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• Comprised of (1) a dynamical core and (2) physics packages 

http://esse.engin.umich.edu/groups/admg/
dcmip/jablonowski_cubed_sphere_vorticity.png 

http://web.me.com/macweather/blogger/maweather_files/physprc2.gif 

Physics Packages 
Resolve anything interesting not 
included in dynamical core (moist 
convection, radiation, chemistry, etc) 

Dynamical Core 
1.  “Dynamics”: wind, energy, & mass 
2.  “Tracer” Transport: (H2O, CO2, O3, …) 

Transport quantities not advanced by the dynamics 
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Gridding & Numerics 

http://www-personal.umich.edu/~paullric/A_CubedSphere.png 

•  Cubed-Sphere   +   Spectral Element 
•  Each cube panel divided into elements 
•  Elements spanned by basis functions 
•  Basis coefficients describe the fluid 

Used CUDA FORTRAN from PGI 
OACC Directives: Better software engineering option moving forward 
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•  Original CAM-SE used 3 tracers (20% difficult to port) 
•  Mozart chemistry provides 106 tracers (7% difficult to port) 

–  Centralizes port to tracers with mostly data-parallel routines 

Dynamic
s 

73% 

Tracers 
7% 

Physics 
16% 

Other 
4% 

3-Tracer CAM-SE 

Dynamic
s 

22% 

Tracers 
71% 

Physics 
6% 

Other 
1% 

106-Tracer CAM-SE 

CAM-SE Profile (Cray XT5, 14K nodes) 



10 Presentation_name 

•  Original CAM-SE used 3 tracers (20% difficult to port) 
•  Mozart chemistry provides 106 tracers (7% difficult to port) 

–  Centralizes port to tracers with mostly data-parallel routines 

Dynamic
s 

73% 

Tracers 
7% 

Physics 
16% 

Other 
4% 

3-Tracer CAM-SE 

Dynamic
s 

22% 

Tracers 
71% 

Physics 
6% 

Other 
1% 

106-Tracer CAM-SE 

CAM-SE Profile (Cray XT5, 14K nodes) 

A number of reductions 
 

Fewer DOFs to work with 
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location, Spectral Element 
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Edges are averaged, and the 
average replaces both edges 



13 Presentation_name 

Process 1 Process 0 

Communication Between Elements 

Implementation 
 

Edge_pack: pack all element edges 
into process-wide buffer. Data sent 
over MPI are contiguous in buffer. 
 

Bndry_exchange: Send & receive 
data at domain decomposition 
boundaries 
 

Edge_unpack: Perform a weighted 
sum for data at all element edges. 

Physically occupy the same 
location, Spectral Element 
requires them to be equal 

 

Edges are averaged, and the 
average replaces both edges 
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•  Pack external elements that participate with MPI 
•  Send Cycles over MPI and PCI-e 
•  Pack and unpack internal elements during MPI / PCI-e 
•  MPI_irecv and PCI-e to GPU 
•  Unpack external elements that  

participate with MPI 

Porting Strategy: Pack/Exchange/Unpack 
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Think Differently About Threading 
CPU Code 

 

do ie=1,nelemd 
 do q=1,qsize 
  do k=1,nlev 
   do j=1,np 
    do i=1,np 
     coefs(1,i,j,k,q,ie) = ... 
     coefs(2,i,j,k,q,ie) = ... 
     coefs(3,i,j,k,q,ie) = ... 
 

GPU Code 
 

  
 

ie = blockidx%y 
q  = blockidx%x 
k  = threadidx%z 
j  = threadidx%y 
i  = threadidx%x 
coefs(1,i,j,k,q,ie) = ... 
coefs(2,i,j,k,q,ie) = ... 
coefs(3,i,j,k,q,ie) = ... 
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the DRAM bus 
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coefs(i,j,k,q,ie,2) = ... 
coefs(i,j,k,q,ie,3) = ... 
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Speed-Up: Fermi GPU vs 1 Interlagos / Node 
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Older values 
•  Benchmarks performed on XK6 using end-to-end wall timers 
•  All PCI-e and MPI communication included 
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Why Was Vertical Remap So Fast? 
•  Originally used splines for reconstruction 

–  Splines require a linear solve à vertical dependence within loops 
–  Vertical index could not be threaded, only horizontal 

•  We replaced reconstruction with Piecewise Parabolic Method 
–  Vertically independent à vertical index was threaded à 30x more threads 

•  Original remapping used a summation to reduce flops 
–  Summations are vertically dependent and harder to thread 

•  We changed it to do two integrations instead 
–  This double the work for remapping 
–  But it also reduced data requirements and dependence 

•  As a result, all data in the reconstruction and remap fit into cache 
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of 

work in between, all done in-cache 
–  Thus, >5x speed-up over PPM remap on CPU 
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Why Was Vertical Remap So Fast? 
•  Originally used splines for reconstruction 

–  Splines require a linear solve à vertical dependence within loops 
–  Vertical index could not be threaded, only horizontal 

•  We replaced reconstruction with Piecewise Parabolic Method 
–  Vertically independent à vertical index was threaded à 30x more threads 

•  Original remapping used a summation to reduce flops 
–  Summations are vertically dependent and harder to thread 

•  We changed it to do two integrations instead 
–  This double the work for remapping 
–  But it also reduced data requirements and dependence 

•  As a result, all data in the reconstruction and remap fit into cache 
–  Only accesses to DRAM were at the very beginning and end of kernel with a lot of 

work in between, all done in-cache 
–  Thus, >5x speed-up over PPM remap on CPU 

•  If Increasing The Workload 
•  Allows More Threading 
•  Decreases Data Dependence 
•  Decreases Local Data Requirements 

•  Then It’s Worth Investigating 
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New Algorithms 

•  High-Order Accuracy 
–  Galerkin:   Local computation scales as N2D+1  (D = “dimensions”) 

   But watch out for that time step 
–  Finite-Volume:  Local computation scales as N2D-1 

   Adjacent stencils nearly entirely re-used 

•  Time Discretization 
–  Mixed-Precision, communication-reducing implicit / iterative methods 
–  Communication-avoiding explicit methods 

•  ADER:   Local computation scales as N2(D+1) 

  Large, high-order time steps w/no stages / comms 
•  Multi-step:  Save & re-use past steps for high-order w/o stages 

•  Redundant computations 
–  Brake-even point might be further than you think! 



35 Presentation_name 

Back to the Real World: Codes Change 
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Back to the Real World: Codes Change 

0 
2 
4 
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Total 
Tracers 

Euler step 

Vertical remap 

Hyperviscosity 

2.6 3.6 2.9 
5.4 

4.2 

•  Vertical Remap basically removed 
•  New backend for PGI’s FORTRAN CUDA 
•  New sub-cycling methods implemented (More PCI-e traffic) 
•  New science targets identified 
•  Many communities resistant to code refactoring 
•  Moral of the story: your port must be flexible and maintainable 
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Next Steps (Joint ACME & OLCF) 
•  ACME: Accelerated Climate Model for Energy 
•  Create new better-tuned kernels for newer PGI compiler 
•  Redo the port using OpenACC 

–  OpenACC is very sensitive to code & looping structure 
–  Need to discover & disseminate best practices 
–  Using best practices, port the “dynamics” 
–  Develop new validation suites to maintain GPU port confidence 

•  Evaluate reproducibility with various Cray & PGI compiler flags 
•  Efficiently maintain V&V robustness with a changing GPU port 
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Questions? 


