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Introduction 
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What is a quantum computer?  

 both classical and quantum computers may be viewed as  
machines that perform computations on given inputs and produce  
outputs. inputs and outputs are strings of bits (0’s and 1’s).  

 classical computers are based on manipulations of bits. bits are  
are equivalent to Ising spins (−1’s and 1’s). 
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What is a quantum computer?  

input state output state computation 
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 in classical computers, computation is usually done by applying  
local gates to the state of the system.  

 these gates (AND, OR, NOT, XOR,…) advance the state of the  
system until the result of the desired computation is achieved. 

 at any given time, the system is in a unique classical configuration  
(i.e., in a state that is a string of 0’s and 1’s).  
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What is a quantum computer?  

 quantum computers on the other hand manipulate quantum bits  
   (or qubits for short) – equivalent to spin-1/2 particles. 

 qubits can be in a superposition of up and down for example. 

 the range of intermediate states that a quantum computer can be        
   in and the range of operations it can perform are much larger than  
   those of a classical computer (superposition, entanglement, etc.).  
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What is a quantum computer?  

 much like classical gates, there are also quantum gates (unitary  
   operators) with which one can construct quantum circuits.  

 the Hadamard gate gives us superpositions. other gates entangle.  

 advantage: these unique properties can be utilized towards faster  
   computations. 

 disadvantage: quantum computers don’t really exist.  
   many technological difficulties. noise/interaction with environment. 
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 best-known example is  
   Shor’s algorithm for integer factorization:  

 solves the problem in polynomial time:  exponential speedup. 

 even super-computers will not be able to compete against a working 
quantum computer! 

 of practical importance (RSA code breaking). 

 current quantum computers can factor integers up to 21.  

 there may be a classical algorithm that is just as fast (or even faster) 
but that has not yet been found. 

Introduction 

turns out that at least in theory quantum 
computers are faster than classical computers  
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 quantum computation does not have to be done via gates. 

 there are other ways to quantum-compute,  that may be more  
   practical. 

 one such way is Adiabatic Quantum  
   Computing (AQC). 

 

 

 

 

 USC’s ISI hosts one such machine 
   “D-Wave Two” (only two available). 
    

Adiabatic Quantum Computing 

AQC is a general approach to solve a 
broad range of hard optimization 

problems using “quantum annealing” 
[Farhi et al.,2001] 
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1. take a difficult (classical) optimization problem, 
   generically: find minimizing configuration of the cost  
   function 𝐸𝐸 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) where 𝑥𝑥𝑖𝑖 are binary  
   variables (0,1) and 𝑓𝑓(⋯ ) is given. 

4. vary the Hamiltonian slowly and smoothly from    
    𝐻𝐻�(𝑏𝑏) to 𝐻𝐻�(𝑝𝑝) until ground state of 𝐻𝐻�(𝑝𝑝) is reached. 

 the general mechanism of AQC: 

2. encode the problem in a “problem” Hamiltonian, 𝐻𝐻�(𝑝𝑝), 
    such that its ground state encodes the solution.  

3. prepare the system in the ground state of another,  
    easily solvable, “beginning (driver) Hamiltonian” 𝐻𝐻�(𝑏𝑏). 

Adiabatic Quantum Computing 
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The D-Wave chip:  
a machine worth studying 
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 D-Wave Two is a Quantum Annealer.  based on a continuous  
   interpolation between an easy problem we know the solution to  
   and a hard problem whose solution we’d like to find.  

 (presumably) uses the advantages of Quantum Mechanics (such  
   as tunneling and entanglement) to solve optimization problems. 

 the quantum features of the 
   system are not available to 
   classical traditional machines. 

 therefore, there is the hope  
   that this machine (and quantum 
   computers in general) could  
   solve certain problems faster  
   than any classical device. 

The D-Wave Two Chip 
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 D-Wave Two is designed to solve optimization  
   problems of very specific type and form.  

 

 

 

 

 architecture of the chip and physical  
   constraints are very limiting. 

 fortunately, within the limitations  
   there is enough room for 
   solving non-trivial problems.  

the Chimera architecture 

The D-Wave Two Chip 
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 the D-Wave chip finds (or attempts to find) global minima of cost  
   functions of the Ising type (equivalent to QUBO problems): 

𝐻𝐻 = �𝐽𝐽𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗
𝑖𝑖,𝑗𝑗

+ �ℎ𝑖𝑖𝑆𝑆𝑖𝑖
𝑖𝑖

 

 the 𝑆𝑆𝑖𝑖 ’s are Ising spin variables ±1. 𝐽𝐽𝑖𝑖𝑖𝑖 ’s and ℎ𝑖𝑖 ’s are programmable  
   parameters. 

 in 20𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠, finds the 512-bit/spin configuration (out of 2512) that  
    minimizes the cost function (often producing erroneous results though).     

 some of these problems are (classically) computationally-hard,  
   so there’s the hope that certain problems won’t be as hard for the  
   quantum chip.   

The D-Wave Two Chip 
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 the usefulness of D-Wave Two can be determined by the existence  
   and scope of problems it can solve faster than classical computers.  

 finding such problems is the “holy grail” for all those involved in studying  
    the chip. most recent studies (Science ,June 2014) reported no-success. 

 what do we mean by “faster”? the hope is that we see difference in scaling  
   behavior, not necessarily in absolute times.   

 

= 
? 

The D-Wave Two Chip 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
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The D-Wave Two Chip 

 lots of interest and attention  
   from the scientific community 
   as well as the general public 

 lots of press (NY Times, CNN,  
   Forbes,  the economist…) 

 a lot of controversy  

 a lot still needs to be  
   clarified… 
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The D-Wave Two Chip 

plenty of questions/controversies revolving 
around the nature of  the D-Wave chip 

how quantum is it? 
how useful is it? 

these questions (and more) 
may be (partially) answered 

with the aid of  
super-computing resources 
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Simulating quantum annealers: 
understanding and improving quantum computers 
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Studying the D-Wave chip 

 being able to simulate quantum annealers, specifically the D-Wave  
   chip is an important task for us. 

 

 the chip itself is only very indirectly accessible.   

 understanding the underlying physical model will help us  
   determine how much “quantumness” is in the chip, i.e., is the state  
   of the system entangled or not? can this quantumness be used for  
   anything useful?  

 by simulating the machine, we’ll be able to propose simple     
   modifications that would enhance certain desired properties. 

 this in turn, may lead to observation of “quantum speedup”, which  
   would constitute as an important discovery in the field.  

why important? 



Itay Hen July 24, 2014 OLCF users meeting 

Studying the D-Wave chip 

 first, we are not sure about 
   the underlying physical  
   model,  

 but even if we did,  
   quantum systems are  
   complicated to simulate!  

 however, simulating quantum annealers is hard! 

why hard? 



Itay Hen July 24, 2014 OLCF users meeting 

Studying the D-Wave chip 

 a quantum bit (or qubit) can be in a superposition of the  
   “0” state and the “1” state: |𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩.  

 in principle, the classical description of one qubit requires two 
   infinite-precision complex numbers. 

 an n-qubit system can be in a superposition of 2𝑛𝑛 classical  
   states, e.g., for 𝑛𝑛 = 3, |𝜓𝜓⟩ = 𝛼𝛼|000⟩ + 𝛽𝛽|001⟩ + 𝛾𝛾|010⟩ + ⋯,  
   i.e., requires 2𝑛𝑛 complex numbers.  

 this is the “exponential explosion” associated with “fully” 
   simulating quantum systems. each additional bit or spin  
   doubles the resources required for the simulation.  

 this is why only very small systems (< 30 quantum bits) can be  
   “fully” simulated.     
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Studying the D-Wave chip 

 on the other hand, it should be clear that such full simulations  
   provide us with much more information than would be accessible  
   in the actual quantum system being simulated.  

 the state of the quantum system is not directly accessible.  

 with quantum systems, information is obtained only 
   through measurements,  each  
   providing 1 bit of data and  
   destroys the state afterwards.  
   this does not happen in 
   classical simulations.  

 this is why we have alternatives,   
   e.g., quantum Monte Carlo  
   techniques.   
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 for large system sizes, we can no longer  
    utilize exact evolution, 
 a way to study the various properties of 
   the system is employing  quantum Monte  
   Carlo (QMC) techniques, i.e., to simulate  
   a quantum computer.  
 with QMC, we (importance-)sample the  
   2𝑛𝑛 states of system.  exact-numerical up  
   to statistical errors.  
 QMC enables access to the equilibrium  
   properties of the system. 
 can only be applied to specific types of  
   quantum systems. 

Quantum Monte Carlo 
a typical segment of a 
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 in QMC,  the quantum-computational   
    “explosion” reflects itself in an   
    additional periodic dimension of  
    “imaginary time” 0 ≤ 𝜏𝜏 < 𝛽𝛽, where 
   𝛽𝛽 is the inverse-temperature (1/𝑇𝑇). 
 simulating low temperatures requires  
   significant computer power (sometimes,  
   goal is zero-temperature).  
 memory requirements scale as  
    problem sizes times inverse temperature.  

Quantum Monte Carlo 
a typical segment of a 
QMC configuration 
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 run times could grow indefinitely if  
   the simulated problems are hard.  

 happens when the system undergoes 
   a first order phase transition in which      
   the equilibrium distributions above and  
   below some critical temperature are  
   discontinuous (a “jump”). 

 luckily, because we are dealing with  
   sampling and statistics, QMC codes are  
   trivially parallelizable. 

 the D-Wave annealer can be simulated  
   with QMC. 
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Interaction with environment 

 things get even more complicated,  when interaction of the system  
   with the environment (a thermal bath) is taken into account. 
 this is crucial for a reliable description of the underlying physics.  
 since the environment is infinitely large, approximation methods  
   must be applied (Lindbladian dynamics). 
 even then, the task is very challenging. usually involves exact  
   diagonalization of large matrices.   
 requires lots of computational resources but gain could be huge.  
 understanding the inner 
   machinery may lead to  
   better designs of the chip. 
 may lead to observation of  
   quantum speedup.  

system  
(the annealer) the bath (environment) 

interaction 
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Benchmarking D-Wave:    
determining the usefulness of quantum annealers 
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is our quantum annealer  
useful for anything?  

Benchmarking D-Wave  

 even if we manage to show that the chip is quantum.  

 the question of whether or not this “quantumness” may be used for  
    anything useful, i.e., for solving some problems faster, remains.  

 right now, it is almost impractical to test this on real-life problems,  
   because of how small the current chip is.  

 next best thing is generating artificial problems, and testing the  
   performance of the D-Wave chip on these against classical state-of-the art  
   optimization algorithms running on cutting-edge hardware (CPUs, GPUs). 
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 we can study “artificial” problems by generating random problems.  

 some of those are also known to be computationally hard.  

 while these will not be  
   directly “useful” for  
   real-life applications,  
   they may help us to find 
   out if there are problems 
   that D-Wave Two can  
   solve faster than 
   traditional resources. 

 we can simulate a “modified” 
   chip to look for evidence  
   for speedup. a randomly-generated problem on  

D-Wave Two’s Chimera architecture 

Generating hard problems 
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Benchmarking D-Wave  
 we must compare the performance of the quantum chip against state-of- 
   the-art algorithms. among the algorithms D-Wave is compared against are: 

 Selby’s algorithm: specifically tailored to solve problems defined on D-
Wave’s Chimera architecture,  uses the tree-like features of the graph. 

 simulated (thermal) annealing: may be viewed as a classical version of 
quantum annealing. it uses gradually decreasing temperature / thermal 
fluctuations to escape local minima. 

 parallel tempering : running many replicas of the system with various 
temperatures, allowing simulations of adjacent temperatures to switch 
configurations.  

 other algorithms… 
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 so far, no luck. no quantum speedup has been observed. 

 but some (partial) answers are starting to emerge 

 recent results point to the fact that the machine is indeed  
quantum (Lanting et al., PRX, May 2014). 

 benchmarking tests are so far inconclusive  
(Rønnow et al., Science, June 2014). 

 theoretical work points to new directions where we can look for 
more appropriate problems (Katzgraber et al., PRX, April 2014).   

better benchmarks are needed, 
finite-temperature spin-glasses 

Generating hard problems 
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 for some problems, the so-called spin glasses, the energy landscape is so  
   jagged, that classical heuristic solvers tend to get stuck in local minima,  
   failing to solve the optimization problem. 

 in the presence of first-order phase transitions, even clever algorithms 
    such as parallel tempering will not do. 

 hope is that quantum annealers could use their ability to tunnel through  
   high energy barriers to get to the true global solutions.  

 we don’t know if 
   such problems that 
   are classically-hard  
   could also be  
   quantum-easy.  

true global minimum 
local minimum that  
 is hard to escape 

energy landscape 

Generating hard problems 
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Computational requirements 

 benchmarking requires lots of computation resources.  

 traditional CPU’s as well as GPU’s.  

 if problems are really hard, even 512-bit problems may run for hours or 
   even days.  

 analyzing the performance of classical algorithms on instances of such  
   spin-glasses is extremely resource-demanding. 

 hundreds of thousands of instances must be tested to establish the typical  
   behavior of an algorithm on a random problem.  

 also, scaling with problem size needs to be tested. 

 observation of a different scaling behavior for quantum and for classical  
   solvers would be an important discovery.  
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Generating hard problems 
 these days, we are looking into various types of problems  
   that may potentially reveal quantum speedups. 

 we are trying to engineer problems that are expected to  
   be hard. 

 specifically, problems with a lot of frustration.  

 these are known to be hard  
   for classical algorithms. 

 we don’t know how D-Wave  
   will do.  

 so far, preliminary results are 
   somewhat promising.  

antiferromagnetic couplings 
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Conclusions and outlook 
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Conclusions 

 heavy “classical” computing is extremely  important for the simulation and  
   benchmarking of quantum computers (annealers). 

 while computationally demanding, computation is expected to reveal many  
   sought-after so-far-unknown properties of the quantum system as well as  
   ideas for improving the hardware,  such as different architectures, effects     
   of reduction  of noise and temperature, etc.  

 applications of state-of-the-art classical optimizers will reveal “intrinsically- 
   hard” optimization problems, whose solutions may be reached faster by  
   quantum computers. 

 will help us understand the difference between quantum-hard and  
   classical-hard.  
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Outlook 

 not sure what the quantum Moore’s law is going to be.  

 so far, quantum annealer sizes double each year.  

 for the corresponding classical simulations, each added qubit doubles the  
   resource requirements.  

 a x10 increase in supercomputing resources a few years from now,  
   may certainly help us “go up in size” as far as simulations go.  

 super-optimistic view:  judging by annealer sizes, this would be around the      
   time where we hope quantum computers would leave super-computers    
   behind (has not happened so far!). 

 therefore, next few years should be the most interesting ones!  
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 in the D-Wave Two chip, qubits are   
   superconducting flux circuits. 

 these are arranged in arrays of intersecting loops to 
   form the “Chimera” architecture.  

 the circuit is magnetically shielded and cooled down to 
   17mK.  

The D-Wave Two Chip 
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Chip topology 

 need to better understand source of hardness, for  
   both classical algorithms and the D-Wave machine  
   (frustration?).  

 come up with other (better) benchmarks based on problems  
   with planted solutions with and without the use of  
   “frustrated loops”. lots of room for improvement! 

 compare SSSV scaling & D-Wave scaling to possibly rule it out. 

 problems with planted solutions are a rich test bed  
   for D-Wave benchmarking. numerous attractive properties.  

 some of the results may be interpreted as “speedup”, either  
   in scaling or in the absolute sense. 

 seem to be able to generate problems with tunable  
   hardness (and a SAT/UNSAT phase transition).  
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Adiabatic Quantum Computing 
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation    
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

The adiabatic theorem of QM 
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation  
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

 example: change the strength of a harmonic potential of a  
   system in the ground state: 

 an abrupt change 
   (a diabatic process):  

The adiabatic theorem of QM 

𝜓𝜓(𝑥𝑥, 𝑡𝑡) 2 

harmonic 
potential 
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 the adiabatic theorem of QM tells us that a physical system  
   remains in its instantaneous eigenstate if a given perturbation  
   is acting on it slowly enough and if there is a gap between  
   the eigenvalue and the rest of the Hamiltonian's spectrum. 

 example: change the strength of a harmonic potential of a  
   system in the ground state: 

 a gradual slow change 
   (an adiabatic process):  
   wave function can “keep up” 
   with the change.  

The adiabatic theorem of QM 

harmonic 
potential 

𝜓𝜓(𝑥𝑥, 𝑡𝑡) 2 
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The quantum adiabatic algorithm (QAA) 

1. take a difficult (classical) optimization problem, 
   generically: find minimizing configuration of the cost  
   function 𝐸𝐸 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) where 𝑥𝑥𝑖𝑖 are binary  
   variables (0,1) and 𝑓𝑓(⋯ ) is given. 

4. vary the Hamiltonian slowly and smoothly from    
    𝐻𝐻�(𝑏𝑏) to 𝐻𝐻�(𝑝𝑝) until ground state of 𝐻𝐻�(𝑝𝑝) is reached. 

 the mechanism proposed by Farhi et al., the QAA: 

2. encode the problem in a “problem” Hamiltonian, 𝐻𝐻�(𝑝𝑝), 
    such that its ground state encodes the solution.  

3. prepare the system in the ground state of another,  
    easily solvable, “beginning (driver) Hamiltonian” 𝐻𝐻�(𝑏𝑏). 
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𝐻𝐻� 𝑡𝑡 = 1 − 𝑠𝑠 𝑡𝑡 𝐻𝐻�(𝑏𝑏) + 𝑠𝑠(𝑡𝑡)𝐻𝐻�(𝑝𝑝) 

𝐻𝐻�(𝑝𝑝) is the problem Hamiltonian  
whose ground state encodes the 

solution of the optimization problem 

 𝐻𝐻�(𝑏𝑏) is an easily solvable  
beginning Hamiltonian, which  
does not commute with 𝐻𝐻�(𝑝𝑝) 

 the interpolating Hamiltonian is this: 

The quantum adiabatic algorithm (QAA) 

 the parameter 𝑠𝑠 obeys 0 ≤ 𝑠𝑠 𝑡𝑡 ≤ 1, with 𝑠𝑠 0 = 0 and     
     𝑠𝑠 𝒯𝒯 = 1. also: 𝐻𝐻� 0 = 𝐻𝐻�(𝑏𝑏) and 𝐻𝐻� 𝒯𝒯 = 𝐻𝐻�(𝑝𝑝). 

 here, 𝑡𝑡 stands for time and 𝒯𝒯 is the running time, or 
   complexity, of the algorithm. 
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 the adiabatic theorem ensures that if the change in 𝑠𝑠 𝑡𝑡  is  
   slow enough, the system will stay close to the ground  
   state of the instantaneous Hamiltonian throughout  
   the evolution. 

 a measurement at the end of the evolution, will give the  
   solution of the original problem with high probability. 

 the interpolating Hamiltonian is this: 

The quantum adiabatic algorithm (QAA) 

 process should be slow,  
 but how fast can it still be? 

𝐻𝐻� 𝑡𝑡 = 1 − 𝑠𝑠 𝑡𝑡 𝐻𝐻�(𝑏𝑏) + 𝑠𝑠(𝑡𝑡)𝐻𝐻�(𝑝𝑝) 
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(min gap) 

Landau-Zener transition 
 bottleneck is likely to be where the gap to the first excited  
   state is smallest. there, the probability to “get off track” is    
   maximal. 

 generic case:  
   Landau-Zener  
   theory gives the  
   prob. to stay in  
   ground state as: 

 

 

 runtime should obey:  

𝑃𝑃 ≈ 1 − 𝑒𝑒−
𝜋𝜋∆2
2ℏ𝑣𝑣 

𝒯𝒯 ≫
𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 0|𝑑𝑑𝐻𝐻�/𝑑𝑑𝑑𝑑|1

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔2
 

𝑣𝑣 = 𝑑𝑑(Δ𝐸𝐸)/𝑑𝑑𝑑𝑑 (sweep rate) 
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(min gap) 

Landau-Zener transition 
 bottleneck is likely to be where the gap to the first excited  
   state is smallest. there, the probability to “get off track” is    
   maximal. 

 generic case:  
   Landau-Zener  
   theory gives the  
   prob. to stay in  
   ground state as: 

 

 

 runtime should obey:  

𝑃𝑃 ≈ 1 − 𝑒𝑒−
𝜋𝜋∆2
2ℏ𝑣𝑣 

𝒯𝒯 ≫
𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 0|𝑑𝑑𝐻𝐻�/𝑑𝑑𝑑𝑑|1

𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔2
 

𝑣𝑣 = 𝑑𝑑(Δ𝐸𝐸)/𝑑𝑑𝑑𝑑 (sweep rate) 

the larger the 
minimum gap Δ is, 
and the slower the 
process is, the 
better our chances 
are to stay in the 
ground state. 
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 the SSE algorithm [Sandvik 1994]  
   is a very successful QMC  
   technique for studying quantum  
   systems in the vicinity of phase  
   transitions.  

 the algorithm uses both local  
   and global updates. 

 it is a world-line/loop  
   algorithm. 

 it has been used successfully  
   in solving many spin models  
   such as this one. 

Stochastic series expansion algorithm 

A typical SSE loop 
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 it is based on the following decomposition of the partition  
   function: 

 

 we first express the Trace operation as: 

 

 

 and then Taylor-expand the exponent using: 

Stochastic series expansion algorithm 

where          is the Fock states basis 
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  the partition function then becomes: 

 

 

    where the Taylor expansion is cut off after L terms (            ). 
 

Stochastic series expansion algorithm 
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  the partition function then becomes: 

 

 

    where the Taylor expansion is cut off after L terms (            ). 

 as a next step, we rewrite the Hamiltonian (denoted       )  as: 

 

 

 
  where b  is a “bond” index, which is a pair of two interacting sites. 

  and         (     ) is then a “local” two-site operator (a 4x4 matrix).  

Stochastic series expansion algorithm 

=-( 1+ 2+ 3+ 4+...+ Nb
)
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 the terms            inside the partition function are then  
   expanded as: 

 

 

 

 

Stochastic series expansion algorithm 


n
= k  ( k ,1 k ,2  k ,3  k ,4... k ,n)
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
n
= k  Lnn

L  ( k ,1 k ,2 k ,3  k ,4 k ,5 ... k ,L)

 the terms            inside the partition function are then  
   expanded as: 

 

 

 

 and the  resulting operator products (operator sequences)  
   are “padded” by unit operators in order to fix the length of all  
   sequences at L. 

Stochastic series expansion algorithm 


n
= k  ( k ,1 k ,2  k ,3  k ,4... k ,n)

 where          is a 4X4 identity matrix 
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 the partition function then takes its final form: 

 

 
 

 

 and each configuration in this double sum is a pair  
   (Fock state, operator sequence): 

 

 the core of the SSE algorithm is to sample these  
   configurations according to their weights. 

 the algorithm uses both local and global updates. 

Stochastic series expansion algorithm 

all possible operator 
sequences of length L 

weight configuration 
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The D-Wave Two Chip 
 Lots of interest and attention from 
   scientific community as well as the  
   general public 
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The D-Wave Two Chip 
• Lots of interest and attention from 
   scientific community as well as the  
   general public 
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 503/512 functional qubits with “Chimera graph” couplings 

D-Wave Two Processor Graph 
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 Eight-Qubit Unit Cells and Tiling into 4 x 4 array 
 

D-Wave Two Processor Graph 

“Chimera” coupling graph of entire chip unit cell coupling graph 
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Benchmarking D-Wave:    
Generating hard problems 
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Parallel Tempering 

 for problem for classical solvers  

 State of the art optimizers are Parallel Tempering  

 in spin glasses it is not useful to work with one replica.  

 we need many replicas in parallel. 

 different temperatures  
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Motivation 

in what ways quantum computers are more 
efficient than classical computers? 

what problems could be solved more efficiently 
on a quantum computer? 

what is a quantum computer?  
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Motivation 

in what ways quantum computers are more 
efficient than classical computers? 

what problems could be solved more efficiently 
on a quantum computer? 

what is a quantum computer?  
a quantum computer is a machine that utilizes 

aspects of quantum physics to perform 
calculations. 
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Quantum speedup 

 quantum algorithms are expected to be faster in the sense of  
   scaling with input size (unlike super computers). 

 best known example is Shor’s quantum algorithm for integer  
   factorization which scales as 𝑛𝑛3 (𝑛𝑛 is the number of digits of the  
   input number) as opposed to the best known classical algorithm  

   which scales as 𝑒𝑒𝑐𝑐 𝑛𝑛1/3
,  

   i.e., exponentially slower. 

 e.g.: 1000 years on a  
   desktop computer (or,  
   say, 1 year on a  
   supercomputer) vs less  
   than a day on a quantum  
   computer.  classical vs quantum scaling  

of integer factoring algorithms 
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