

Managed by UT-Battelle for the Department of Energy

Jeremy C. Smith

Environment

Energy

Disease

Nature Reviews | Drug Discovery

Oak Ridge

How do bacteria methylate mercury?

De Gennes Narrowing Describes Protein Interdomain Motion

LIANG $D_{coh}(q) = \frac{const}{coh}$ HONG S(q)

Functional Dynamics of a Mercury-Transforming Enzyme

Biophys. J. In Press (2014)

Environment

Disease

Nature Reviews | Drug Discovery

Interface	Interaction Energy Density (kJ/mol/nm ²)
lignin: crystalline cellulose	-49±2
lignin: non-crystalline cellulose	-50±2
water : crystalline cellulose	-94±2
water : non-crystalline cellulose	-107±2

Solvent-Driven Preferential Association of Lignin with Crystalline Cellulose

Biomacromolecules, 14 3390 (2013)

Green Chemistry 16 1 (2014)

New View of Pretreatment

But...

Microsecond Timescale Limitation!

New Concepts Needed....

Environment

Energy

Nature Reviews | Drug Discovery

Drug Development: Too costly, Too random.

\$800M-1.5B

Reasons: Safety Efficacy

Static Structure-Based Design of Viral Inhibitors

What has changed in the last 20 years?

Genomics

Systems

Structures

Computers

Computational Methods

Supercomputing and Drug Discovery

Supercomputer Scaling Reduces Time to Solution

Ensemble-based docking

Multireceptor screen

Binding to MD snapshots

Schames et al., "Discovery of a Novel Binding Trench in HIV Integrase,"J. Med. Chem. 47, 1879–1881 (2004)

Raltegravir (HIV integrase inhibitor): FDA approval, 2007

Discovery of molecular effectors of the coagulation cascade

JASON HARRIS JEROME BAUDRY

Ensemble of structures (11 MD snapshots + 1 crystal structure)

Systems-Level Toxicity Prediction

Personalized Medicine

Supercomputing: The Future

Center for Molecular Biophysics

<u>Co-workers</u> **Torsten Becker Barbara Collignon Sally Ellingson Jerome Baudry Loukas Petridis Roland Schulz Benjamin Lindner Dennis Glass** Xiaohu Hu **Barmak Mostofian** Amandeep Sangha Liang Hong **Yinglong Miao** Yi Zheng **Jerry Parks**

Collaborators Ilia Horenko, Frank Noe **Christof Schuette (FU Berlin)** John Chodera (Memorial Sloan Kettering) Erika Balog (U. Budapest) Kei Moritsugu (RIKEN, Tokyo) Dwayne Elias, Mircea Podar, Alex Johs, Liyuan Liang, Alexei Sokolov, Barbara Evans, Hugh O' Neill, Venky Pingali, William Heller, Paul Langan (ORNL) Judy Wall (U. Missouri) **Anne Summers (U.Ga)** Sue Miller (UCSF) **Ahmed Zewail (CalTech)** Akio Kitao (U. Tokyo) Dieter Richter, Ralf Biehl, Michael Ohl, Melissa Sharp (FZ Juelich) Salim Shah (Georgetown U Med Center)

Toxicity Prediction: PCB Estrogenicity

Geometry predicts metabolites

Biomass Pretreatment

Are Lignin Aggregates Spheres?

Small-Angle

Neutron Scattering

Molecular Dynamics

$$N(r) = r^{-d_s}$$

 $d_s = 2.65 \pm 0.01$

Petridis et al Physical Review E 83(61):061911 (2011)

Bacterial Mercury Resistance – The Mer Operon

- MerR regulation (transcriptional activator)
- MerB organomercurial
 lyase
- MerA mercuric reductase

Loukas Petridis

MD Simulation of Softwood Lignin

JACS 133 20277 (2011)

aggregation occurs during cool-down

aggregation occurs during heating

Why does Lignin Collapse at Room Temperature?

Loukas Petridis

- Enthalpy
- ΔH ≈ +200 kJ/mol Unfavorable

Lignin configurational entropy
-TΔS_{conf}≈ +10 kJ/mol Unfavorable

JACS 133 20277 (2011)

- Hydration water translational & rotational entropy
- -TΔS_{t+r} ≈ -100 kJ/mol Favorable

Collapse Driven by Removal of Entropically Unfavorable Water Molecules from Lignin Surface to Bulk

Chemistry of mercury methylation

$$CH_3^- + Hg^{2+} \rightarrow CH_3Hg^+$$

Generate carbanion, CH_3^- : $CH_3^+ + Co(I)$ -protein

→CH₃-Co(III)-protein

Transfer CH_3^- to Hg^{2+} : $CH_3^-Co(III)$ -protein + $Hg^{2+} \rightarrow Co(III)$ -protein + $CH_3^-Hg^+$

Regenerate Co(I):Co(III)-protein + 2 e- \rightarrow Co(I)-protein

Need to find protein(s) that can: 1. Stabilize Co(III) for carbanion transfer 2. Provide 2 electrons to generate Co(I)

cobalamin

Science, 339 1332 (2013)

Molecular Dynamics Supercomputer Scaling

- ~ 100 million atoms.
- Scales to 150,000 cores

Bioinformatics, 29 845 (2013)

TITAN

- Reaction Field
 23M atoms, 3750
 nodes (60k cores):
 40ns/day
- OpenMP for all kernels
- Larger number of threads for PME
- AMD AVX intrinsic

Multiscale Structure and Dynamics

