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Background
SDAV, PISTON, VTK-m, Data-Parallel Abstractions, and 
Halo Analysis
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SDAV VTK-m Frameworks
Objective: Enhance existing multi/many-core technologies in 

anticipation of in situ analysis use cases with LCF codes

Benefit to scientists: These frameworks will make it easier for 
domain scientists’ simulation codes to take advantage of the 
parallelism available on a wide range of current and next-
generation hardware architectures, especially with regards 
to visualization and analysis tasks 

Projects
EAVL, Oak Ridge National Laboratory
Dax, Sandia National Laboratory
DIY, Argonne National Laboratory
PISTON, Los Alamos National Laboratory

Work on integrating these projects with VTK is on-going, in 
collaboration with Kitware
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Algorithms for Science Applications Using VTK-m

• The PISTON component of VTK-m focuses on developing 
data-parallel algorithms that are portable across multi-core 
and many-core architectures for use by LCF codes of 
interest

• PISTON consists of a library of visualization and analysis 
algorithms implemented using Thrust, as well as a set of 
extensions to Thrust

• PISTON algorithms are integrated into LCF codes in-situ 
either directly or though integration with ParaView Catalyst

PISTON isosurface with 
curvilinear coordinates

Ocean temperature isosurface
generated across four GPUs using 

distributed PISTON

PISTON integration with VTK 
and ParaView
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Brief Introduction to Data-
Parallelism and Thrust

● Sorts

● Transforms

● Reductions

● Scans

● Binary searches

● Stream compactions

● Scatters / gathers

Challenge: Write operators in terms 
of  these primitives only

Reward:  Efficient, portable code

What algorithms does Thrust provide?
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Halo Analysis
• An important and time-consuming analysis function within HACC is finding 

halos and the centers of those halos 
• HACC is written as an MPI+X code, designed to be easy to port and optimize 

for different architectures  
• It would be very time-consuming to optimize the full cross-product of all 

analysis operators and all architectures
• Data-parallelism, using a framework such as PISTON, allows a single 

implementation of an analysis operator to take advantage of all supported 
architectures

• Total implementation work is O((# of analysis operators) + (# of architectures)) 
rather than O((# of analysis operators) * (# of architectures))

Images of  the matter density field, produced by the HACC simulation on Titan
Image credits: Joe Insley and Silvio Rizzi

LA-UR-14-25437



Definitions
• Friend-of-friends (FOF) halo: connect each particle to all “friends”, i.e., all 

other particles within a specified “linking length” of it; two particles will end 
up in the same “halo” if there exists any chain of “friends” between them

• Most connected particle (MCP) center: the particle within a halo with the 
most “friends”

• Most bound particle (MBP) center: the particle within a halo with the lowest 
potential, where the potential for a given particle is computed as the sum 
over all other particles of the negative of mass divided by distance
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Algorithms
Halo and Center Finding
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Distributed Parallel Halo Finder

• Particles are distributed among processors according 
to a decomposition of the physical space

• Overload zones (where particles are assigned to two 
processors) are defined such that every halo will be 
fully contained within at least one processor

• Each processor finds halos within its domain
• At the end, the parallel halo finder performs a merge 

step to handle “mixed” halos (shared between two 
processors), such that a unique set of halos is reported 
globally

• Developed primarily by Pat Fasel at LANL, with the 
serial halo finder running on each individual processor 
using a KD-tree based algorithm designed by C.H. Hsu 
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Distributed Parallel Halo Finder

• Particles are distributed among processors 
according to a decomposition of the physical space

• Overload zones (where particles are assigned to two 
processors) are defined such that every halo will be 
fully contained within at least one processor

• Each processor finds halos within its domain: Drop 
in PISTON multi-/many-core accelerated algorithms

• At the end, the parallel halo finder performs a merge 
step to handle “mixed” halos (shared between two 
processors), such that a unique set of halos is 
reported globally
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Halo Finder Algorithm: Connected Components
for all vertices i D(i):=i
while (true) {
// Graft trees onto smaller 
// vertices of other trees
for all (i,j)ϵE pardo

if (D(i)=D(D(i)) and D(j)<D(i))
set D(D(i)):=D(j)

// If all the vertices are in 
// rooted stars, then exit
for all vertices i pardo

set star(i):=true
for all vertices i pardo

if (D(i)≠D(D(i)) 
set star(i),star(D(i)),

star(D(D(i))):=false
for all vertices i pardo

set star(i):=star(D(i))
if (star(i) for all i) break

// Pointer jumping on each vertex
for all i pardo set D(i):=D(D(i))

}
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Pointer jumping

All rooted stars

Reference: An Introduction to Parallel Algorithms, Joseph JáJá, 1992
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Halo Finder Algorithm: Computing Edges on the Fly
• If we define an edge to exist between two particles if and 

only if their distance is less than the linking length, the 
connected components solution is the FOF halos

• However, it could take O(n2) time and O(n2) memory to 
directly compute and store all edges

• Instead, partition the domain into bins with edge length 
equal to the linking length
• Friends can only exist in its own bin or one of 27 neighbor bins
• Compute edges on the fly in the algorithm, comparing each 

particle to each other particle in its bin and its neighbor bins to 
see which edges exist

• The number of bins (most empty) may be too large to store 
pointer to each, so instead store only pointers to neighbor bins 
for each particle

• Neighbor bins will be located in 1D vector in groups of three, so 
9 not 27 pointers needed to neighbors for each particle
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Halo Finding: Binning Example

Two vectors are computed, N1 and N2, which contain the beginning and ending of  three ranges (nine in 3D) in the 
sorted particle vectors for which each particle will need to search for its potential friends.
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Center Finding Algorithms

• Most connected particle can be found easily by 
counting the number of friends for each particle 
during any iteration through the virtual edge list, 
and then using a max-reduce to find the maximum

• Similarly, an approximation of DB scan can 
exclude any particle with too few friends from all 
edges 

• Most bound particle can be found by computing 
the potential for each particle in a highly parallel 
brute force approach

• Centers for all halos can be computed 
simultaneously using segmented vectors 
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MBP Center Finding Example

The inputs are the particle ids (I), coordinates (X, Y), and halo id (D, found using the halo finding algorithm). The 
output is a vector C containing for each particle the id of  the MBP center for its halo.
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Results
Moonlight, Stampede, and Titan
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Results: Moonlight

FOF + MBP: PISTON ~4.9x faster than original with 16 rpn
FOF + MCP: PISTON ~2.5x faster than original with 16 rpn
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Results: Visual comparison of halos

Original Algorithm      VTK-m Algorithm
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Results: Xeon Phi (MIC) on Stampede

•To demonstrate the portability of  our algorithms, the same code was compiled to the Thrust OpenMP backend 
(including our own OpenMP implementation of  scan) and run on a 2563 particle data set on an Intel Xeon Phi SE10P 
(MIC) Coprocessor on a single node of  Stampede at TACC
• PISTON version scales to more cores than running the existing serial algorithms with multiple MPI processes
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Results: Titan

• This test problem has ~90 million particles per process.
• Due to memory constraints on the GPUs, we utilize a hybrid approach, in which the halos are computed on the 
CPU but the centers on the GPU. 
• The PISTON MBP center finding algorithm requires much less memory than the halo finding algorithm but provides 
the large majority of  the speed-up, since MBP center finding takes much longer than FOF halo finding with the 
original CPU code.
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Results: Large Run on Titan

• Because the memory requirements increase with the number of  MPI processes due to overload regions, the HACC 
simulation with this data can only use one MPI process per node, along with the associated GPU, given the memory 
available on Titan. 
•Thus, there is an even greater potential for speed-up by utilizing the GPUs.
• The performance improvements using PISTON on GPUs allowed halo analysis to be performed on a very large 
81923 particle data set across 16,384 nodes on Titan for which analysis using the existing CPU algorithms was not 
feasible.
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Extensions
In-situ Integration and Poisson Center Finder
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In-situ Integration in HACC
• Successfully ran 500 

time-step, 5123

particle simulation on 
Moonlight using our 
GPU halo and center 
finders integrated 
with HACC in-situ

• Integrated with 
CosmoTools
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Extension: Potential Field Algorithm
• Optimization for MBP center finder: for each halo…

• Superimpose a grid over the (extended) extents of the halo
• Estimate particle density on the grid using binning
• Solve Poisson equation for the potential on the grid using FFT 

(actually DST for zero boundary conditions approximation)
• Find the grid point with minimum potential
• Search around the neighborhood of the minimum potential grid 

for the particle with minimum potential
• Return the position of such particle as the halo center
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Future Needs
Current Bottlenecks, Expected Trends, and Possible 
Hardware and Software Solutions
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Future Needs: Memory
• Current bottlenecks

• Main memory: 81923 simulation run with only 1 rpn
because number of “ghost” particles increases with total 
number of ranks, and even 2 rpn exceeded total system 
memory

• GPU memory: Halo finding performed on CPU because 
of GPU memory limitations

• Expected future trends
• Growth in computational rates will outpace growth in 

memory capacity and bandwidth 
• Possible solutions

• Hardware: More memory
• Software: Streaming and external memory algorithms
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Future Needs: Resiliency

• Current bottlenecks (16k node simulation)
• Node failures on start-up
• Node failures while running

• Expected future trends
• Systems will have more nodes with more cores; 

more things that could fail
• Possible solutions

• Hardware: Components with longer MTBF
• Software: Improved checkpointing (perhaps using 

burst buffers?); more robust run-time schedulers

LA-UR-14-25437



Future Needs: Portability

• Current bottlenecks
• Simulation code has to be rewritten to run, or at least 

to run efficiently, on new architectures
• Some potential optimizations have been foregone 

because platform-specific optimizations would inhibit 
portability 

• Expected future trends
• More types of accelerators will come to market; 

individual systems will become more heterogeneous
• Possible solutions

• Hardware: Standardize on an architecture (not likely)
• Software: Write programs using higher-level 

abstractions
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Future Needs: In-Situ
• Due to power and I/O constraints, we expect to need to 

perform analysis in-situ rather than in post-processing
• Traditional options: efficient but highly constrained in-

situ, or expensive but highly interactive post-processing
• Recent work explores using image databases to allow 

trade-offs in the space between these extremes  

Jim Ahrens, Patrick 
O’Leary, et. al.
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