
ORNL is managed by UT-Battelle
for the US Department of Energy

Porting CAM-SE To
Use Titan’s GPUs

ORNL
Nvidia
ORNL
ORNL
NREL
Nvidia
ORNL

Matthew Norman
Jeffrey Larkin

Richard Archibald
Valentine Anantharaj

Ilene Carpenter
Paulius Micikevicius

Katherine Evans

2014 OLCF User’s Meeting

2 Presentation_name

What is CAM-SE
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

3 Presentation_name

What is CAM-SE
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

Dynamical Core
1.  “Dynamics”: wind, energy, & mass
2.  “Tracer” Transport: (H2O, CO2, O3, …)

Transport quantities not advanced by the dynamics

4 Presentation_name

What is CAM-SE
• Climate-scale atmospheric simulation for capability computing
• Comprised of (1) a dynamical core and (2) physics packages

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png

http://web.me.com/macweather/blogger/maweather_files/physprc2.gif

Physics Packages
Resolve anything interesting not
included in dynamical core (moist
convection, radiation, chemistry, etc)

Dynamical Core
1.  “Dynamics”: wind, energy, & mass
2.  “Tracer” Transport: (H2O, CO2, O3, …)

Transport quantities not advanced by the dynamics

5 Presentation_name

Gridding & Numerics

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements

6 Presentation_name

Gridding & Numerics

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions

7 Presentation_name

Gridding & Numerics

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions
•  Basis coefficients describe the fluid

8 Presentation_name

Gridding & Numerics

http://www-personal.umich.edu/~paullric/A_CubedSphere.png

•  Cubed-Sphere + Spectral Element
•  Each cube panel divided into elements
•  Elements spanned by basis functions
•  Basis coefficients describe the fluid

Used CUDA FORTRAN from PGI
OACC Directives: Better software engineering option moving forward

9 Presentation_name

•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamic
s

73%

Tracers
7%

Physics
16%

Other
4%

3-Tracer CAM-SE

Dynamic
s

22%

Tracers
71%

Physics
6%

Other
1%

106-Tracer CAM-SE

CAM-SE Profile (Cray XT5, 14K nodes)

10 Presentation_name

•  Original CAM-SE used 3 tracers (20% difficult to port)
•  Mozart chemistry provides 106 tracers (7% difficult to port)

–  Centralizes port to tracers with mostly data-parallel routines

Dynamic
s

73%

Tracers
7%

Physics
16%

Other
4%

3-Tracer CAM-SE

Dynamic
s

22%

Tracers
71%

Physics
6%

Other
1%

106-Tracer CAM-SE

CAM-SE Profile (Cray XT5, 14K nodes)

A number of reductions

Fewer DOFs to work with

11 Presentation_name

Process 1 Process 0

Communication Between Elements

12 Presentation_name

Process 1 Process 0

Communication Between Elements

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

13 Presentation_name

Process 1 Process 0

Communication Between Elements

Implementation

Edge_pack: pack all element edges
into process-wide buffer. Data sent
over MPI are contiguous in buffer.

Bndry_exchange: Send & receive
data at domain decomposition
boundaries

Edge_unpack: Perform a weighted
sum for data at all element edges.

Physically occupy the same
location, Spectral Element
requires them to be equal

Edges are averaged, and the
average replaces both edges

14 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”

15 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI Cycle 1

Cycle 2

Cycle 3

Cycle 4

16 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

17 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel

18 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

19 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

20 Presentation_name

Original Pack/Exchange/Unpack
•  Edge_pack ensures data for MPI is contiguous in buffer
•  MPI communication occurs in “cycles”
•  A cycle contains a contiguous data region for MPI
•  Original pack/exchange/unpack

–  Pack all edges in a GPU Kernel
–  For each “send cycle”

•  Send cycle over PCI-e (D2H)
•  MPI_Isend the cycle

–  For each “receive cycle”
•  MPI_Wait for the data
•  Send cycle over PCI-e (H2D)

–  Unpack all edges in a GPU Kernel

21 Presentation_name

Porting Strategy: Pack/Exchange/Unpack

22 Presentation_name

•  Pack external elements that participate with MPI
Porting Strategy: Pack/Exchange/Unpack

23 Presentation_name

•  Pack external elements that participate with MPI
•  Send Cycles over MPI and PCI-e

Porting Strategy: Pack/Exchange/Unpack

24 Presentation_name

•  Pack external elements that participate with MPI
•  Send Cycles over MPI and PCI-e
•  Pack and unpack internal elements during MPI / PCI-e

Porting Strategy: Pack/Exchange/Unpack

25 Presentation_name

•  Pack external elements that participate with MPI
•  Send Cycles over MPI and PCI-e
•  Pack and unpack internal elements during MPI / PCI-e
•  MPI_irecv and PCI-e to GPU

Porting Strategy: Pack/Exchange/Unpack

26 Presentation_name

•  Pack external elements that participate with MPI
•  Send Cycles over MPI and PCI-e
•  Pack and unpack internal elements during MPI / PCI-e
•  MPI_irecv and PCI-e to GPU
•  Unpack external elements that

participate with MPI

Porting Strategy: Pack/Exchange/Unpack

27 Presentation_name

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

28 Presentation_name

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

Coded to respect
cache locality

29 Presentation_name

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

Coded to respect
cache locality

However, this will
not coalesce to fill

the DRAM bus

30 Presentation_name

Think Differently About Threading
CPU Code

do ie=1,nelemd
 do q=1,qsize
 do k=1,nlev
 do j=1,np
 do i=1,np
 coefs(1,i,j,k,q,ie) = ...
 coefs(2,i,j,k,q,ie) = ...
 coefs(3,i,j,k,q,ie) = ...

GPU Code

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(1,i,j,k,q,ie) = ...
coefs(2,i,j,k,q,ie) = ...
coefs(3,i,j,k,q,ie) = ...

ie = blockidx%y
q = blockidx%x
k = threadidx%z
j = threadidx%y
i = threadidx%x
coefs(i,j,k,q,ie,1) = ...
coefs(i,j,k,q,ie,2) = ...
coefs(i,j,k,q,ie,3) = ...

31 Presentation_name

Speed-Up: Fermi GPU vs 1 Interlagos / Node

0
1
2
3
4

5

6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6
3.6

2.9

5.4

4.2

Older values
•  Benchmarks performed on XK6 using end-to-end wall timers
•  All PCI-e and MPI communication included

32 Presentation_name

Why Was Vertical Remap So Fast?
•  Originally used splines for reconstruction

–  Splines require a linear solve à vertical dependence within loops
–  Vertical index could not be threaded, only horizontal

•  We replaced reconstruction with Piecewise Parabolic Method
–  Vertically independent à vertical index was threaded à 30x more threads

•  Original remapping used a summation to reduce flops
–  Summations are vertically dependent and harder to thread

•  We changed it to do two integrations instead
–  This double the work for remapping
–  But it also reduced data requirements and dependence

•  As a result, all data in the reconstruction and remap fit into cache
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of

work in between, all done in-cache
–  Thus, >5x speed-up over PPM remap on CPU

33 Presentation_name

Why Was Vertical Remap So Fast?
•  Originally used splines for reconstruction

–  Splines require a linear solve à vertical dependence within loops
–  Vertical index could not be threaded, only horizontal

•  We replaced reconstruction with Piecewise Parabolic Method
–  Vertically independent à vertical index was threaded à 30x more threads

•  Original remapping used a summation to reduce flops
–  Summations are vertically dependent and harder to thread

•  We changed it to do two integrations instead
–  This double the work for remapping
–  But it also reduced data requirements and dependence

•  As a result, all data in the reconstruction and remap fit into cache
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of

work in between, all done in-cache
–  Thus, >5x speed-up over PPM remap on CPU

•  If Increasing The Workload
•  Allows More Threading
•  Decreases Data Dependence
•  Decreases Local Data Requirements

•  Then It’s Worth Investigating

34 Presentation_name

New Algorithms

•  High-Order Accuracy
–  Galerkin: Local computation scales as N2D+1 (D = “dimensions”)

 But watch out for that time step
–  Finite-Volume: Local computation scales as N2D-1

 Adjacent stencils nearly entirely re-used

•  Time Discretization
–  Mixed-Precision, communication-reducing implicit / iterative methods
–  Communication-avoiding explicit methods

•  ADER: Local computation scales as N2(D+1)

 Large, high-order time steps w/no stages / comms
•  Multi-step: Save & re-use past steps for high-order w/o stages

•  Redundant computations
–  Brake-even point might be further than you think!

35 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

36 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

•  Vertical Remap basically removed

37 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

•  Vertical Remap basically removed
•  New backend for PGI’s FORTRAN CUDA

38 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

•  Vertical Remap basically removed
•  New backend for PGI’s FORTRAN CUDA
•  New sub-cycling methods implemented (More PCI-e traffic)

39 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

•  Vertical Remap basically removed
•  New backend for PGI’s FORTRAN CUDA
•  New sub-cycling methods implemented (More PCI-e traffic)
•  New science targets identified

40 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

•  Vertical Remap basically removed
•  New backend for PGI’s FORTRAN CUDA
•  New sub-cycling methods implemented (More PCI-e traffic)
•  New science targets identified
•  Many communities resistant to code refactoring

41 Presentation_name

Back to the Real World: Codes Change

0
2
4
6

Total
Tracers

Euler step

Vertical remap

Hyperviscosity

2.6 3.6 2.9
5.4

4.2

•  Vertical Remap basically removed
•  New backend for PGI’s FORTRAN CUDA
•  New sub-cycling methods implemented (More PCI-e traffic)
•  New science targets identified
•  Many communities resistant to code refactoring
•  Moral of the story: your port must be flexible and maintainable

42 Presentation_name

Next Steps (Joint ACME & OLCF)
•  ACME: Accelerated Climate Model for Energy
•  Create new better-tuned kernels for newer PGI compiler
•  Redo the port using OpenACC

–  OpenACC is very sensitive to code & looping structure
–  Need to discover & disseminate best practices
–  Using best practices, port the “dynamics”
–  Develop new validation suites to maintain GPU port confidence

•  Evaluate reproducibility with various Cray & PGI compiler flags
•  Efficiently maintain V&V robustness with a changing GPU port

43 Presentation_name

Questions?

