteps; adaptivity from automatic density estimate via RCB tree 
• Custom Parallel I/O: Topology aware parallel I/O with lossless compression 

(factor of 2); 1.5 trillion particle checkpoint in 4 minutes at ~160GB/sec on Mira 



HACC on the IBM Blue Gene/Q

Mira/Sequoia

 HACC BG/Q Experience 
• System: BQC chip — 16 

cores, 205GFlops, 16GB 
RAM, 32MB L2, 400GB/s 
crossbar; 5-D torus network 
at 40GB/s 

• Programming Models: Two-
tiered programming model 
(MPI+OpenMP) very 
successful, use of vector 
intrinsics (QPX) essential 

• I/O: Custom I/O 
implementation (one file per 
I/O node, disjoint data region/
process) gives ~2/3 of peak 
performance under 
production conditions 

• Job Mix: Range of job sizes 
running on Mira, from 2 to 32 
racks 



HACC on the BG/Q 
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Number of Cores
HACC weak scaling on the  
IBM BG/Q (MPI/OpenMP)

13.94 PFlops, 69.2% peak, 90% parallel efficiency on 
1,572,864 cores/MPI ranks, 6.3M-way concurrency

3.6 trillion particle 
benchmark*

Habib et al. 2012

HACC: Hybrid/
Hardware 

Accelerated  
Cosmology Code 

Framework

 HACC BG/Q Version 
• Algorithms: FFT-based 

SPM; PP+RCB Tree 
• Data Locality: Rank level 

via ‘overloading’, at tree-
level use the RCB 
grouping to organize 
particle memory buffers 

• Build/Walk Minimization: 
Reduce tree depth using 
rank-local trees, shortest 
hand-over scale, bigger  
p-p component 

• Force Kernel: Use 
polynomial representation 
(no look-ups); vectorize 
kernel evaluation; hide 
instruction latency 

! *largest ever run



Accelerated Systems: HACC on Titan (Cray XK7)

Mira/Sequoia

 Imbalances and Bottlenecks 
• Memory is primarily host-side 

(32 GB vs. 6 GB) (against 
Roadrunner’s 16 GB vs. 16 GB), 
important thing to think about 
(in case of HACC, the ‘grid/
particle’ balance) 

• PCIe is a key bottleneck; overall 
interconnect B/W does not 
match Flops (not even close) 

• There’s no point in ‘sharing’ 
work between the CPU and the 
GPU, performance gains will be 
minimal — GPU must dominate 

• The only reason to write a code 
for such a system is if you can 
truly exploit its power (2 X CPU 
is a waste of effort!) 

 Strategies for Success 
• It’s (still) all about understanding 

and controlling data motion 
• Rethink your code and even 

approach to the problem 
• Isolate hotspots, and design for 

portability around them (modular 
programming) 

• Pragmas will never be the full 
answer (with maybe an exception 
or two) 



HACC on Titan: GPU Implementation (Schematic)

Block
3	
  Grid	
  units

Push	
  to	
  GPU

Chaining  
Mesh

 P3M Implementation (OpenCL): 
• Spatial data pushed to GPU in 

large blocks, data is sub-
partitioned into chaining mesh 
cubes 

• Compute forces between particles 
in a cube and neighboring cubes 

• Natural parallelism and simplicity 
leads to high performance 

• Typical push size ~2GB; large 
push size ensures computation 
time exceeds memory transfer 
latency by a large factor 

• More MPI tasks/node preferred 
over threaded single MPI tasks 
(better host code performance) 

 New Implementations (OpenCL and 
CUDA): 

• P3M with data pushed only once 
per long time-step, completely 
eliminating memory transfer 
latencies (orders of magnitude 
less); uses ‘soft boundary’ 
chaining mesh, rather than 
rebuilding every sub-cycle 

• TreePM analog of BG/Q code 
written in CUDA, also produces 
high performance



HACC on Titan: GPU Implementation Performance

  
• P3M kernel runs at 

1.6TFlops/node at 
40.3% of peak (73% 
of algorithmic peak) 

• TreePM kernel was 
run on 77% of Titan 
at 20.54 PFlops at 
almost identical 
performance on the 
card  

• Because of less 
overhead, P3M code 
is (currently) faster 
by factor of two in 
time to solution 

!

Ideal Scaling

Initial Strong Scaling
Initial Weak Scaling

Improved Weak Scaling

 TreePM Weak Scaling
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Summary

 Basic Ideas: 
• Thoughtful design of flexible code infrastructure; minimize number of 

computational ‘hot spots’, explore multiple algorithmic ideas — exploit 
domain science expertise 

• Because machines are so out of balance, focusing only on the lowest-
level compute-intensive kernels can be a mistake (‘code ports’) 

• One possible solution is an overarching universal layer with 
architecture-dependent, plug-in modules (with implications for 
productivity) 

• Understand data motion issues in depth — minimize data motion, 
always look to hide communication latency with computation 

• Be able to change on fast timescales (HACC needs no external libraries 
in the main simulation code — helps to get on new machines early) 

• As science outputs become more complex, data analysis becomes a 
very significant fraction of available computational time — optimize 
performance with this in mind 



EXTRA SLIDES



Separation of Scales (cont.)

The problem: What are f
long

(r1� r2) and f
short

(r1� r2)?

The answer: f
long

(r1� r2), the “grid softened force”, can be determined
empirically. The force computed by the particle-mesh technique is sampled
for many particle separations, and the resulting samples are fit by a
polynomial. f

short

(r1� r2) is then trivially determined by subtraction.

The question: How to best compute f
short

(r1� r2).

The answer: This depends on the architecture!

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 3 / 19



Force Splitting

The gravitational force calculation is split into long-range part and a
short-range part

A grid grid is responsible for largest 4 orders of magnitude of dynamic
range

particle methods handle the critical 2 orders of magnitude at the
shortest scales

Complexity:

PM (grid) algorithm: O(N
p

)+O(N
g

log N
g

), where N
p

is the total
number of particles, and N

g

the total number of grid points

tree algorithm: O(N
pl

log N
pl

), where N
pl

is the number of particles
in individual spatial domains (N

pl

⌧ N
p

)

the close-range force computations are O(N2

d

) where N
d

is the
number of particles in a tree leaf node within which all direct
interactions are summed

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 5 / 19



Force Splitting (cont.)

Long-Range Algorithm:

The long/medium range algorithm is based on a fast, spectrally
filtered PM method

The density field is generated from the particles using a Cloud-In-Cell
(CIC) scheme

The density field is smoothed with the (isotropizing) spectral filter:

exp (�k2�2/4) [(2k/�) sin(k�/2)]ns , (1)

where the nominal choices are � = 0.8 and n
s

= 3. The noise reduction
from this filter allows matching the short and longer-range forces at a
spacing of 3 grid cells.

The Poisson solver uses a sixth-order, periodic, influence function
(spectral representation of the inverse Laplacian)

The gradient of the scalar potential is obtained using higher-order
spectral di↵erencing (fourth-order Super-Lanczos)

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 6 / 19



Force Splitting (cont.)

The “Poisson-solve” is the composition of all the kernels above in one
single Fourier transform

Each component of the potential field gradient then requires an
independent FFT

Distributed FFTs use a pencil decomposition

To obtain the short-range force, the filtered grid force is subtracted
from the Newtonian force

Mixed precision:

single precision is adequate for the short/close-range particle force
evaluations and particle time-stepping

double precision is used for the spectral component

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 7 / 19



Overloading

The spatial domain decomposition is in regular 3-D blocks, but unlike the
guard zones of a typical PM method, full particle replication – termed
‘particle overloading’ – is employed across domain boundaries.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 8 / 19



Overloading (cont.)

Works because particles cluster and large-scale bulk motion is small

Short-range force contribution is not used for particles near the edge
of the overloading region

The typical memory overhead cost for a large run is ⇠ 10%

The point of overloading is to allow su�ciently-exact
medium/long-range force calculations with no communication of
particle information and high-accuracy local force calculations

We use relatively sparse refreshes of the overloading zone! This is key to
freeing the overall code performance from the weaknesses of the
underlying communications infrastructure.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 9 / 19



Time Stepping

The time-stepping is based on a 2nd-order split-operator symplectic
SKS scheme (stream-kick-stream)

Because the characteristic time scale of the long-range force is much
smaller than that of the short-range force, we sub-cycle the
short-range force operator

The relatively slowly evolving longer range force is e↵ectively frozen
during the shorter-range sub-cycles

M
full

(t) = M
lr

(t/2)(M
sr

(t/n
c

))nc M
lr

(t/2). (2)

The number of sub-cycles is n
c

= 3� 5, in most cases.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 10 / 19



RCB Tree

The short-range force is computed using recursive coordinate bisection
(RCB) tree in conjunction with a highly-tuned short-range polynomial
force kernel.

Level 0

Level 1

Level 2

Level 3

1

2

3

4
5

6
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10

11

12

13

14

15

(graphic from Gafton and Rosswog: arXiv:1108.0028)
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RCB Tree (cont.)

At each level, the node is split at its center of mass

During each node split, the particles are partitioned into disjoint
adjacent memory bu↵ers

This partitioning ensures a high degree of cache locality during the
remainder of the build and during the force evaluation

To limit the depth of the tree, each leaf node holds more than one
particle. This makes the build faster, but more importantly, trades
time in a slow procedure (a “pointer-chasing” tree walk) for a fast
procedure (the polynomial force kernel).

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 12 / 19



Force Kernel

Due to the compactness of the short-range interaction, the kernel can be
represented as

f
SR

(s) = (s + ✏)�3/2 � f
grid

(s) (3)

where s = r · r, f
grid

(s) = poly[5](s), and ✏ is a short-distance cuto↵.

An interaction list is constructed during the tree walk for each leaf
node

When using fine-grained threading: using OpenMP, the particles in
the leaf node are assigned to di↵erent threads: all threads share the
interaction list (which automatically balances the computation)

The interaction list is processed using a vectorized kernel routine
(written using QPX/SSE compiler intrinsics)

Filtering for self and out-of-range interactions uses the floating-point
select instruction: no branching required

We can use the reciprocal (sqrt) estimate instructions: no library calls

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 14 / 19


