
Extreme Scaling and Performance
Across Diverse Architectures

DES

LSST

Nicholas Frontiere
University of Chicago/
Argonne National Laboratory

Salman Habib
Vitali Morozov
Hal Finkel
Adrian Pope
Katrin Heitmann
Kalyan Kumaran
Venkatram Vishwanath
Tom Peterka
Joe Insley
Argonne National Laboratory

David Daniel
Patricia Fasel
Los Alamos National Laboratory

George Zagaris
Kitware

Zarija Lukic
Lawrence Berkeley National Laboratory

HACC (Hardware/Hybrid Accelerated
Cosmology Code) Framework

Justin Luitjens
NVIDIA

ASCR
HEP

• Motivations for large HPC campaigns:

 1) Quantitative predictions for complex, nonlinear systems
 2) Discover/Expose physical mechanisms
 3) System-scale simulations (‘impossible experiments’)
 4) Large-Scale inverse problems and optimization

• Driven by a wide variety of data sources, computational
cosmology must address ALL of the above

• Role of scalability/performance:
 1) Very large simulations necessary, but not just a matter of
 running a few large simulations
 2) High throughput essential (short wall clock times)
 3) Optimal design of simulation campaigns (parameter scans)
 4) Large-scale data-intensive applications

Motivating HPC: The Computational Ecosystem

Supercomputing: Hardware Evolution

• Power	
 is	
 the	
 main	
 constraint	

‣ 30X performance gain by 2020
‣ ~10-20MW per large system
‣ power/socket roughly const.

• Only	
 way	
 out:	
 more	
 cores	

‣ Several design choices
‣ None good from scientist’s perspective

• Micro-­‐architecture	
 gains	
 sacrificed	

‣ Accelerate specific tasks
‣ Restrict memory access structure

(SIMD/SIMT)
• Machine	
 balance	
 sacrifice	

‣ Memory/Flops; comm BW/Flops — all
go in the wrong direction

‣ (Low-level) code must be refactored

C
lo

ck
 ra

te
 (M

H
z)

20041984 2012

2004

M
em

or
y(

G
B

)/
Pe

ak
_F

lo
ps

(G
Fo

ps
)

2016

Kogge and Resnick (2013)

Supercomputing: Systems View

• HPC	
 is	
 not	
 what	
 it	
 used	
 to	
 be!	

‣ HPC systems were meant to be balanced under certain metrics —

nominal scores of unity (1990’s desiderata)
‣ These metrics now range from ~0.1 to ~0.001 on the same system

currently and will get worse (out of balance systems)
‣ RAM is expensive: memory bytes will not scale like compute flops,

era of weak scaling (fixed relative problem size) has ended
• Challenges	

‣ Strong scaling regime (fixed absolute problem size) is much harder
than weak scaling (since metric really is ‘performance’ and not
‘scaling’)

‣ Machine models are complicated (multiple hierarchies of compute/
memory/network)

‣ Codes must add more physics to use the available compute, adding
more complexity

‣ Portability across architecture choices must be addressed
(programming models, algorithmic choices, trade-offs, etc.)

Supercomputing Challenges: Sociological View

• Codes	
 and	
 Teams	

‣ Most codes are written and maintained by small teams working

near the limits of their capability (no free cycles)
‣ Community codes, by definition, are associated with large inertia

(not easy to change standards, untangle lower-level pieces of code
from higher-level organization, find the people required that have
the expertise, etc.)

‣ Lack of consistent programming model for “scale-up”
‣ In some fields at least, something like a “crisis” is approaching (or

so people say)
• What	
 to	
 do?	

‣ We will get beyond this (the vector to MPP transition was worse)
‣ Transition needs to be staged (not enough manpower to entirely

rewrite code base)
‣ Prediction: There will be no ready made solutions
‣ Realization — “You have got to do it for yourself”

Co-Design vs. Code Design

• HPC	
 Myths	

‣ The magic compiler
‣ The magic programming model/language
‣ Special-purpose hardware
‣ Co-Design (not now anyway, but maybe in

the future —)
• Dealing	
 with	
 Today’s	
 Reality	

‣ Code teams must understand all levels of
the system architecture, but not be
enslaved by it (software cycles are long)!

‣ Must have a good idea of the ‘boundary
conditions’ (what may be available, what is
doable, etc.)

‣ ‘Code Ports’ is ultimately a false notion
‣ Start thinking out of the box — domain

scientists and computer scientists and
engineers must work together

Future heterogeneous manycore
system, Borkar and Chien (2011)

HACC Application

Simulations with 6 orders of dynamic range, exploiting
all supercomputing architectures

The Outer Rim Simulation

CMB SZ Sky Map Strong Lensing Synthetic Catalog

Large Scale
Structure Scientific Inference: Cosmological Parameters Merger

Trees

Large Scale Structure: Vlasov-Poisson Equation

Cosmological
Vlasov-Poisson

Equation

• Properties of the Cosmological Vlasov-Poisson Equation:
• 6-D PDE with long-range interactions, no shielding, all scales

matter; models gravity-only, collisionless evolution
• Jeans instability drives structure formation at all scales from

smooth Gaussian random field initial conditions
• Extreme dynamic range in space and mass (in many applications,

million to one in both space and density, ‘everywhere’)
!

Large Scale Structure Simulation Requirements

• Force and Mass Resolution:
• Galaxy halos ~100kpc, hence force

resolution has to be ~kpc; with Gpc
box-sizes, a dynamic range of a
million to one

• Ratio of largest object mass to lightest
is ~10000:1

• Physics:
• Gravity dominates at scales greater

than ~Mpc
• Small scales: galaxy modeling, semi-

analytic methods to incorporate gas
physics/feedback/star formation

• Computing ‘Boundary Conditions’:
• Total memory in the PB+ class
• Performance in the 10 PFlops+ class

• Wall-clock of ~days/week, in situ
analysis

Can the Universe be run
as a short computational

‘experiment’?

1000 Mpc

100 Mpc

20 Mpc

2 Mpc

Ti
m

e

Gravitational Jeans Instablity

Architectural Challenges: The HACC Story

Mira/Sequoia

Roadrunner:
Prototype for
modern
accelerated
architectures,
first to break
the PFlops
barrier

 Architectural ‘Features’
• Complex heterogeneous nodes
• Simpler cores, lower memory/core, no real

cache
• Skewed compute/communication balance
• Programming models?
• I/O? File systems?
• Effect on code longevity

HACC team meets Roadrunner

Combating Architectural Diversity with HACC

• Architecture-independent performance/scalability:
‘Universal’ top layer + ‘plug in’ node-level components;
minimize data structure complexity and data motion

• Programming model: ‘C++/MPI + X’ where X =
OpenMP, Cell SDK, OpenCL, CUDA, --

• Algorithm Co-Design: Multiple algorithm options,
stresses accuracy, low memory overhead, no external
libraries in simulation path

• Analysis tools: Major analysis framework, tools
deployed in stand-alone and in situ modes

Roadrunner

Hopper

Mira/Sequoia

Titan

Edison

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 0.1 1

P(k)
 Ra

tio w
ith r

esp
ect

to G
PU

cod
e

k[h/Mpc]

RCB TreePM on BG/Q/GPU P3M
RCB TreePM on Hopper/GPU P3M

Cell P3M/GPU P3M
Gadget-2/GPU P3M

1.00

1.003

0.997

Power spectra ratios across different
implementations (GPU version as reference)

k (h/Mpc)

HACC Structure: Universal vs. Local Layers

Mira/Sequoia

Newtonian
Force

Noisy CIC PM Force

6th-Order sinc-Gaussian
spectrally filtered PM

Force
Tw

o-
pa

rt
ic

le
 F

or
ce

HACC Top Layer:
3-D domain decomposition
with particle replication at
boundaries (‘overloading’)
for Spectral PM algorithm

(long-range force)

HACC ‘Nodal’ Layer:
Short-range solvers

employing combination
of flexible chaining mesh
and RCB tree-based force

evaluations

RCB tree
levels

~50 Mpc ~1 Mpc

Host-side: Scaling
controlled by FFT

Performance controlled
by short-range solver

HACC: Algorithmic Features and Options

• Fully Spectral Particle-Mesh Solver: 6th-order Green function, 4th-order Super-
Lanczos derivatives, high-order spectral filtering, high-accuracy polynomial for
short-range forces

• Custom Parallel FFT: Pencil-decomposed, high-performance FFT (up to 15K^3)
• Particle Overloading: Particle replication at ‘node’ boundaries to reduce/delay

communication (intermittent refreshes), important for accelerated systems
• Flexible Chaining Mesh: Used to optimize tree and P3M methods
• Optimal Splitting of Gravitational Forces: Spectral Particle-Mesh melded with

direct and RCB (‘fat leaf’) tree force solvers (PPTPM), short hand-over scale
(dynamic range splitting ~ 10,000 X 100); pseudo-particle method for multipole
expansions

• Mixed Precision: Optimize memory and performance (GPU-friendly!)
• Optimized Force Kernels: High performance without assembly
• Adaptive Symplectic Time-Stepping: Symplectic sub-cycling of short-range

force timesteps; adaptivity from automatic density estimate via RCB tree
• Custom Parallel I/O: Topology aware parallel I/O with lossless compression

(factor of 2); 1.5 trillion particle checkpoint in 4 minutes at ~160GB/sec on Mira

HACC on the IBM Blue Gene/Q

Mira/Sequoia

 HACC BG/Q Experience
• System: BQC chip — 16

cores, 205GFlops, 16GB
RAM, 32MB L2, 400GB/s
crossbar; 5-D torus network
at 40GB/s

• Programming Models: Two-
tiered programming model
(MPI+OpenMP) very
successful, use of vector
intrinsics (QPX) essential

• I/O: Custom I/O
implementation (one file per
I/O node, disjoint data region/
process) gives ~2/3 of peak
performance under
production conditions

• Job Mix: Range of job sizes
running on Mira, from 2 to 32
racks

HACC on the BG/Q

 0.1

 1

 10

4K 16K 64K 256K 1024K

 0.015625
 0.03125
 0.0625
 0.125
 0.25
 0.5
 1
 2
 4
 8
 16

Ti
m

e
[n

se
c]

 p
er

 S
ub

st
ep

 p
er

 P
ar

tic
le

Pe
rfo

rm
an

ce
 in

 P
Fl

op
/s

Number of Cores

Ideal ScalingTi
m

e
(n

se
c)

 p
er

 s
ub

st
ep

/p
ar

tic
le

Pe
rf

or
m

an
ce

 (P
Fl

op
s)

Number of Cores
HACC weak scaling on the
IBM BG/Q (MPI/OpenMP)

13.94 PFlops, 69.2% peak, 90% parallel efficiency on
1,572,864 cores/MPI ranks, 6.3M-way concurrency

3.6 trillion particle
benchmark*

Habib et al. 2012

HACC: Hybrid/
Hardware

Accelerated
Cosmology Code

Framework

 HACC BG/Q Version
• Algorithms: FFT-based

SPM; PP+RCB Tree
• Data Locality: Rank level

via ‘overloading’, at tree-
level use the RCB
grouping to organize
particle memory buffers

• Build/Walk Minimization:
Reduce tree depth using
rank-local trees, shortest
hand-over scale, bigger
p-p component

• Force Kernel: Use
polynomial representation
(no look-ups); vectorize
kernel evaluation; hide
instruction latency

! *largest ever run

Accelerated Systems: HACC on Titan (Cray XK7)

Mira/Sequoia

 Imbalances and Bottlenecks
• Memory is primarily host-side

(32 GB vs. 6 GB) (against
Roadrunner’s 16 GB vs. 16 GB),
important thing to think about
(in case of HACC, the ‘grid/
particle’ balance)

• PCIe is a key bottleneck; overall
interconnect B/W does not
match Flops (not even close)

• There’s no point in ‘sharing’
work between the CPU and the
GPU, performance gains will be
minimal — GPU must dominate

• The only reason to write a code
for such a system is if you can
truly exploit its power (2 X CPU
is a waste of effort!)

 Strategies for Success
• It’s (still) all about understanding

and controlling data motion
• Rethink your code and even

approach to the problem
• Isolate hotspots, and design for

portability around them (modular
programming)

• Pragmas will never be the full
answer (with maybe an exception
or two)

HACC on Titan: GPU Implementation (Schematic)

Block
3	
 Grid	
 units

Push	
 to	
 GPU

Chaining
Mesh

 P3M Implementation (OpenCL):
• Spatial data pushed to GPU in

large blocks, data is sub-
partitioned into chaining mesh
cubes

• Compute forces between particles
in a cube and neighboring cubes

• Natural parallelism and simplicity
leads to high performance

• Typical push size ~2GB; large
push size ensures computation
time exceeds memory transfer
latency by a large factor

• More MPI tasks/node preferred
over threaded single MPI tasks
(better host code performance)

 New Implementations (OpenCL and
CUDA):

• P3M with data pushed only once
per long time-step, completely
eliminating memory transfer
latencies (orders of magnitude
less); uses ‘soft boundary’
chaining mesh, rather than
rebuilding every sub-cycle

• TreePM analog of BG/Q code
written in CUDA, also produces
high performance

HACC on Titan: GPU Implementation Performance

• P3M kernel runs at

1.6TFlops/node at
40.3% of peak (73%
of algorithmic peak)

• TreePM kernel was
run on 77% of Titan
at 20.54 PFlops at
almost identical
performance on the
card

• Because of less
overhead, P3M code
is (currently) faster
by factor of two in
time to solution

!

Ideal Scaling

Initial Strong Scaling
Initial Weak Scaling

Improved Weak Scaling

 TreePM Weak Scaling

Ti
m

e
(n

se
c)

 p
er

 s
ub

st
ep

/p
ar

tic
le

Number of Nodes

99.2% Parallel Efficiency

Summary

 Basic Ideas:
• Thoughtful design of flexible code infrastructure; minimize number of

computational ‘hot spots’, explore multiple algorithmic ideas — exploit
domain science expertise

• Because machines are so out of balance, focusing only on the lowest-
level compute-intensive kernels can be a mistake (‘code ports’)

• One possible solution is an overarching universal layer with
architecture-dependent, plug-in modules (with implications for
productivity)

• Understand data motion issues in depth — minimize data motion,
always look to hide communication latency with computation

• Be able to change on fast timescales (HACC needs no external libraries
in the main simulation code — helps to get on new machines early)

• As science outputs become more complex, data analysis becomes a
very significant fraction of available computational time — optimize
performance with this in mind

EXTRA SLIDES

Separation of Scales (cont.)

The problem: What are f
long

(r1� r2) and f
short

(r1� r2)?

The answer: f
long

(r1� r2), the “grid softened force”, can be determined
empirically. The force computed by the particle-mesh technique is sampled
for many particle separations, and the resulting samples are fit by a
polynomial. f

short

(r1� r2) is then trivially determined by subtraction.

The question: How to best compute f
short

(r1� r2).

The answer: This depends on the architecture!

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 3 / 19

Force Splitting

The gravitational force calculation is split into long-range part and a
short-range part

A grid grid is responsible for largest 4 orders of magnitude of dynamic
range

particle methods handle the critical 2 orders of magnitude at the
shortest scales

Complexity:

PM (grid) algorithm: O(N
p

)+O(N
g

log N
g

), where N
p

is the total
number of particles, and N

g

the total number of grid points

tree algorithm: O(N
pl

log N
pl

), where N
pl

is the number of particles
in individual spatial domains (N

pl

⌧ N
p

)

the close-range force computations are O(N2

d

) where N
d

is the
number of particles in a tree leaf node within which all direct
interactions are summed

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 5 / 19

Force Splitting (cont.)

Long-Range Algorithm:

The long/medium range algorithm is based on a fast, spectrally
filtered PM method

The density field is generated from the particles using a Cloud-In-Cell
(CIC) scheme

The density field is smoothed with the (isotropizing) spectral filter:

exp (�k2�2/4) [(2k/�) sin(k�/2)]ns , (1)

where the nominal choices are � = 0.8 and n
s

= 3. The noise reduction
from this filter allows matching the short and longer-range forces at a
spacing of 3 grid cells.

The Poisson solver uses a sixth-order, periodic, influence function
(spectral representation of the inverse Laplacian)

The gradient of the scalar potential is obtained using higher-order
spectral di↵erencing (fourth-order Super-Lanczos)

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 6 / 19

Force Splitting (cont.)

The “Poisson-solve” is the composition of all the kernels above in one
single Fourier transform

Each component of the potential field gradient then requires an
independent FFT

Distributed FFTs use a pencil decomposition

To obtain the short-range force, the filtered grid force is subtracted
from the Newtonian force

Mixed precision:

single precision is adequate for the short/close-range particle force
evaluations and particle time-stepping

double precision is used for the spectral component

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 7 / 19

Overloading

The spatial domain decomposition is in regular 3-D blocks, but unlike the
guard zones of a typical PM method, full particle replication – termed
‘particle overloading’ – is employed across domain boundaries.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 8 / 19

Overloading (cont.)

Works because particles cluster and large-scale bulk motion is small

Short-range force contribution is not used for particles near the edge
of the overloading region

The typical memory overhead cost for a large run is ⇠ 10%

The point of overloading is to allow su�ciently-exact
medium/long-range force calculations with no communication of
particle information and high-accuracy local force calculations

We use relatively sparse refreshes of the overloading zone! This is key to
freeing the overall code performance from the weaknesses of the
underlying communications infrastructure.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 9 / 19

Time Stepping

The time-stepping is based on a 2nd-order split-operator symplectic
SKS scheme (stream-kick-stream)

Because the characteristic time scale of the long-range force is much
smaller than that of the short-range force, we sub-cycle the
short-range force operator

The relatively slowly evolving longer range force is e↵ectively frozen
during the shorter-range sub-cycles

M
full

(t) = M
lr

(t/2)(M
sr

(t/n
c

))nc M
lr

(t/2). (2)

The number of sub-cycles is n
c

= 3� 5, in most cases.

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 10 / 19

RCB Tree

The short-range force is computed using recursive coordinate bisection
(RCB) tree in conjunction with a highly-tuned short-range polynomial
force kernel.

Level 0

Level 1

Level 2

Level 3

1

2

3

4
5

6

7

8
9

10

11

12

13

14

15

(graphic from Gafton and Rosswog: arXiv:1108.0028)

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 11 / 19

RCB Tree (cont.)

At each level, the node is split at its center of mass

During each node split, the particles are partitioned into disjoint
adjacent memory bu↵ers

This partitioning ensures a high degree of cache locality during the
remainder of the build and during the force evaluation

To limit the depth of the tree, each leaf node holds more than one
particle. This makes the build faster, but more importantly, trades
time in a slow procedure (a “pointer-chasing” tree walk) for a fast
procedure (the polynomial force kernel).

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 12 / 19

Force Kernel

Due to the compactness of the short-range interaction, the kernel can be
represented as

f
SR

(s) = (s + ✏)�3/2 � f
grid

(s) (3)

where s = r · r, f
grid

(s) = poly[5](s), and ✏ is a short-distance cuto↵.

An interaction list is constructed during the tree walk for each leaf
node

When using fine-grained threading: using OpenMP, the particles in
the leaf node are assigned to di↵erent threads: all threads share the
interaction list (which automatically balances the computation)

The interaction list is processed using a vectorized kernel routine
(written using QPX/SSE compiler intrinsics)

Filtering for self and out-of-range interactions uses the floating-point
select instruction: no branching required

We can use the reciprocal (sqrt) estimate instructions: no library calls

Hal Finkel (Argonne National Laboratory) HACC Performance July 31, 2013 14 / 19

