Next Generation Applications:
Using a Productivity Focus

Michael A. Heroux

2015 OLCF Users Meeting
June 22, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia —
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of i) Sancka Natored Laboratores
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. . h

Outline

* Background.

« SW Engineering and Productivity

* Application Design and Productivity
* Productivity Incentives.

» Modeling & Measuring Productivity.

11| Sandia Natione! Laboratovies

2

R&D 100 Winner
11,851 Registered Users.

*

+ 41,000 Downloads. Laptops to
+ Open Source. Leapdefship
systems

Vertical stacking and integration:

+ Geometry, Meshing + 60 Packages.

+ Discretizations, Load Balancing. * Binary distributions:
+ Scalable Linear, Nonlinear, Eigen, + Cray LIBSCI
Transient, Optimization, UQ solvers. + Debian, Ubuntu

¢+ Scalable I/O

Transforming Computational Analysis To
Support High Consequence Decisions

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

Robust Analysis with Parameter Sensitivities

Accurate & Efficient Forward Analysis

Forward Analysis

Each stage requires greater performance and error control of prior stages:
Always will need: more accurate and scalable methods.
more sophisticated tools.

Application Proxies for
Co-Design

Release 3.0: At SC’14
Miniapps:
» *CloverLeaf: Version 1.1, Reference Version 1.1
+ **CloverLeaf3D: Version 1.0, Reference Version 1.0
 CoMD: Reference Version 1.1
1« HPCCG: Reference Version 1.0
~* **MiniAero: Version 1.0
+ *MiniAMR: Version 1.0, Reference Version 1.0
* *MiniFE: Version 2.0.1, Reference Version 2.0
* MiniGhost: Version 1.0.1, Reference Version 1.0.1
* *MiniMD: Version 1.2, Reference Version 2.0
* *MiniSMAC2D: Reference Version 2.0
« MiniXyce: Reference Version 1.0
« **Pathfinder: Version 1.0.0
 **TealLeaf: Version 1.0, Reference Version 1.0
* mantevo.org Minidrivers:
* Annual release prior to SC'XY. - *CleverLeaf: Version 2.0, Reference Version 2.0
* Open source. « EpetraBenchmarkTest: Version 1.0
» 200+ citations.

* 2013 R&D 100 winner. ** New miniapp for Suite Release 3.0.
+ Collaboration: SNL, LLNL, LANL, AWE *New version for Suite Release

Home Aot COmimurty Downicad Packages

Mantevo Project

70 et ol ot

The work ahead of us: Threads and vectors
MiniFE 1.4 vs 2.0 as Harbingers

5

vs Solver Speedup

0 Typical MPI-only run: MiniFE: Setup

Balanced setup vs
solve

0 First MIC run:
Thread/vector solver
No-thread setup

0 V 2.0: Thread/vector ——

Lots of work: o

= Data placement, const 0o
[restrict declarations, |
avoid shared writes, find
race conditions, ...

Unique to each app

Setup
Solve::SpMV
Solve::DOT
Solve::AXPY

50.0

Time (sec)

40.0

0.0

V 1.4/M)C-Vec V 2.0/M|C-NoV V 2.0/MAC-Vec
Version/System

1| Sendla Nationgd Laboratories

A Confluence of Trends

6

* Fundamental trends:

— Disruptive HW changes: Requires thorough alg/code refactoring.

— Demands for coupling: ~ Multiphysics, multiscale.
 Challenges:

— Need k refactorings: 1+¢k, not k-¢. Really: Continuous change.

— Modest app development funding: No monolithic apps.

— Requirements are unfolding, evolving, not fully known a priori.
» Opportunities:

— Better design and SW practices & tools are available.

— Better SW architectures: Toolkits, libraries, frameworks.

— Better OS/Runtime/HW layers to assist apps.

 Basic strategy: Focus on productivity.

1) Sandia Natinel Laboratores

Productivity
Better, Faster, Cheaper: Pick all three

Productivity Emphasis

 Scientific Productivity.
* Many design choices ahead.
* Productivity emphasis:
— Simple Metrics. Want a process to define.
— Design choice processes (How to).
* Focus on actionable productivity metrics.
2 Productivity improvement strategies:

Extreme-Scale Scientific Application

— L o c a I (O pto m et ri St) : Harnessing t!\seol:ifrzaapzii:t;oo:iﬁl:itex::le Computing

* Which is better, this or this?

— Global (Time bi-section): " '
» Use proxies for “paradigm shifts”. r A
* Rapid design space exploration. R e L e)
» Co-design, miniapps, etc.

Thomas Ndousse-Fetter (DOE/ASCR), Douglass Post (DOD), William Tang (PPPL)

(1) Sandia Natione! Laboratores

et

ID E A S Interoperable Design of Extreme-scale
productivity Application Software (IDEAS)

Enable increased scientific productivity, realizing the potential of
extreme- scale computing, through a new interdisciplinary and agile
approach to the scientific software ecosystem.

Terrestrial ecosystem use cases tie IDEAS to modeling and
simulation goals in two Science Focus Area (SFA) programs and
both Next Generation Ecosystem Experiment (NGEE) programs
in DOE Biologic and Environmental Research (BER).

Ea

Address confluence of trends in hardware and

.y
increasing demands for predictive multiscale, ﬂ_fs (“'"'\-f'\mh
multiphysics simulations. / : — |

Respond to trend of continuous refactoring with y p S, |
efficient agile software engineering y o
methodologies and improved software design. ¥ L »J,',_‘

Use Cases:
Terrestrial
Modeling

ASCR/BER partnership ensures delivery of both crosscutting methodologies
and metrics with impact on real application and programs.
Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)
ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman Mclnnes (ANL)
BER Lead: David Moulton (LANL)
Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

U Integration and synergistic advances in three communities deliver scientific
productivity; outreach establishes a new holistic perspective for the broader

ey s scientific community.) o
Cach and Com™ www.ideas-productivity.org

Software
Productivity for
xtreme-Scale
Science

Extreme-Scale

Methodologies
for Software

Development Kit

Productivity (xSDK)

IDEAS Institutional Leads (Pictured)

productivity Full Team List

10

Oulre"’ch and Com‘“"“.\w
*Ljaison

W

SW Engineering & Productivity

Software Engineering and HPC:

How focusing

on the factor ‘6
below affects &
the factor to E
the right "

Adaptability

Accunxy

e Onooon

- ~ Efficiency vs Other Quality Metrics

Helps it f
Hurts it *

TriBITS: One Deliberate Approach to SE4CSE

Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, ...
Goal: “Self-sustaining” software

TriBITS Lifecycle Maturity
Levels

0: Exploratory
1: Research Stable
2: Production Growth

- Enable Reproducible Research: Minimal software 3: Production Maintenance
quality aspects needed for producing credible -1: Unspecified Maturity

- Allow Exploratory Research to Remain Productive:
Minimal practices for basic research in early phases

research, researchers will produce better research that will stand a better chance of being
published in quality journals that require reproducible research

- Improve Overall Development Productivity: Focus on the right SE practices at the
right times, and the right priorities for a given phase/maturity level, developers work more
productively with acceptable overhead

- Improve Production Software Quality: Focus on foundational issues first in early-
phase development, higher-quality software will be produced as other elements of
software quality are added

- Better Communicate Maturity Levels with Customers: Clearly define maturity levels
so customers and stakeholders will have the right expectations

1) Sandia Natinel Laboratores

End of Life?

14
Long-term maintenance and end of life issues for Self-Sustaining Software:
« User community can help to maintain it (e.g., LAPACK).

« |f the original development team is disbanded, users can take parts they
are using and maintain it long term.

« Can stop being built and tested if not being currently used.

« However, if needed again, software can be resurrected, and continue to
be maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing
risk and sustaining long lifetime.

) e Mo Lt

14

Addressing existing Legacy Software

15

* One definition of “Legacy Software”: Software that is too far from away

from being Self-Sustaining Software, i.e:
— Open-source
— Core domain distillation document
— Exceptionally well testing
— Clean structure and code
— Minimal controlled internal and external dependencies
— Properties apply recursively to upstream software

* Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to
such software?

« Answer: Grandfather them into the TriBITS Lifecycle Model by applying
the Legacy Software Change Algorithm.

(71") Sandia Nationel Laboratories
185

Grandfathering of Existing Packages

16
Agile Legacy Software Change Algorithm:
1. Identify Change Points % e 1
2. Break Dependencies . ;VORKINC?
3. Cover with Unit Tests EFFECTIVELY
4. Add New Functionality with Test Driven Development (TDD) [T TefVataaer

5. Refactor to removed duplication, clean up, etc. Mche! €. Fuathors
Grandfathered Lifecycle Phases:

1. Grandfathered Research Stable (GRS) Code ’ Cost per new feature

2. Grandfathered Production Growth (GPG) Code

3. Grandfathered Production Maintenance (GPM)
Code

- e

T

I | S

NOTE: After enough iterations of the Legacy W —
Software Change Algorithm the software may Lceizzy Production Maintenance
approach Self-Sustaining software and be able to Rlaiagenance

remove the “Grandfathered” prefix. (71") Sandia Nationel Laboratories

16

What Are Software Testing Practices? IDEAS

The IDEAS Scentfic Software Procucenty Project
WA Heas-Srooucivity 0rg

Motivation: Scftware requres reguias exdensny

¢ 10 m@antain portabdty 10 3 wide vanety
o %0 allow (efacionng of the sddton of i

urknowngly niroduce new erors, o re
* 10 produce oorrect results for users.

In s GOLUMENE, We INTO3U0E S0ME MrmIncid
AN gentral apecoachHas 1o testing.

Types and granularities of testing: So®warg
108tng (see Dedrvbion and Cadegorization of Ty

s Verification testing Tests ™at venfy
* No.change (often, perhaps mistaken
COSA POSCUsES tho SAMS 10sUts (15 an |
Having comprahensive no-change unt |
code (refacionng) but quickly venty that

In additon. Tvee granulpates of tosIng e fex

* Unit tests: Focus on 1esting fmdnaaual |
Indevidual classes.

o Integration tests: Foous on testng the
e Al syston lovel

o Systom-lovel tosts: Focus on tesang ¥
lovel For oxample. & system-devel tos!
Input files, running the £ simulation co
SOLLOTS

Maraging and reperting on teating: The sin
nuns one of more executables, saving the outp
axamine Once a package bocomes 200 compl
SHUMACIOTY BN 1eQures vanous enhancemen
caléd test hamesses) are ntioduced 10 owe!
adang new tests. For example, fiters can bo ¢
ndicatles problems (6.9, Dars #nd hae), and y
color) which buld instantabons generatod e
requires cevelopers 10 check a webste on a re

! Regresuon - 3 return 55 3 former o sk Seveloped state
1w 50 8 W Soweloped viate

This satonsl /s Dased Lo work duggened by the U S D
Corguting % ot Diciogesd e £ "

Progich

IDEAS

How to Add and Improve Testing

in Your CSE Software Project Proguctiicy
T IDEAS Sciertific Sofware Prodxcavty Propct
WAL IR s SOoduiinoiy. a9

Overview: Addng tests of suttoent coverage and qualty improves confidence i software
and makes it 03480 10 change and axtond. Tests should te added 10 axsang code before tho
OO i changed Tests ShOUKS DO 3400S 10 New COCE 21070 (OF whild) it & BIng witlen
Tho4s 108l then 2OCemo B0 1oundaton of 8 1000035100 et £ tha! 2olps efectivoly deve
Suro developmaent and impeoves long-torm sustanabibty

Target Audience: mwmmummmmnmw

refactonng effons because of hardware archtect, or b d Semands for

mmwwm mmm»mmummwd
lopment and redy peent and oty

Purposo: Show how 10 add Qualty testing 1o a project in order to support efficent
modficaton of existing code or addaon of new code. Show how 1o add tests %o support (1)
adding a new feature, (2] fixing a bug, (3) impeoving the design and implementation, or
(£) optimizing resource usage

Preroquisites: Firs! cesd the document Vihat Ave Softwace Testing Pracices? snd browse
Srough Dafinton and Categoczanon of Tests for CSE Solean

1. Setup automated bullds of te COde with high waming levels and sliminate 3l

wamings
2. Sedect st harness frameworks
3 Select a systom-dovel test harness for syslem executable tasls Tl report
results approprately (0.9 . CTestCOash, Jenking).
b. Select a unit tost harmess 10 effectively define and run fner.graned
Intograton and unit %ests (0 9 . Googie Tost, pFund)
¢ Customize of streamline systom-loval andior unk tost frameworks 1of uso in
YOUr pamteular projoct
3 Add systom-lovel tests %o protost major user functonalty
2 Seloct nputs for soveral important problem classes and run code 10 produce
outputs.
b. Set up no-change or verficaton tests with a system-level test harness n order
10 pin Cown mmportant Dehavior.
4. Add integration and unit tosts (a3 rooded for addng/'changng code)
a Incorporate tests |1 2| for codoe to bo changed
o entity change points for larget chango or new code
® Find tost points where code behavior can be sensed.
s Break dependencies in coder 10 Qet the targeted code nto the unt test
hamess
s Cover targeted code 10 be changed with sufficient (charderzaton)
tealy

Tha materal & Dated wpon work suppenied by Be U S Depariment of Enecgy Offce of Scence, Advenied Soonifc
Conmguiing R Bobogeont aed Ervve R h peey

DRAFT Vorson O 1, Apel 27 2045

Documents

Three Application Design Strategies
for Productivity & Sustainability

/1] Sandia Natione! Laboratories

Strategy 1. Array and Execution
Abstraction

Multi-dimensional Dense Arrays

 Many computations work on data stored in multi-dimensional
arrays:

— Finite differences, volumes, elements.
— Sparse iterative solvers.
* Dimension are (k,I,m,...) where one dimension is long:
— A(3,1000000)
— 3 degrees of freedom (DOFs) on 1 million mesh nodes.
* A classic data structure issue is:
— Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) ... or
— By node: A(1,1), A(1,2), ...
» Adherence to raw language arrays forces a choice.
* Physics 1,j,k should not dictate storage i,j,k.

(71") Sandia Nationel Laboratories

M"N

1

Kokkos: Execution and memory space abstractions

* What is Kokkos:
— C++ (C++11) template meta-programming library, part of (and not) Trilinos.
— Compile-time polymorphic multi-dimensional array classes.
— Parallel execution patterns: For, Reduce, Scan.
— Loop body code: Functors, lambdas.
— Tasks: Asynchronous launch, Futures.
 Available independently (outside of Trilinos):
— https://github.com/kokkos/

 Getting started:
— GTC 2015 Content:
 http://on-demand.gputechconf.com/qtc/2015/video/S5166.html

* http://on-demand.gputechconf.com/qgtc/2015/presentation/S5166-H-
Carter-Edwards.pdf

— Programming guide doc/Kokkos PG.pdf.

1) Sandia Natorel Laboratores

i

Strateqgy 2: Application Composition

- IDEAS Codes and Libraries

Trilinos SUNDIALS

7 Multiscale /Multiphysics:
Must combine codes.

Libraries must build together, interact.

(] Sendla Natione! Laboratoves

24

xSDK focus

« Common configure and link capabilities
— Initial emphasis: Chombo, hypre, PETSc, SuperLU, Trilinos
— Approach:

 Determine common definition of configure arguments,
eliminate namespace collisions

* Develop approach that can be adapted by any library
development team for standardized configure/link process

» Develop testing capabilities to assure configure/link
processes continue to work indefinitely

* Library interoperability

* Designing for performance portability

« Compositional approach to application design:
— Build app from components.
— Tuned algorithms.
— Performance portability: now and in the future.

1) Sandia Natinel Laboratores

Extreme-scale Science Applications

i i
| |
: I
|
i
I | Domain component interfaces Native code & data objects i
I | « Data mediator interactions. * Single use code. :
i | * Hierarchical organization. * Coordinated component use. | ! Extreme-Scale
i * Multiscale/multiphysics coupling. | * Application specific. I Scientific
|
|
! Shared data objects Documentation content i Software
: * Meshes. * Source markup.] Ecosvstem
I * Matrices, vectors. * Embedded examples. ! Y
[1
|
i Library interfaces Testing content '
| H
! e Parameter lists. e Unit tests. I
! * Interface adapters. ¢ Test fixtures. i
! * Function calls. I
I Build content :
i * Rules. :
| « Parameters. :
- I W I e R 1
E- v v | Y, v v i
! Domain components Libraries Frameworks & tools SW engineering]
I« Reacting flow, etc. * Solvers, etc. * Doc generators. * Productivity tools. |
| * Reusable. * Interoperable. <+ Test, build framework. ¢ Models, processes. |
| | A |
i J Extreme-Scale Scientific Software Development Kit (xSDK) I ? -

Strategy 3: Toward a New
Application Architecture

11 Sendia Nationel Laboratores

Classic HPC Application Architecture

o Logically Bulk-Synchronous,

Subdomain
1 per MPI process

o Strengths: O

b la)

Portable to many specific system
architectures.

Separation of parallel model (SPMD) from
implementation (e.g., message passing).

Domain scientists write sequential code
within a parallel SPMD framework.

L R SPMD
; /| 0 Basic Attributes:

Halo exchange.
Local compute.
Global collective.

Weaknesses:

Not well suited (as-is) to emerging manycore
systems.

Unable to exploit functional on-chip parallelism.
Difficult to tolerate dynamic latencies.
Difficult to support task/compute heterogeneity.

Supports traditional languages (Fortran, C).

Many more, well known.

O

I1Q

Task-centric/Dataflow Application

Data FlékW\ S o
Dependencies =

Strengths:

Portable to many specific system
architectures.

Separation of parallel model from
implementation.

Domain scientists write sequential code
within a parallel framework.

Supports traditional languages (Fortran, C).

Similar to SPMD in many ways.

Architecture

o Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

o Task: Functionality defined on a patch.

o Many tasks on many patches.

Patch
Many per MPI process

o More strengths:

Well suited to emerging manycore
systems.

Can exploit functional on-chip
parallelism.

Can tolerate dynamic latencies.

Can support task/compute
heterogeneity.

=
|

|| Sendla Natiorgd Laboratones

70

Task on a Patch

« Patch: Small subdomain or subgraph.
— Big enough to run efficiently once its starts execution.
» CPU core: Need ~1 millisecond for today’s best runtimes (e.g. Legion).
» GPU: Give it big patches. GPU runtime does manytasking very well on its
own.

» Task code (Domain scientist writes most of this code):
— Standard Fortran, C, C++ code.

— E.g. FEM stiffness matrix setup on a “workset” of elements.
— Should vectorize (CPUs) or SIMT (GPUs).

— Should have small thread-count parallel (OpenMP)
» Take advantage of shared cache/DRAM for UMA cores.

— Source line count of task code should be tunable.

* Too coarse grain task:
— GPU: Too much register state, register spills.
— CPU: Poor temporal locality. Not enough tasks for latency hiding.
* Too fine grain:
— Too much overhead or
— Patches too big to keep task execution at 1 millisec. Sandia Natione! Laboratories

Y

Portable Task Coding Environment

« Task code must run on many types of cores:

— Standard multicore (e.g., Haswell).

— Manycore (Intel PHI, KNC, KNL).

— GPU (Nvidia).
* Desire:

— Write single source.

— Compile phase adapts for target core type.

— Sounds like what?
» Kokkos (and others: OCCA, RAJA, ...):

— Enable meta programming for multiple target core architectures.
 Future: Fortran/C/C++ with OpenMP 4.

— Limited execution patterns, but very usable.

— Like programming MPI codes today: Déja vu for domain scientists.
 Other future: C++ with Kokkos/OCCA/RAJA derivative in std namespace.

— Broader execution pattern selection, more complicated.
(") Sandia Nationel Laboratvies

1

Task Management Layer

* New layer in application and runtime:
— Enables (async) task launch: latency hiding, load balancing.

— Provides technique for declaring inter-task dependencies:

» Data read/write (Legion).
— Task A writes to variable x, B depends on x. A must complete before B starts.

* Futures:
— Explicit encapsulation of dependency. Task B depends on A’s future.

 Alternative: Explicit DAG management.
— Aware of temporal locality:

» Better to run B on the same core as A to exploit cache locality.
— Awareness of data staging requirements:

» Task should not be scheduled until its data are ready:
— If B depends on remote data (retrieved by A).

— Manage heterogeneous execution: A on Haswell, B on PHI.

— Resilience: If task A launched task B, A can relaunch B if B fails or times
out.

« What are the app vs. runtime responsibilities?
 How can each assist the other? 1" Sendia Nativel Laboratores

Open Questions for Task-Centric/Dataflow
Strategies

» Functional vs. Data decomposition. Data challenges:

— Over-decomposition of spatial domain:

. = Read/write functions:
» Clearly useful, challenging to

= Must be task compatible.

implement.
— Functional decomposition: = Thread-safe, non-blocking, etc.
 Easier to implement. Challenging to = Versioning:
execute eff|C|e.n.tIy (tlemporal locality). = Computation may be executing across
» Dependency specification multiple logically distinct phases (e.g.
mechanism. timesteps)
— How do apps specify inter-task = Example: Data must exist at each grid
dependencies? point and for all active timesteps.
— Futures (e.g., C++, HPX), data = Global operations:

addresses (Legion), explicit (Uintah).

» Roles & Responsibilities: App vs Libs
vs Runtime vs OS.

* Interfaces between layers.
» Huge area of R&D for many years.

= Coordination across task events.

= Example: Completion of all writes at a
time step.

11) Sandia Nationel Laboratories
29

“r- Execution Policy for Task Parallelism

« TaskManager< ExecSpace > execution policy
— Policy object shared by potentially concurrent tasks
TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm , task_functor_a); // single-thread task
Future<> fb = spawn(tm , task functor b);
— Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N) , functor_c);
Future<value type> fd = spawn_reduce(tm.team(N,M) , functor_d);
wait(tm); // wait for all tasks to complete
— Destruction of task manager object waits for concurrent tasks to
complete
» Task Managers
— Define a scope for a collection of potentially concurrent tasks
— Have configuration options for task management and scheduling
— Manage resources for scheduling queue () Sandia Natonel Labaratoves

Kokkos/Qthread LDRD

L

Manytasking: A Productive Application Architecture

 Atomic Unit: Task
— Domain scientist writes code for a task.

— Task execution requirements:

» Tunable work size: Enough to efficiently use a core once scheduled.
» Vector/SIMT capabilities.

« Utility of Task-based Approach:
— Oversubscription: Latency hiding, load balancing.
— Dataflow: Task-DAG or futures.
— Resilience: Re-dispatch task from parent.
— Déja vu for apps developers: Feels a lot like MPI programming.
— Universal portability: Works within node, across nodes.

1) Sandia Natorel Laboratores

A

Manytasking Implications

* Parallel Programming:
— Task is small thread, vector/SIMT parallel only. (Fortran can do
this).
— Parallel Task management is external concern.
» Task scheduling:

— Runtime: Many tasks per node. Many tasks in-flight.

— Parallelism across node components: Really important.

— Issue: How to manage creation/completion rates.
 Resilience:

— How to coordinate task protection (parent), re-dispatch (child).

1" Sendia Nativel Laboratores

Q=

Creating Incentives to Improve
Productivity

Reproducibility & Independent Verification
Requirement

* In order to publish a paper. Someone other than the
authors must be able to reproduce the computational
results.

e Latitude in “reproduce”:

— Exactly the same numerical results?
— Exactly the same runtime?
— Close, in the opinion of an expert reviewer?

* What about:

— Access to the same computing environment?
— High end systems?
* Lots of challenges.

 But just the expectation [threat] can drive efforts...

11) Sandia Nationel Laboratories

bl

Fruits of the Threat

« Source management tools: In order to guarantee that results can be
reproduced, the software must be preserved so that the exact version
used to produce results is available at a later date.

» Use of other standard tools and platforms: In order to reduce the
complexity of an environment, standard software libraries and
computing environments will be helpful.

 Documentation: Independent verification requires that someone else
understand how to use your software.

« Source code standards: Improves the ability of others to read your
source code.

» Testing: Investment in greater testing makes sense because the
software will be used by others.

« High-quality software engineering environment: If a research team
is serious about producing high-quality, reproducible and verifiable
results, it will want to invest in a high-quality SE environment to improve
team efficiency.

1| Sendla Nationgd Laboratories

20

Evidence:
Cover letter excerpt from RCR candidate paper

Thank you for taking the time to consider our paper for
your journal.

XXX has agreed to undergo the RCR process should
the paper proceed far enough in the review process to
qualify. To make this easier we have preserved the
exact copy of the code used for the results
(including additional code for generating detailed
statistics that is not in the library version of the
code).

1| Sendia Nationgd Laboratones

I ACM Transactions on

Mathematical Software

ACM TOMS

« TOMS RCR Initiative: Referee Data.
« Why TOMS? Tradition of real software that others use.
* Two categories: Algorithms, Research.
« TOMS Algorithms Category:
— Software Submitted with manuscript.
— Both are thoroughly reviewed.
« TOMS Research Category:

— Stronger: Previous implicit “real software” requirement is
explicit.
— New: Special designation for replicated results.

A1

ACM TOMS Reproducible Computational
Results (RCR) Process

« Submission: Optional (for now) RCR option.
« Standard reviewer assignment: Nothing changes.
* RCR reviewer assignment:

— Concurrent with the first round of standard reviews

— Known to and works with the authors during the RCR
process.

* RCR process:
— Multi-faceted approach.
 Publication:
— Replicated Computational Results Designation.
— The RCR referee acknowledged.
— Review report appears with published manuscript.

() Sandia Nationel Laboratoves

RCR Process

 Independent replication:
— Transfer of or pointer to software given to RCR reviewer.
— Guest account, access to software on author’s system.
— Detailed observation of the authors replicating the results.

* Review of computational results artifacts:
— Results may be from a system that is no longer available.
— Leadership class computing system.

— In this situation:
» Careful documentation of the process.
» Software should have its own substantial verification process.

1) Sandia Natorel Laboratores

AN

A

Status

* First RCR paper coming in next TOMS issue
— Editorial introduction.
—van Zee & van de Geijn, BLIS paper.
— Referee report.

* 1 RCR paper per TOMS issue.

— Hogg & Scott next.

(") Sandia Nationel Laboratvies

i

Measuring and Modeling Productivity

K: Measure Productivity

Alternative: Measure these

Productivity

Quality

Quantity

Personnel

Resources

Complexity

Reliability
Defects
Size

Functionality

Time
Money
Hardware
Software
Situational Constraints

Problem Difficulty

Measuring Productivity: A Practical Approach

P Goal F L becessnasssncnasna » Goal Attainment
E wm k NM
a

Metric Itb Measurement
E\ Definiti Int (ot
Y \ 4
{ coeomom
Planning Data collection

AT

 Define processes to define metrics.

— Starting point: Goals, questions, metrics (GQM).

 Define goals, ID questions to answer, define progress
metrics.

 GQM Example:

— Goal:

xSDK Interoperability.

Source: The GOM Method: A Practical Guide
for Quality Improvement of SW Development,

Solingen and Berghout.

— Question: Can IDEAS xSDK components & libs link?
Number of namespace collisions. [[re—

— Metric:

Toward Effective Models

* Hobby: Audible Great Courses on Economics,
Human Development.

— Models developed and used extensively.
— Never right, but useful.
— Catalysts for innovation and insight.
* |dea: Models for HPC lifecycles, productivity.
— Focus: Requirement that you have one.
— But: No specifications.
e Path: Use data management plan approach.

— Required element for NSF, DOE proposals
— Very non-specific: Forces innovation, creativity.

() Sandia Nationel Laboratoves

AQ

Productivity-related Meetings

« 3rd Workshop on Sustainable Software for Science Practice and
Experiences (WSSSPE3)

— September 28-29, 2015, Boulder, CO
— http://wssspe.researchcomputing.org.uk/wssspe3
— (Co-located 10th Gateway Community Environments (GCE15) Wkshp)

« CSE Software Sustainability and Productivity (CSESSP) Challenges
Workshop

— October 15 - 16, 2015, Washington, DC
— Multi-agency (DOE, DOD, NSF, NIST, NIH) event.

« SEHPCCSE’'15: The Third International Workshop on Software
Engineering for High Performance Computing in Computational Science
and Engineering

— Friday, Nov. 20 - in Conjunction with SC15 — Austin, TX
— http://SE4Science.org/workshops/se4hpccse15

(") Sandia Nationel Laboratvies

AQ

Summary

« SW engineering focus is important for HPC:
— Pursuing efficiency negatively impacts many other quality metrics.
* Productive application designs will require disruptive changes:
— Array and execution abstractions needed for portability.
— Reuse via composition is attractive (think Android and iOS environments).
— A Task-centric/dataflow app architecture is very attractive for performance portability.
- Journal, funding agency policies can provide productivity incentives:
— Replicability expectations: Better SW practices are a natural reaction.
— Proposals:
* We expect data management plans.
» Can we start expecting a SW lifecycle, productivity model?
* Productivity models:

— P =V/C, but start at the leaves, more intuitive.

* Productivity metrics:
— Need data.

— Consider GQM.
(1) Sandia Natonel Laboratores

K0

1

Summary

« An explicit focus on productivity is compelling.

« Simple productivity definitions often sufficient:
— Majority of productivity initiatives use “eye doctor” approach.
— But this approach is not enough: Global changes are needed.
* Need models: Lifecycle, Productivity
— SC papers: Require explicit performance model, not unreasonable.
— Programmatically: Establish requirements, not specifications.
— Need instrumentation: Inputs: What? How much? Outputs: ditto.
- Effective models enable “bold” behavior:
— Choose approaches with better overall productivity.
— Defend these choices.

(1) Sandia Natonel Laboratores

