
Next Generation Applications:
Using a Productivity Focus

Michael A. Heroux

2015 OLCF Users Meeting
June 22, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

• Background.
• SW Engineering and Productivity
• Application Design and Productivity
• Productivity Incentives.
• Modeling & Measuring Productivity.

2

Vertical stacking and integration:
!  Geometry, Meshing
!  Discretizations, Load Balancing.
!  Scalable Linear, Nonlinear, Eigen,

Transient, Optimization, UQ solvers.
!  Scalable I/O

!  R&D 100 Winner
!  11,851 Registered Users.
!  41,000 Downloads.
!  Open Source.

!  60 Packages.
!  Binary distributions:

!  Cray LIBSCI
!  Debian, Ubuntu

Laptops to
Leadership

systems

trilinos.org

3

Release 3.0: At SC’14
Miniapps:
•  *CloverLeaf: Version 1.1, Reference Version 1.1
•  **CloverLeaf3D: Version 1.0, Reference Version 1.0
•  CoMD: Reference Version 1.1
•  HPCCG: Reference Version 1.0
•  **MiniAero: Version 1.0
•  **MiniAMR: Version 1.0, Reference Version 1.0
•  *MiniFE: Version 2.0.1, Reference Version 2.0
•  MiniGhost: Version 1.0.1, Reference Version 1.0.1
•  *MiniMD: Version 1.2, Reference Version 2.0
•  *MiniSMAC2D: Reference Version 2.0
•  MiniXyce: Reference Version 1.0
•  **Pathfinder: Version 1.0.0
•  **TeaLeaf: Version 1.0, Reference Version 1.0
Minidrivers:
•  *CleverLeaf: Version 2.0, Reference Version 2.0
•  EpetraBenchmarkTest: Version 1.0

** New miniapp for Suite Release 3.0.
*New version for Suite Release 3.0.

•  mantevo.org
•  Annual release prior to SC’XY.
•  Open source.
•  200+ citations.
•  2013 R&D 100 winner.
•  Collaboration: SNL, LLNL, LANL, AWE

Application Proxies for
Co-Design

4

The work ahead of us: Threads and vectors
MiniFE 1.4 vs 2.0 as Harbingers

5.0$ 4.2$ 3.8$ 3.4$
2.4$ 1.3$ 1.5$ 1.3$

33.6$

23.8$
18.8$ 18.2$

32.1$
54.9$

46.6$

0.0$

10.0$

20.0$

30.0$

40.0$

50.0$

60.0$

70.0$

80.0$

90.0$

100.0$

V$1.4/SB$ V$1.4/MIC4Vec$ V$2.0/MIC4NoV$ V$2.0/MIC4Vec$

Ti
m
e%
(s
ec
)%%

Version/System%

MiniFE:%Setup%vs%Solver%Speedup%

Setup$

Solve::SpMV$

Solve::DOT$

Solve::AXPY$

600.0

561

"  Typical MPI-only run:
! Balanced setup vs

solve
"  First MIC run:

! Thread/vector solver
! No-thread setup

"  V 2.0: Thread/vector
!  Lots of work:

#  Data placement, const
/restrict declarations,
avoid shared writes, find
race conditions, …

! Unique to each app

5

5

A Confluence of Trends

• Fundamental trends:
– Disruptive HW changes: Requires thorough alg/code refactoring.
– Demands for coupling: Multiphysics, multiscale.

• Challenges:
– Need k refactorings: 1+εk, not k-ε. Really: Continuous change.
– Modest app development funding: No monolithic apps.
– Requirements are unfolding, evolving, not fully known a priori.

• Opportunities:
–  Better design and SW practices & tools are available.
–  Better SW architectures: Toolkits, libraries, frameworks.
–  Better OS/Runtime/HW layers to assist apps.

• Basic strategy: Focus on productivity.

6

6

Productivity
Better, Faster, Cheaper: Pick all three

7

Productivity Emphasis

• Scientific Productivity.
• Many design choices ahead.
• Productivity emphasis:

– Simple Metrics. Want a process to define.
– Design choice processes (How to).

• Focus on actionable productivity metrics.
• 2 Productivity improvement strategies:

– Local (Optometrist):
• Which is better, this or this?

– Global (Time bi-section):
• Use proxies for “paradigm shifts”.
• Rapid design space exploration.
• Co-design, miniapps, etc.

8

Interoperable Design of Extreme-scale
Application Software (IDEAS)

Motivation
Enable increased scientific productivity, realizing the potential of
extreme- scale computing, through a new interdisciplinary and agile
approach to the scientific software ecosystem.

Objectives
Address confluence of trends in hardware and

increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refactoring with
efficient agile software engineering
methodologies and improved software design.

Approach
ASCR/BER partnership ensures delivery of both crosscutting methodologies

and metrics with impact on real application and programs.
Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)

ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman McInnes (ANL)
BER Lead: David Moulton (LANL)
Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

Integration and synergistic advances in three communities deliver scientific
productivity; outreach establishes a new holistic perspective for the broader
scientific community.

Impact on Applications & Programs
Terrestrial ecosystem use cases tie IDEAS to modeling and
simulation goals in two Science Focus Area (SFA) programs and
both Next Generation Ecosystem Experiment (NGEE) programs
in DOE Biologic and Environmental Research (BER).

Software
Productivity for
Extreme-Scale

Science
Methodologies

for Software
Productivity

Use Cases:
Terrestrial
Modeling

Extreme-Scale
Scientific Software
Development Kit

(xSDK)

9
www.ideas-productivity.org

J. David Moulton
Tim Scheibe

Carl Steefel

Glenn Hammond

Reed Maxwell

Scott Painter
Ethan Coon

Xiaofan Yang

David Bernholdt
Katie Antypas*

Lisa Childers*

Judith Hill*

Hans Johansen
Lois Curfman McInnes
Ross Bartlett
Todd Gamblin*
Andy Salinger*
Jason Sarich
Jim Willenbring
Pat McCormick

Mike Heroux
Ulrike Meier Yang
Jed Brown
Irina Demeshko
Kirsten Kleese van Dam
Sherry Li
Daniel Osei-Kuffuor
Vijay Mahadevan
Barry Smith

Extreme-Scale Scientific Software
Development Kit (xSDK)

Institutional Leads (Pictured)
Full Team List

Outreach

Methodologies for
Software Productivity

Science Use Cases

Project Leads
ASCR: M. Heroux and L.C. McInnes

BER: J. D. Moulton

10

Software
Productivity for
Extreme-Scale

Science

Methodologies for
Software

Productivity

Use Cases:
Terrestrial Modeling

Extreme-Scale Scientific
Software Development Kit

(xSDK)

*Liaison

SW Engineering & Productivity

11

Software Engineering and HPC:
Efficiency vs Other Quality Metrics

Source:
Code Complete
Steve McConnell

12

TriBITS: One Deliberate Approach to SE4CSE
Component-oriented SW Approach from Trilinos, CASL Projects, LifeV, …

Goal: “Self-sustaining” software

•  Allow Exploratory Research to Remain Productive:
Minimal practices for basic research in early phases

•  Enable Reproducible Research: Minimal software
quality aspects needed for producing credible
research, researchers will produce better research that will stand a better chance of being
published in quality journals that require reproducible research

•  Improve Overall Development Productivity: Focus on the right SE practices at the
right times, and the right priorities for a given phase/maturity level, developers work more
productively with acceptable overhead

•  Improve Production Software Quality: Focus on foundational issues first in early-
phase development, higher-quality software will be produced as other elements of
software quality are added

•  Better Communicate Maturity Levels with Customers: Clearly define maturity levels
so customers and stakeholders will have the right expectations

TriBITS Lifecycle Maturity
Levels
0: Exploratory
1: Research Stable
2: Production Growth
3: Production Maintenance
-1: Unspecified Maturity

G
oa

ls

 .

13

End of Life?

Long-term maintenance and end of life issues for Self-Sustaining Software:

• User community can help to maintain it (e.g., LAPACK).
•  If the original development team is disbanded, users can take parts they

are using and maintain it long term.
• Can stop being built and tested if not being currently used.
• However, if needed again, software can be resurrected, and continue to

be maintained.

NOTE: Distributed version control using tools like Git greatly help in reducing
risk and sustaining long lifetime.

14

14

Addressing existing Legacy Software

• One definition of “Legacy Software”: Software that is too far from away
from being Self-Sustaining Software, i.e:

–  Open-source
–  Core domain distillation document
–  Exceptionally well testing
–  Clean structure and code
–  Minimal controlled internal and external dependencies
–  Properties apply recursively to upstream software

• Question: What about all the existing “Legacy” Software that we have to
continue to develop and maintain? How does this lifecycle model apply to
such software?

• Answer: Grandfather them into the TriBITS Lifecycle Model by applying
the Legacy Software Change Algorithm.

15

15

Grandfathering of Existing Packages

Agile Legacy Software Change Algorithm:
1. Identify Change Points
2. Break Dependencies
3. Cover with Unit Tests
4. Add New Functionality with Test Driven Development (TDD)
5. Refactor to removed duplication, clean up, etc.
Grandfathered Lifecycle Phases:
1. Grandfathered Research Stable (GRS) Code
2. Grandfathered Production Growth (GPG) Code
3. Grandfathered Production Maintenance (GPM)
 Code

NOTE: After enough iterations of the Legacy
Software Change Algorithm the software may
approach Self-Sustaining software and be able to
remove the “Grandfathered” prefix.

Cost per new feature

Legacy
Code

Grandfathered
Production

Maintenance

Production
Maintenance

16

16

Howto and Whatis
Documents

17

Three Application Design Strategies
for Productivity & Sustainability

18

Strategy 1: Array and Execution
Abstraction

19

Multi-dimensional Dense Arrays

• Many computations work on data stored in multi-dimensional
arrays:
– Finite differences, volumes, elements.
– Sparse iterative solvers.

• Dimension are (k,l,m,…) where one dimension is long:
– A(3,1000000)
– 3 degrees of freedom (DOFs) on 1 million mesh nodes.

• A classic data structure issue is:
– Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) … or
– By node: A(1,1), A(1,2), …

• Adherence to raw language arrays forces a choice.
• Physics i,j,k should not dictate storage i,j,k.

20

Kokkos: Execution and memory space abstractions

• What is Kokkos:
–  C++ (C++11) template meta-programming library, part of (and not) Trilinos.
– Compile-time polymorphic multi-dimensional array classes.
–  Parallel execution patterns: For, Reduce, Scan.
–  Loop body code: Functors, lambdas.
–  Tasks: Asynchronous launch, Futures.

• Available independently (outside of Trilinos):
–  https://github.com/kokkos/

• Getting started:
–  GTC 2015 Content:

•  http://on-demand.gputechconf.com/gtc/2015/video/S5166.html
•  http://on-demand.gputechconf.com/gtc/2015/presentation/S5166-H-

Carter-Edwards.pdf
–  Programming guide doc/Kokkos_PG.pdf.

21

Strategy 2: Application Composition

22

IDEAS Codes and Libraries

23

Trilinos PETSc

hypre
SuperLU

SUNDIALS

Chombo

PFLOTRAN CrunchFlow

CLM 4.5

CLM

Alquimia

CLM 3.x

CLM 5.x

Amanzi/ATS ParFlow

"  Multiscale/Multiphysics:
!  Must combine codes.

!  Libraries must build together, interact.

xSDK focus

24

• Common configure and link capabilities
–  Initial emphasis: Chombo, hypre, PETSc, SuperLU, Trilinos
–  Approach:

•  Determine common definition of configure arguments,
eliminate namespace collisions

•  Develop approach that can be adapted by any library
development team for standardized configure/link process

•  Develop testing capabilities to assure configure/link
processes continue to work indefinitely

• Library interoperability
• Designing for performance portability
• Compositional approach to application design:

–  Build app from components.
–  Tuned algorithms.
–  Performance portability: now and in the future.

Extreme'Scale,
Scien/fic,
So2ware,
Ecosystem,

Libraries(
•  Solvers,(etc.(
•  Interoperable.(

Frameworks(&(tools(
•  Doc(generators.(
•  Test,(build(framework.(

Extreme'Scale,Scien/fic,So2ware,Development,Kit,(xSDK),

SW(engineering(
•  ProducAvity(tools.(
•  Models,(processes.(

Domain(components(
•  ReacAng(flow,(etc.(
•  Reusable.(

DocumentaAon(content(
•  Source(markup.(
•  Embedded(examples.(

TesAng(content(
•  Unit(tests.(
•  Test(fixtures.(

Build(content(
•  Rules.(
•  Parameters.(

Library(interfaces(
•  Parameter(lists.(
•  Interface(adapters.(
•  FuncAon(calls.(

Shared(data(objects(
•  Meshes.(
•  Matrices,(vectors.(

NaAve(code(&(data(objects(
•  Single(use(code.(
•  Coordinated(component(use.(
•  ApplicaAon(specific.(

Extreme'scale,Science,Applica/ons,

Domain(component(interfaces(
•  Data(mediator(interacAons.((
•  Hierarchical(organizaAon.(
•  MulAscale/mulAphysics(coupling.(

25

Strategy 3: Toward a New
Application Architecture

26

Classic HPC Application Architecture

"  Logically Bulk-Synchronous,
SPMD

"  Basic Attributes:
!  Halo exchange.
!  Local compute.
!  Global collective.

"  Strengths:
!  Portable to many specific system

architectures.
!  Separation of parallel model (SPMD) from

implementation (e.g., message passing).
!  Domain scientists write sequential code

within a parallel SPMD framework.
!  Supports traditional languages (Fortran, C).
!  Many more, well known.

"  Weaknesses:
!  Not well suited (as-is) to emerging manycore

systems.
!  Unable to exploit functional on-chip parallelism.
!  Difficult to tolerate dynamic latencies.
!  Difficult to support task/compute heterogeneity.

Subdomain
1 per MPI process

27

Task-centric/Dataflow Application
Architecture

"  Patch: Logically connected portion of
global data. Ex: subdomain, subgraph.

"  Task: Functionality defined on a patch.

"  Many tasks on many patches.

"  Strengths:
!  Portable to many specific system

architectures.
!  Separation of parallel model from

implementation.
!  Domain scientists write sequential code

within a parallel framework.
!  Supports traditional languages (Fortran, C).
!  Similar to SPMD in many ways.

…

…

… Patch
Many per MPI process

Data Flow
Dependencies

"  More strengths:
!  Well suited to emerging manycore

systems.
!  Can exploit functional on-chip

parallelism.
!  Can tolerate dynamic latencies.
!  Can support task/compute

heterogeneity.

28(

Task on a Patch

• Patch: Small subdomain or subgraph.
–  Big enough to run efficiently once its starts execution.

•  CPU core: Need ~1 millisecond for today’s best runtimes (e.g. Legion).
•  GPU: Give it big patches. GPU runtime does manytasking very well on its

own.

•  Task code (Domain scientist writes most of this code):
–  Standard Fortran, C, C++ code.
–  E.g. FEM stiffness matrix setup on a “workset” of elements.
–  Should vectorize (CPUs) or SIMT (GPUs).
–  Should have small thread-count parallel (OpenMP)

•  Take advantage of shared cache/DRAM for UMA cores.
–  Source line count of task code should be tunable.

•  Too coarse grain task:
–  GPU: Too much register state, register spills.
–  CPU: Poor temporal locality. Not enough tasks for latency hiding.

•  Too fine grain:
–  Too much overhead or
–  Patches too big to keep task execution at 1 millisec.

29

Portable Task Coding Environment

•  Task code must run on many types of cores:
–  Standard multicore (e.g., Haswell).
–  Manycore (Intel PHI, KNC, KNL).
–  GPU (Nvidia).

• Desire:
–  Write single source.
–  Compile phase adapts for target core type.
–  Sounds like what?

• Kokkos (and others: OCCA, RAJA, …):
–  Enable meta programming for multiple target core architectures.

•  Future: Fortran/C/C++ with OpenMP 4:
–  Limited execution patterns, but very usable.
–  Like programming MPI codes today: Déjà vu for domain scientists.

• Other future: C++ with Kokkos/OCCA/RAJA derivative in std namespace.
–  Broader execution pattern selection, more complicated.

30

Task Management Layer

• New layer in application and runtime:
–  Enables (async) task launch: latency hiding, load balancing.
–  Provides technique for declaring inter-task dependencies:

•  Data read/write (Legion).
–  Task A writes to variable x, B depends on x. A must complete before B starts.

•  Futures:
–  Explicit encapsulation of dependency. Task B depends on A’s future.

•  Alternative: Explicit DAG management.
–  Aware of temporal locality:

•  Better to run B on the same core as A to exploit cache locality.
–  Awareness of data staging requirements:

•  Task should not be scheduled until its data are ready:
–  If B depends on remote data (retrieved by A).

–  Manage heterogeneous execution: A on Haswell, B on PHI.
–  Resilience: If task A launched task B, A can relaunch B if B fails or times

out.
• What are the app vs. runtime responsibilities?
• How can each assist the other?

31

Open Questions for Task-Centric/Dataflow
Strategies

•  Functional vs. Data decomposition.
–  Over-decomposition of spatial domain:

•  Clearly useful, challenging to
implement.

–  Functional decomposition:
•  Easier to implement. Challenging to

execute efficiently (temporal locality).

•  Dependency specification
mechanism.

–  How do apps specify inter-task
dependencies?

–  Futures (e.g., C++, HPX), data
addresses (Legion), explicit (Uintah).

•  Roles & Responsibilities: App vs Libs
vs Runtime vs OS.

•  Interfaces between layers.
•  Huge area of R&D for many years.

32(

Data(challenges:(
$  Read/write(funcAons:(

$  Must(be(task(compaAble.((
$  ThreadWsafe,(nonWblocking,(etc.(

$  Versioning:((
$  ComputaAon(may(be(execuAng(across(

mulAple(logically(disAnct(phases((e.g.(
Amesteps)(

$  Example:(Data(must(exist(at(each(grid(
point(and(for(all(acAve(Amesteps.(

$  Global(operaAons:(((
$  CoordinaAon(across(task(events.(((
$  Example:(CompleAon(of(all(writes(at(a(

Ame(step.(

32

Execution Policy for Task Parallelism

•  TaskManager< ExecSpace > execution policy
– Policy object shared by potentially concurrent tasks

TaskManager<...> tm(exec_space , ...);
Future<> fa = spawn(tm , task_functor_a); // single-thread task
Future<> fb = spawn(tm , task_functor_b);

– Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N) , functor_c);
Future<value_type> fd = spawn_reduce(tm.team(N,M) , functor_d);
wait(tm); // wait for all tasks to complete

– Destruction of task manager object waits for concurrent tasks to
complete

•  Task Managers
– Define a scope for a collection of potentially concurrent tasks
– Have configuration options for task management and scheduling
– Manage resources for scheduling queue

Kokkos/Qthread LDRD

33
33

Manytasking: A Productive Application Architecture

• Atomic Unit: Task
– Domain scientist writes code for a task.
– Task execution requirements:

•  Tunable work size: Enough to efficiently use a core once scheduled.
• Vector/SIMT capabilities.

• Utility of Task-based Approach:
– Oversubscription: Latency hiding, load balancing.
– Dataflow: Task-DAG or futures.
– Resilience: Re-dispatch task from parent.
– Déjà vu for apps developers: Feels a lot like MPI programming.
– Universal portability: Works within node, across nodes.

34

Manytasking Implications

• Parallel Programming:
– Task is small thread, vector/SIMT parallel only. (Fortran can do

this).
– Parallel Task management is external concern.

• Task scheduling:
– Runtime: Many tasks per node. Many tasks in-flight.
– Parallelism across node components: Really important.
–  Issue: How to manage creation/completion rates.

• Resilience:
– How to coordinate task protection (parent), re-dispatch (child).

35

Creating Incentives to Improve
Productivity

36

Reproducibility & Independent Verification
Requirement

• In order to publish a paper: Someone other than the
authors must be able to reproduce the computational
results.

• Latitude in “reproduce”:
– Exactly the same numerical results?
– Exactly the same runtime?
– Close, in the opinion of an expert reviewer?

• What about:
– Access to the same computing environment?
– High end systems?

• Lots of challenges.
• But just the expectation [threat] can drive efforts…

37

Fruits of the Threat
•  Source management tools: In order to guarantee that results can be

reproduced, the software must be preserved so that the exact version
used to produce results is available at a later date.

•  Use of other standard tools and platforms: In order to reduce the
complexity of an environment, standard software libraries and
computing environments will be helpful.

•  Documentation: Independent verification requires that someone else
understand how to use your software.

•  Source code standards: Improves the ability of others to read your
source code.

•  Testing: Investment in greater testing makes sense because the
software will be used by others.

•  High-quality software engineering environment: If a research team
is serious about producing high-quality, reproducible and verifiable
results, it will want to invest in a high-quality SE environment to improve
team efficiency.

38

Evidence:
Cover letter excerpt from RCR candidate paper

Thank you for taking the time to consider our paper for
your journal.

XXX has agreed to undergo the RCR process should
the paper proceed far enough in the review process to
qualify. To make this easier we have preserved the
exact copy of the code used for the results
(including additional code for generating detailed
statistics that is not in the library version of the
code).

39

• TOMS RCR Initiative: Referee Data.
• Why TOMS? Tradition of real software that others use.
• Two categories: Algorithms, Research.
• TOMS Algorithms Category:

– Software Submitted with manuscript.
– Both are thoroughly reviewed.

• TOMS Research Category:
– Stronger: Previous implicit “real software” requirement is

explicit.
– New: Special designation for replicated results.

ACM TOMS

40

 ACM TOMS Reproducible Computational
Results (RCR) Process

• Submission: Optional (for now) RCR option.
• Standard reviewer assignment: Nothing changes.
• RCR reviewer assignment:

– Concurrent with the first round of standard reviews
– Known to and works with the authors during the RCR

process.
• RCR process:

– Multi-faceted approach.
• Publication:

– Replicated Computational Results Designation.
– The RCR referee acknowledged.
– Review report appears with published manuscript.

41

RCR Process

• Independent replication:
– Transfer of or pointer to software given to RCR reviewer.
– Guest account, access to software on author’s system.
– Detailed observation of the authors replicating the results.

• Review of computational results artifacts:
– Results may be from a system that is no longer available.
– Leadership class computing system.
– In this situation:

• Careful documentation of the process.
• Software should have its own substantial verification process.

42

Status

• First RCR paper coming in next TOMS issue
– Editorial introduction.
– van Zee & van de Geijn, BLIS paper.
– Referee report.

• 1 RCR paper per TOMS issue.
– Hogg & Scott next.

43

Measuring and Modeling Productivity

44

Task: Measure Productivity

45

Productivity

Value

Quality
Reliability

Defects

Quantity
Size

Functionality

Cost

Personnel
Time

Money

Resources
Hardware

Software

Complexity
Situational Constraints

Problem Difficulty

Alternative: Measure these

46

Measuring Productivity: A Practical Approach

• Define processes to define metrics.
– Starting point: Goals, questions, metrics (GQM).

• Define goals, ID questions to answer, define progress
metrics.

• GQM Example:
– Goal: xSDK Interoperability.
– Question: Can IDEAS xSDK components & libs link?
– Metric: Number of namespace collisions.

47

Source: The GQM Method: A Practical Guide
for Quality Improvement of SW Development,
Solingen and Berghout.

Toward Effective Models

• Hobby: Audible Great Courses on Economics,
Human Development.
– Models developed and used extensively.
– Never right, but useful.
– Catalysts for innovation and insight.

• Idea: Models for HPC lifecycles, productivity.
– Focus: Requirement that you have one.
– But: No specifications.

• Path: Use data management plan approach.
– Required element for NSF, DOE proposals
– Very non-specific: Forces innovation, creativity.

48

Productivity-related Meetings

•  3rd Workshop on Sustainable Software for Science Practice and
Experiences (WSSSPE3)
–  September 28-29, 2015, Boulder, CO
–  http://wssspe.researchcomputing.org.uk/wssspe3
–  (Co-located 10th Gateway Community Environments (GCE15) Wkshp)

• CSE Software Sustainability and Productivity (CSESSP) Challenges
Workshop
– October 15 – 16, 2015, Washington, DC
– Multi-agency (DOE, DOD, NSF, NIST, NIH) event.

• SEHPCCSE’15: The Third International Workshop on Software
Engineering for High Performance Computing in Computational Science
and Engineering
–  Friday, Nov. 20 - in Conjunction with SC15 – Austin, TX
–  http://SE4Science.org/workshops/se4hpccse15

49

Summary
• SW engineering focus is important for HPC:

–  Pursuing efficiency negatively impacts many other quality metrics.
• Productive application designs will require disruptive changes:

–  Array and execution abstractions needed for portability.
–  Reuse via composition is attractive (think Android and iOS environments).
–  A Task-centric/dataflow app architecture is very attractive for performance portability.

•  Journal, funding agency policies can provide productivity incentives:
–  Replicability expectations: Better SW practices are a natural reaction.
–  Proposals:

•  We expect data management plans.
•  Can we start expecting a SW lifecycle, productivity model?

• Productivity models:
–  P = V/C, but start at the leaves, more intuitive.

• Productivity metrics:
–  Need data.
–  Consider GQM.

50

Summary

• An explicit focus on productivity is compelling.
• Simple productivity definitions often sufficient:

– Majority of productivity initiatives use “eye doctor” approach.
–  But this approach is not enough: Global changes are needed.

• Need models: Lifecycle, Productivity
–  SC papers: Require explicit performance model, not unreasonable.
–  Programmatically: Establish requirements, not specifications.
– Need instrumentation: Inputs: What? How much? Outputs: ditto.

• Effective models enable “bold” behavior:
– Choose approaches with better overall productivity.
– Defend these choices.

51

