SC/EC

SCEC Application Performance and Software Development

Yifeng Cui [2],

T. H. Jordan [1], K. Olsen [3], R. Taborda [4], J. Bielak [5], P. Small [6],
E. Poyraz [2], J. Zhou [2], P. Chen [14], E.-J. Lee [1], S. Callaghan [1],
R. Graves [7], P. J. Maechling [1], D. Gill [1], K. Milner [1], F. Silva [1],
S. Day [3], K. Withers [3], W. Savran [3], Z. Shi [3], M. Norman [8],
H. Finkel [9], G. Juve [10], K. Vahi [10], E. Deelman [10], H. Karaoglu [5],
Y. Isbiliroglu [11], D. Restrepo [12], L. Ramirez-Guzman [13]

[1] Southern California Earthquake Center, [2] San Diego Supercomputer Center, [3] San Diego State Univ., [4] Univ. Memphis, [5] Carnegie Mellon Univ., [6] Univ. Southern California, [7] U.S. Geological Survey, [8] Oak Ridge Leadership Computing Facility, [9] Argonne Leadership Computing Facility, [10] Information Science Institute, [11] Paul C. Rizzo Associates, Inc., [12] Universidad Eafit, [13] National Univ. Mexico, [14] Univ. Wyoming

OLCF Symposium, 22 July 2014

Southern California Earthquake Center

Pathways

Hybrid MPI/CUDA SCEC Computational

Ground motion simulation (AWP-ODC, Hercules, RWG)

- Dynamic rupture modeling (SORD)
- Ground-motion inverse problem (AWP-ODC, SPECFEM3D)

AWP-ODC – Yifeng Cui and Kim Olsen

Hercules – Jacobo Bielak and Ricardo Tarbora

SORD – Steven Day

CyberShake - Scott Callaghan

OpenSHA/UCERF3 - Kevin Milner

UCVM, CVM-H - David Gill

Broadband - Fabio Silva

SC/EC

AWP-ODC

- Started as personal research code (Olsen 1994)
- 3D velocity-stress wave equations

$$\partial_t v = \frac{1}{\rho} \nabla \cdot \sigma \quad \partial_t \sigma = \lambda (\nabla \cdot v) \mathbf{I} + \mu (\nabla v + \nabla v^{\mathrm{T}})$$

solved by explicit staggered-grid 4th-order FD

• Memory variable formulation of inelastic relaxation

$$\sigma(t) = M_u \left[\varepsilon(t) - \sum_{i=1}^N \varsigma_i(t) \right] \qquad \tau_i \frac{d\varsigma_i(t)}{dt} + \varsigma_i(t) = \lambda_i \frac{\delta M}{M_u} \varepsilon(t)$$

$$Q^{-1}(\omega) \approx \frac{\delta M}{M_u} \sum_{i=1}^N \frac{\lambda_i \omega \tau_i}{\omega^2 \tau_i^2 + 1}$$

using coarse-grained representation (Day 1998)

- **Dynamic rupture** by the staggered-grid splitnode (SGSN) method (Dalguer and Day 2007)
- Absorbing boundary conditions by perfectly matched layers (PML) (Marcinkovich and Olsen 2003) and Cerjan et al. (1985)

Inelastic relaxation variables for memory-variable ODEs in AWP-ODC

SC/EC

AWP-ODC Weak Scaling

(Cui et al., 2013)

Hercules – General Architecture

- » Finite-Element Method
- » Integrated Meshing (unstructured hexahedral)
- » Uses and octree-based library for meshing and to order elements and nodes in memory
- » Explicit FE solver
- » Plane wave approximation to absorbing boundary conditions

Southern California

Earthquake Center

- » Natural free surface condition
- » Frequency Independent Q

Hercules was developed by the Quake Group at Carnegie Mellon University with support from SCEC/CME projects. Its current developers team include collaborators at the National University of Mexico, the University of Memphis, and the SCEC/IT team among others.

Hercules on Titan – GPU Module Implementation

Southern California Earthquake Center

Modifications to Solver Loop

Chino Hills 2.8 Hz, BKT damping, 1.5 B elements, 2000 time steps (512 compute nodes)

(Patrick Small of USC and Ricardo Taborda of UM, 2014)

SC/EC

Hercules on Titan – GPU Performance

Initial Strong Scaling Tests on Titan (in green) compared to other systems

- Recent Hercules developments include GPU capabilities using CUDA
- Performance tests for a benchmark 2.8 Hz Chino Hills simulation show near perfect strong and weak scalability on multiple HPC systems including TITAN using GPU
- The acceleration ratio of the GPU code with respect to the CPU is of a factor of 2.5x overall

(Jacobo Bielak of CMU, Ricardo Taborda of UM and Patrick Small of USC, 2014)

SC/EC

La Habra Validation Experiment

Algorithms and Hardware Attributes

AWP-ODC Communication Approach on Jaguar

- Rank placement technique
 - Node filling with X-Y-Z orders
 - Maximizing intra-node and minimizing inter-node communication

AWP-ODC Communication Approach on Jaguar

- Rank placement technique
 - Node filling with X-Y-Z orders
 - Maximizing intra-node and minimizing inter-node communication

• Asynchronous communication

- Significantly reduced latency through local communication
- Reduced system buffer requirement through pre-post receives

AWP-ODC Communication Approach on Jaguar

- Rank placement technique
 - Node filling with X-Y-Z orders
 - Maximizing intra-node and minimizing inter-node communication
- Asynchronous communication
 - Significantly reduced latency through local communication
 - Reduced system buffer requirement through pre-post receives
- Computation/communication
 overlap
 - Effectively hide computation times
 - Effective when
 Tcompute_hide>Tcompute_overhead
 - One-sided Communications (on Ranger)

Southern California Earthquake Center AWP-ODC Communication Approach on Titan

SC/EC

nvvp Profiling

- Matching the virtual 3D Cartesian to an elongated physical subnet prism shape
- Maximizing faster connected BW XZ plane allocation
- Obtaining a tighter, more compact and cuboidal shaped BW subnet allocation
- Reducing internode hops along the slowest BW torus Y direction

s^c//_EC Topology Tuning on XE6/XK7

- Matching the virtual 3D Cartesian to an elongated physical subnet prism shape
- Maximizing faster connected BW XZ plane allocation
- Obtaining a tighter, more compact and cuboidal shaped BW subnet allocation
- Reducing internode hops along the slowest BW torus Y direction

000

VMD 1.9 OpenGL Display

Tuned node ordering using Topaware

Joint work with G. Bauer, O. Padron (NCSA), R. Fiedler (Cray) and L. Shih (UH)

s^c//_EC Topology Tuning on XE6/XK7

- Matching the virtual 3D Cartesian to an elongated physical subnet prism shape
- Maximizing faster connected BW XZ plane allocation
- Obtaining a tighter, more compact and cuboidal shaped BW subnet allocation
- Reducing internode hops along the slowest BW torus Y direction

	Southern California Southe					
g	# nodes	Default	Topaware	Speedup	Efficiency	
	64	4.006	3.991	0.37%	100%	
	512	0.572	0.554	3.15%	87.5%->90%	
	4096	0.119	0.077	35.29%	52.6%->81%	

Southern California Earthquake Center

SC/EC

Two-layer I/O Model

Parallel I/O

- Read and redistribute multiple terabytes inputs (19 GB/s)
 - Contiguous block read by reduced number of readers
 - High bandwidth asynchronous point-to-point communication redistribution

SC/EC

Two-layer I/O Model

- Parallel I/O
 - Read and redistribute multiple terabytes inputs (19 GB/s)
 - Contiguous block read by reduced number of readers
 - High bandwidth asynchronous point-to-point communication redistribution
- Aggregate and write (10GB/s)

SC/EC

Two-layer I/O Model

- Parallel I/O
 - Read and redistribute multiple terabytes inputs (19 GB/s)
 - Contiguous block read by reduced number of readers
 - High bandwidth asynchronous point-to-point communication redistribution
- Aggregate and write (10GB/s)
 - Temporal aggregation buffers
 - Contiguous writes
 - Throughput
 - System adaptive at run-time

• Fast-X: small-chunked and more interleaved. Fast-T: large-chunked and less interleaved

(Poyraz et al., ICCS''14)

Southern California Earthquake Center

SC/EC

ADIOS Checkpointing

- Problems at M8 on Jaguar: system instabilities, 32 TB checkpointing per time step
- Chino Hills 5Hz simulation validated ADIOS implementation:
 - Mesh size: 7000 x 5000 x 2500
 - > Nr. of cores: 87,500 on Jaguar
 - > WCT: 3 hours
 - Total timesteps: 40K
 - ADIOS saved checkpoints at 20Kth timestep and validated the outputs at 40Kth timestep
 - Avg. I/O performance: 22.5 GB/s (compared to 10 GB/s writing achieved with manuallytuned code using MPI-IO)
- Implementation Supported by Norbert Podhorszki, Scott Klasky, and Qing Liu at ORNL
- Future plan: add ADIOS Checkpointing to the GPU code

SEISM-IO: An IO Library for Integrated Seismic Modeling

SC/EC

CyberShake Calculations

- CyberShake contains two phases
- Strain Green Tensor (SGT) calculation
 - Large MPI jobs
 - AWP-ODC-SGT GPU
 - 85% of CyberShake compute time
- Post-processing (reciprocal calculation)
 - Many (~400k) serial, high throughput, loosely coupled jobs
 - Workflow tools used to manage jobs
- Both phases are required to determine seismic hazard at one site
- For a hazard map, must calculate ~200 sites

SC/EC

CyberShake Workflows

Southern California Earthquake Center CyberShake Workflows Using Pegasus-MPI-Cluster

SC/EC

CPUs/GPUs Co-scheduling

- CPUs run reciprocity-based seismogram and intensity computations while GPUs are used for strain Green tensor calculations
- Run multiple MPI jobs on compute nodes using Node Managers (MOM)

aprun -n 50 <GPU executable> <arguments> & get the PID of the GPU job cybershake coscheduling.py: build all the cybershake input files divide up the nodes and work among a customizable number of jobs for each job: fork extract sgt.py cores --> performs pre-processing and launches "aprun -n <cores per job> -N 15 -r 1 <cpu executable A>&" get PID of the CPU job while executable A jobs are running: check PIDs to see if job has completed if completed: launch "aprun -n <cores per job> -N 15 -r 1 <cpu executable B>&" while executable B jobs are running: check for completion check for GPU job completion

SC/EC

Post-processing on CPUs: API for Pthreads

- AWP-API lets individual pthreads make use of CPUs: post-processing
 - Vmag, SGT, seismograms
 - Statistics (real-time performance measuring)
 - Adaptive/interactive control tools
 - In-situ visualization
 - Output writing is introduced as a pthread that uses the API

SC/EC

CyberShake Study 14.2 Metrics

- 1,144 hazard curves (4 maps) on NCSA Blue Waters
- 342 hours wallclock time (14.25 days)
- 46,720 CPUs + 225 GPUs used on average
 - Peak of 295,040 CPUs, 1100 GPUs
- GPU SGT code 6.5x more efficient than CPU SGT code (XK7 vs XE6 at node level)
- 99.8 million jobs executed (81 jobs/second)
 - 31,463 jobs automatically run in the Blue Waters queue
- On average, 26.2 workflows (curves) concurrently

CyberShake SGT Simulations on XK7 vs XE6

CyberShake 1.0 Hz	XE6	ХК7	XK7 (CPU-GPU co-scheduling)	
Nodes	400	400	400	
SGT hrs per site	3.7 10.36 < sp ee	7x dup [→] 2.80	2.80	
Post-processing hours per site**	0.94	1.88**	2.00	
Total Hrs per site	11.30	4.68	2.80	
Total SUs(Millions)*	723 M	299 M	179 M	
SUs saving (Millions)		424 M	543 M	

* Scale to 5000 sites based on two strain Green tensor runs per site

** based on CyberShake 13.4 map

CyberShake SGT Simulations on XK7 vs XE6

CyberShake 1.0 Hz	XE6	ХК7	XK7 (CPU-GPU co-scheduling)
Nodes	400	400	400
SGT hrs per site	3.7 10.36 < sp ee	7x dup [⇒] 2.80	2.80
Post-processing hours per site**	0.94	1.88**	2.00
Total Hrs per site	11.30	4.68	2.80
Total SUs(Millions)*	723 M	299 M	179 M
SUs saving (Millions)		424 M	543 M

* Scale to 5000 sites based on two strain Green tensor runs per site

** based on CyberShake 13.4 map

SC/EC

Broadband Platform Workflow

Broadband Platform Software Distributions:

Source Codes and Input Config Files: 2G (increases as platform runs) Data Files (Greens Functions): 11G (static input files)

SC/EC

Earthquake Problems at Extreme Scale

- Dynamic rupture simulations
 - Current 1D outer/inner scale: 6x10⁵
 - Target: 1D 600000m/0.001m (6x10⁸)
- Wave propagation simulations
 - Current 4D scale ratio: 1x10¹⁷
 - Target 4D scale ratio: 3x10²³
- Data-intensive simulations
 - Current tomography simulations: ~ 0.5 PB
 - 2015-2016 plan to carry out 5 iterations, 1.9 TB for each seismic source, total at least 441 TB for the duration of the inversion
 - Target tomography simulations:~ 32 XBs

SCEC 2015-2016 Computational Plan on Titan

Research	Milestone	Code	Nr. Of Runs	M SUs
Material heterogeneities wave propagation	2-Hz regional simulations for CVM with small-scale stochastic material perturbations	AWP-ODC-GPU	8	13
Attenuation and source wave propagation	10-Hz simulations integrating rupture dynamic results and wave propagation simulator	AWP-ODC-GPU SORD	5	19
Structural representation and wave propagation	4 Hz scenario and validation simulation, integration of frequency dependent Q, topography, and nonlinear wave propagation	Hercules-GPU	5	20
CyberShake PSHA	1.0-Hz hazard map	AWP-SGT-GPU	300	100
CyberShake PSHA	1.5-Hz hazard map	AWP-SGT-GPU	200	130

-> 282 M SUs

SC/EC

SCEC Software Development

• Advanced algorithms

- Development of Discontinuous Mesh AWP
- New physics: near-surface heterogeneities, frequency-dependent attenuation, fault roughness, near-fault plasticity, soil non-linearities, topography
- High-F simulation of ShakeOut scenario 0-4 Hz or higher
- Prepare SCEC HPC codes for next-generation systems
 - Programming model
 - Three levels of parallelism to address accelerating technology. Portability. Data locality and communication avoiding
 - Automation: Improvement of SCEC workflows
 - I/O and fault tolerance
 - Cope with millions of simultaneous I/O requests. Support multi-tiered I/O systems for scalable data handling. MPI/network and node level fault tolerance
 - Performance
 - Hybrid heterogeneous computing. Support for in-situ and post-hoc data processing. Load balancing
 - Benchmark SCEC mini-applications and tune on next-generation processors and interconnects

Peak horizontal ground velocity

400 cm/s

Acknowledgements

Computing Resources

 OLCF Titan, NCSA Blue Waters, ALCF Mira, XSEDE Keeneland, USC HPCC, XSEDE Stampede/Kraken, NVIDIA GPUs donation to HPGeoC Computations on Titan are supported through DOE INCITE program under DE-AC05-000R22725

21 Santa Barbara

200 km

44 Oxnard

109 Parkfiel

NSF Grants

SI2-SSI (OCI-1148493), Geoinformatics (EAR-1226343), XSEDE (OCI-1053575), NCSA NEIS-P2/PRAC (OCI-0832698)

This research was supported by SCEC which is funded by NSF Cooperative Agreement EAR-0529922 and USGS Cooperative Agreement 07HQAG0008