
Ryan Hulguin

What is C

• A general-purpose programming language
initially developed by Dennis Ritchie at AT&T
Bell Labs

• Designed to produce portable code while
maintaining performance and minimizing
footprint

• Requires compiler to generate executable
• Provides low level memory access
• Many operating systems are written in C
• Perl, PHP, and Python are also written in C

C Programming Tools

Required
• Text Editor - vi
• Compiler - gcc
Optional
• Debugger
• Profiler
• Integrated Development Environment (IDE)

C Program Structure

These are the basic parts of a program:
• Preprocessor Commands
• Functions
• Variables
• Statements and Expressions
• Comments

Program Example 1

#include <stdio.h>

// Program execution starts at the main function

int main()

{

 int programNumber = 1;

 printf(“This is program number %d.\n”, programNumber);

 return 0;

}

Using a text editor create the file example1.c with the
code above

Compiling and running Example 1

• vi example1.c
• gcc –o example1.exe example1.c
• ./example1.exe

Breaking down Program example 1

• The first line is a preprocessor command that
tells the compiler to include the stdio.h file
before compiling
– This enables use of the printf() function

• The second line is a comment and is ignored by
the compiler. Comments are meant to improve
human readability

• The third line is the main function. Execution
starts there

• The curly brackets { } group together related
statements, like several sentences make up a
paragraph

Breaking down Program example 1

• An integer variable is defined and initialized to a
value of 1

• The function printf() is called with 2 arguments
• It writes a message to stdout, which by default is

the console display
• The main function returns a value of 0 and the

program terminates

Tokens

• Tokens are the basic building blocks of C
programs

• There are 6 types of C tokens:
1.  keyword – reserved words in C
2.  identifier – names of functions/variables
3.  constant – hard coded numbers, i.e. 1
4.  string literal – words or sentences in quotes
5.  symbol/separator – example () { } ,
6.  operator – example + - * /

Token Breakdown of printf line
• The following code contains 7 tokens
printf(“This is program number %d.\n”,
programNumber);

1.  printf
2.  (
3.  “This is program number %d. \n”
4.  ,
5.  programNumber
6.  )
7.  ;

Identifiers

• 2 of the tokens are identifiers
printf and programNumber
• Identifiers identify a variable, function, or any

other user defined item
• Identifiers can only start with
o letters A to Z
o letters a to z
o underscore

• C is case sensitive

Reserved Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Statements and comments

• Each individual statement ends with a
semicolon

• More than 1 statement can be on a line
double a=1.0; int b=4;

• Comments are ignored by compiler
• Single comments begin with //
• Multiple line comments can be blocked off with
 /* and */

Comments

// This is a comment

/* This is also a comment */

/* This is one big comment block

double a=4.0;

The above line is ignored since it

resides in the comment block

This ends the comment block */

Whitespace
• Whitespace separates one part of a statement

from another
• space, tab, and newline/EOL characters are all

whitespace
• whitespace helps/hurts with code readability
• The following are equivalent legal statements:
int a = 3;

int a=3;

int a

=

3;

C Data Types

• Basic Types
o integer types and floating-point types

• Enumerated types
o used to define variables that can only have

certain discrete integer values
• void type
• Derived types
o advanced data types including pointers,

arrays, structures, unions, and functions

Integer Types
Type Range of values
char -128 to 127 or 0 to 255
unsigned char 0 to 255
signed char -128 to 127
int -32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 0 to 65,535
short -32,768 to 32,767
unsigned short 0 to 65,535
long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,295

Floating-Point Types

Type Range of values Precision
float 1.2E-38 to 3.4E+38 6 decimal places
double 2.3E-308 to 1.7E+308 15 decimal places
long double 3.4E-4932 to 1.1E+4932 19 decimal places

C Variables

• Variables are storage areas that hold values
• All variables must be declared before use
type variable_list;
int a, b, c;
float d, e, f;

• Variables can be intialized upon declaration or
afterwards
int a = 23;
int b;
// Do stuff
b = 45;

Typecasting

• Sometimes you want to change one basic type
to another

(int) 3.75 evaluates to simply 3
(double) 5 evaluates to 5.0

Arithmetic operators

A op B
+
-
*
/
%

Increment and decrement operators
A++
B--

Relational Operators

(A op B)
==
!=
>
<
>=
<=

Evaluates to 1 if true, 0 if false

Logical Operators

(A && B) // true if both true

(A || B) // true if at least 1 is true

!() // returns the opposite

Assignment operators

= A = B + C

+= B += A is the same as B = B + A

-= B -= A is the same as B = B – A

*= B *= A is the same as B = B * A

if statement

if (boolean_expression)

{

 // Do stuff if expression is true

 // Do even more stuff

}

//If only one statement is to be executed,
leave out { }

if (A < B)

 A = A + 1;

B = B-1; // This statement executed always

if else

if (boolean_expression)

{

 // Do stuff if expression is true

 // Do even more stuff

}

else

{

 // Do this instead if expression is false

}

if else if

if(this_is_true)

{

 do this; and that; and this;

}

else if(this_is_true_instead)

{ do this; and that; and this; }

else

{ } // Nothing else matters in this example

? : operator

expression1 ? expression2 : expression3;

// This is the same as:

if (expression1)

{

 expression2;

}

else

{

 expression3;

}

while loop

while (expression)

{

 // Do stuff while the expression is true

 // Ideally you will want to provide a way

 // For the expression to evaluate to false

 /* So you don’t have an endless loop */

}

do … while loop

do

{

 statement1;

 statement2;

 statement3;

} while(expression);

// This will execute all 3 statements once
before the expression is tested to be true

for loop

for (init; condition; increment)

{

 // Statements to execute

}

int n;

for (n = 0; n < 10; n++) // Loop 10 times

{

 printf(“n = %d.\n”, n);

}

break and continue

• break lets you immediately terminate the loop
and execute the code after the loop

• continue ignores all remaining statements in a
loop and then returns to the top of the loop

Functions

return_type function_name (parameter list)

{

 // Body of the function

}

String Formatting

code type format
d int decimal (base ten) number
o int octal number (no leading '0' supplied in printf)
ld long decimal number
u unsigned decimal number
lu unsigned long decimal number
c char single character
s char pointer string
f float number with six digits of precision
g float number with up to six digits of precision
e float number with up to six digits of precision, scientific notation
lf double number with six digits of precision
lg double number with up to six digits of precision
le double number with up to six digits of precision, scientific notation

•  Earlier we used %d inside a string literal
•  We could also use %lf when trying to output a double
double myPi = 3.14;
printf(“pi = %lf\n”, myPi);

Static Arrays
Static arrays are created with the bracket notation
int A[10]; // Creates an integer array with 10
entries
A[0] is the 1st entry
A[9] is the last entry

Our static array named A can be initialized from 1
to 10 with

 int n;
 for (n = 0; n < 10; ++n) { A[n] = n + 1; }

Structures

• structures allow you to combine data items of
different types

struct [structure tag]

{

 member definition;

 member definition;

 ...

 member definition;

} [optional structure variables];

Employee Struct

struct Employee

{

 int age;

 double weight;

} Bob, Jim;

// Create a new employee in addition to Bob

// and Jim

struct Employee Richard;

Using members of Employee structs

Bob.age=27;

Bob.weight=202.3;

Jim.age=43;

Jim.weight=167.4;

Richard.age=18;

Richard.weight=337.1;

printf(“Richard is %d years old and weighs %lf
pounds.\n”,Richard.age, Richard.weight);

serialflops example
• The next few slides is the source code for a C

program that takes an array, scales it by 1.1, and
then adds another array

•  In the main loop 2 floating operations are performed
(multiply and add)

• Using built in time functions, the number of
gigaflops per second are computed

• Note that is a serial example, and only runs on 1
core of a multicore CPU.

• Compile it with aggressive optimizations and note
the performance increase

 gcc –O3 serialflops.c

serialflops.c example
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/time.h>

// Computes current wall clock time

double dtime()

{

 double tseconds = 0.0;

 struct timeval mytime;

 gettimeofday(&mytime,(struct timezone*)0);

 tseconds = (double)(mytime.tv_sec + mytime.tv_usec * 1.0e-6);

 return(tseconds);

}

// Preprocessor definitions

#define FLOPS_ARRAY_SIZE (1024*1024)

#define MAXFLOPS_ITERS 1000000

#define LOOP_COUNT 128

// Floating point operations per second

#define FLOPSPERCALC 2

// Define static arrays

float fa[FLOPS_ARRAY_SIZE]; //float fa[(1024*1024)]

float fb[FLOPS_ARRAY_SIZE];

int main()

{

 int i,j,k;

 double tstart, tstop, ttime;

 double gflops=0.0;

 float a = 1.1;

 // Initialize the arrays

 for (i=0; i<FLOPS_ARRAY_SIZE; ++i)

 {

 fa[i] = (float)i + 0.1;

 fb[i] = (float)i + 0.2;

 }

 // Get starting time

 tstart = dtime();

 // Calculate many times

 for (j=0; j<MAXFLOPS_ITERS; j++)

 {

 // Scale the 1st array and add in the 2nd array

 for (k=0; k<LOOP_COUNT; k++)

 {

 fa[k] = a * fa[k] + fb[k]; // 2 floating operations, multiply and add

 }

 }

 // Get stop time

 tstop = dtime();

 // Calcuate gigaflops

 gflops = (double) (1.0e-9 * LOOP_COUNT * MAXFLOPS_ITERS * FLOPSPERCALC);

 // Total elpased time

 ttime = tstop - tstart;

 // Output GFlops

 if (ttime > 0.0)

 {

 printf("GFlops = %10.3lf, Secs = %10.3lf, GFlops per sec = %10.3lf\r\n", gflops,
ttime, gflops/ttime);

 }

 return (0);

}

