
OLCF User Meeting
July 23, 2014

PORTABLE PARALLEL HALO
AND CENTER FINDERS FOR

HACC
Christopher Sewell, LANL

Katrin Heitmann, ANL
Ollie Lo, LANL

Salman Habib, ANL
Jim Ahrens, LANL

LA-UR-14-25437

Outline
Background: SDAV, PISTON, VTK-m, data-

parallel abstractions, and halo analysis
Algorithms: Halo and center finding
Results: Moonlight (LANL), Stampede (TACC),

and Titan (ORNL)
Extensions: in-situ integration and Poisson center

finder
Future needs: current bottlenecks, expected

trends, possible hardware and software
solutions

LA-UR-14-25437

Background
SDAV, PISTON, VTK-m, Data-Parallel Abstractions, and
Halo Analysis

LA-UR-14-25437

SDAV VTK-m Frameworks
Objective: Enhance existing multi/many-core technologies in

anticipation of in situ analysis use cases with LCF codes

Benefit to scientists: These frameworks will make it easier for
domain scientists’ simulation codes to take advantage of the
parallelism available on a wide range of current and next-
generation hardware architectures, especially with regards
to visualization and analysis tasks

Projects
EAVL, Oak Ridge National Laboratory
Dax, Sandia National Laboratory
DIY, Argonne National Laboratory
PISTON, Los Alamos National Laboratory

Work on integrating these projects with VTK is on-going, in
collaboration with Kitware

LA-UR-14-25437

Algorithms for Science Applications Using VTK-m

• The PISTON component of VTK-m focuses on developing
data-parallel algorithms that are portable across multi-core
and many-core architectures for use by LCF codes of
interest

• PISTON consists of a library of visualization and analysis
algorithms implemented using Thrust, as well as a set of
extensions to Thrust

• PISTON algorithms are integrated into LCF codes in-situ
either directly or though integration with ParaView Catalyst

PISTON isosurface with
curvilinear coordinates

Ocean temperature isosurface
generated across four GPUs using

distributed PISTON

PISTON integration with VTK
and ParaView

LA-UR-14-25437

Brief Introduction to Data-
Parallelism and Thrust

● Sorts

● Transforms

● Reductions

● Scans

● Binary searches

● Stream compactions

● Scatters / gathers

Challenge: Write operators in terms
of these primitives only

Reward: Efficient, portable code

What algorithms does Thrust provide?

LA-UR-14-25437

Halo Analysis
• An important and time-consuming analysis function within HACC is finding

halos and the centers of those halos
• HACC is written as an MPI+X code, designed to be easy to port and optimize

for different architectures
• It would be very time-consuming to optimize the full cross-product of all

analysis operators and all architectures
• Data-parallelism, using a framework such as PISTON, allows a single

implementation of an analysis operator to take advantage of all supported
architectures

• Total implementation work is O((# of analysis operators) + (# of architectures))
rather than O((# of analysis operators) * (# of architectures))

Images of the matter density field, produced by the HACC simulation on Titan
Image credits: Joe Insley and Silvio Rizzi

LA-UR-14-25437

Definitions
• Friend-of-friends (FOF) halo: connect each particle to all “friends”, i.e., all

other particles within a specified “linking length” of it; two particles will end
up in the same “halo” if there exists any chain of “friends” between them

• Most connected particle (MCP) center: the particle within a halo with the
most “friends”

• Most bound particle (MBP) center: the particle within a halo with the lowest
potential, where the potential for a given particle is computed as the sum
over all other particles of the negative of mass divided by distance

−

≠∈∈ ijHj ij

j

Hi d
m

,

minarg

MBP center:

LA-UR-14-25437

Algorithms
Halo and Center Finding

LA-UR-14-25437

Distributed Parallel Halo Finder

• Particles are distributed among processors according
to a decomposition of the physical space

• Overload zones (where particles are assigned to two
processors) are defined such that every halo will be
fully contained within at least one processor

• Each processor finds halos within its domain
• At the end, the parallel halo finder performs a merge

step to handle “mixed” halos (shared between two
processors), such that a unique set of halos is reported
globally

• Developed primarily by Pat Fasel at LANL, with the
serial halo finder running on each individual processor
using a KD-tree based algorithm designed by C.H. Hsu

LA-UR-14-25437

Distributed Parallel Halo Finder

• Particles are distributed among processors
according to a decomposition of the physical space

• Overload zones (where particles are assigned to two
processors) are defined such that every halo will be
fully contained within at least one processor

• Each processor finds halos within its domain: Drop
in PISTON multi-/many-core accelerated algorithms

• At the end, the parallel halo finder performs a merge
step to handle “mixed” halos (shared between two
processors), such that a unique set of halos is
reported globally

LA-UR-14-25437

Halo Finder Algorithm: Connected Components
for all vertices i D(i):=i
while (true) {
// Graft trees onto smaller
// vertices of other trees
for all (i,j)ϵE pardo

if (D(i)=D(D(i)) and D(j)<D(i))
set D(D(i)):=D(j)

// If all the vertices are in
// rooted stars, then exit
for all vertices i pardo

set star(i):=true
for all vertices i pardo

if (D(i)≠D(D(i))
set star(i),star(D(i)),

star(D(D(i))):=false
for all vertices i pardo

set star(i):=star(D(i))
if (star(i) for all i) break

// Pointer jumping on each vertex
for all i pardo set D(i):=D(D(i))

}

1 2

3

4

5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Linking length

Points in 2D space

Initialization

Edge 3-2

Edge 2-1

Edge 5-4

Pointer jumping

All rooted stars

Reference: An Introduction to Parallel Algorithms, Joseph JáJá, 1992

LA-UR-14-25437

Halo Finder Algorithm: Computing Edges on the Fly
• If we define an edge to exist between two particles if and

only if their distance is less than the linking length, the
connected components solution is the FOF halos

• However, it could take O(n2) time and O(n2) memory to
directly compute and store all edges

• Instead, partition the domain into bins with edge length
equal to the linking length
• Friends can only exist in its own bin or one of 27 neighbor bins
• Compute edges on the fly in the algorithm, comparing each

particle to each other particle in its bin and its neighbor bins to
see which edges exist

• The number of bins (most empty) may be too large to store
pointer to each, so instead store only pointers to neighbor bins
for each particle

• Neighbor bins will be located in 1D vector in groups of three, so
9 not 27 pointers needed to neighbors for each particle

LA-UR-14-25437

Halo Finding: Binning Example

Two vectors are computed, N1 and N2, which contain the beginning and ending of three ranges (nine in 3D) in the
sorted particle vectors for which each particle will need to search for its potential friends.

LA-UR-14-25437

Center Finding Algorithms

• Most connected particle can be found easily by
counting the number of friends for each particle
during any iteration through the virtual edge list,
and then using a max-reduce to find the maximum

• Similarly, an approximation of DB scan can
exclude any particle with too few friends from all
edges

• Most bound particle can be found by computing
the potential for each particle in a highly parallel
brute force approach

• Centers for all halos can be computed
simultaneously using segmented vectors

LA-UR-14-25437

MBP Center Finding Example

The inputs are the particle ids (I), coordinates (X, Y), and halo id (D, found using the halo finding algorithm). The
output is a vector C containing for each particle the id of the MBP center for its halo.

LA-UR-14-25437

Results
Moonlight, Stampede, and Titan

LA-UR-14-25437

Results: Moonlight

FOF + MBP: PISTON ~4.9x faster than original with 16 rpn
FOF + MCP: PISTON ~2.5x faster than original with 16 rpn

LA-UR-14-25437

Results: Visual comparison of halos

Original Algorithm VTK-m Algorithm
LA-UR-14-25437

Results: Xeon Phi (MIC) on Stampede

•To demonstrate the portability of our algorithms, the same code was compiled to the Thrust OpenMP backend
(including our own OpenMP implementation of scan) and run on a 2563 particle data set on an Intel Xeon Phi SE10P
(MIC) Coprocessor on a single node of Stampede at TACC
• PISTON version scales to more cores than running the existing serial algorithms with multiple MPI processes

LA-UR-14-25437

Results: Titan

• This test problem has ~90 million particles per process.
• Due to memory constraints on the GPUs, we utilize a hybrid approach, in which the halos are computed on the
CPU but the centers on the GPU.
• The PISTON MBP center finding algorithm requires much less memory than the halo finding algorithm but provides
the large majority of the speed-up, since MBP center finding takes much longer than FOF halo finding with the
original CPU code.

LA-UR-14-25437

Results: Large Run on Titan

• Because the memory requirements increase with the number of MPI processes due to overload regions, the HACC
simulation with this data can only use one MPI process per node, along with the associated GPU, given the memory
available on Titan.
•Thus, there is an even greater potential for speed-up by utilizing the GPUs.
• The performance improvements using PISTON on GPUs allowed halo analysis to be performed on a very large
81923 particle data set across 16,384 nodes on Titan for which analysis using the existing CPU algorithms was not
feasible.

LA-UR-14-25437

Extensions
In-situ Integration and Poisson Center Finder

LA-UR-14-25437

In-situ Integration in HACC
• Successfully ran 500

time-step, 5123

particle simulation on
Moonlight using our
GPU halo and center
finders integrated
with HACC in-situ

• Integrated with
CosmoTools

LA-UR-14-25437

Extension: Potential Field Algorithm
• Optimization for MBP center finder: for each halo…

• Superimpose a grid over the (extended) extents of the halo
• Estimate particle density on the grid using binning
• Solve Poisson equation for the potential on the grid using FFT

(actually DST for zero boundary conditions approximation)
• Find the grid point with minimum potential
• Search around the neighborhood of the minimum potential grid

for the particle with minimum potential
• Return the position of such particle as the halo center

LA-UR-14-25437

Future Needs
Current Bottlenecks, Expected Trends, and Possible
Hardware and Software Solutions

LA-UR-14-25437

Future Needs: Memory
• Current bottlenecks

• Main memory: 81923 simulation run with only 1 rpn
because number of “ghost” particles increases with total
number of ranks, and even 2 rpn exceeded total system
memory

• GPU memory: Halo finding performed on CPU because
of GPU memory limitations

• Expected future trends
• Growth in computational rates will outpace growth in

memory capacity and bandwidth
• Possible solutions

• Hardware: More memory
• Software: Streaming and external memory algorithms

LA-UR-14-25437

Future Needs: Resiliency

• Current bottlenecks (16k node simulation)
• Node failures on start-up
• Node failures while running

• Expected future trends
• Systems will have more nodes with more cores;

more things that could fail
• Possible solutions

• Hardware: Components with longer MTBF
• Software: Improved checkpointing (perhaps using

burst buffers?); more robust run-time schedulers

LA-UR-14-25437

Future Needs: Portability

• Current bottlenecks
• Simulation code has to be rewritten to run, or at least

to run efficiently, on new architectures
• Some potential optimizations have been foregone

because platform-specific optimizations would inhibit
portability

• Expected future trends
• More types of accelerators will come to market;

individual systems will become more heterogeneous
• Possible solutions

• Hardware: Standardize on an architecture (not likely)
• Software: Write programs using higher-level

abstractions

LA-UR-14-25437

Future Needs: In-Situ
• Due to power and I/O constraints, we expect to need to

perform analysis in-situ rather than in post-processing
• Traditional options: efficient but highly constrained in-

situ, or expensive but highly interactive post-processing
• Recent work explores using image databases to allow

trade-offs in the space between these extremes

Jim Ahrens, Patrick
O’Leary, et. al.

LA-UR-14-25437

