New Frontiers in QMC Materials Science

Jaron T. Krogel OLCF Users Meeting 23 July 2014

Outline

R Predictive theory for transition metal oxide systems

R Quantum Monte Carlo

- Overview of capabilities and problem domain
- Representation of the second s

 - Materials: Transition metal oxides

Energy Applications of TM Oxides

 $\overline{\mathbf{x}}$

Li⁺ Solvent C Transition O²⁻ Meng et al. EES 2 589 (2009)

Photovoltaics

Superconductivity

© Mai-Linh Doan GFDL & Creative Commons

Predictive Theory for Materials Science

- Real Constitution Real Oxide materials are essential to energy applications: catalysis, Li-ion batteries, superconductivity, etc.
- Renome Initiative: faster, more accurate predictions

Figure 2: Initiative acceleration of the materials continuum

http://www.whitehouse.gov/mgi

Predictive Theory for Materials Science

- Transition metal oxide materials are essential to energy applications: catalysis, Li-ion batteries, superconductivity, etc.
- Accurate description is challenging for elec. structure methods
 Strong electron correlation
- Density Functional Theory (DFT) may not give the desired level of accuracy, in some cases, w/o empirical adjustment
 Hubbard U parameter in LDA/GGA+U
 - Real Fraction of exact exchange in hybrid functionals (e.g. HSE)

Examples of Empiricism

-8 Ľ

Μ

 \bigcirc 1D cuprate Ca₂CuO₃

Real Band gap of zinc oxide

HSE

н к

A

- Results sensitive to choice of U
- Reperimental J
- Gap depends on exch. fractionAdjusted to match exp. gap, 3.4 eV

Beyond DFT: Quantum Monte Carlo

- Quantum Monte Carlo (QMC) provides an alternative to DFT for target systems
- QMC has recently been successfully applied to transition metal oxide systems
 Cohesive energies of MnO¹, FeO², NiO³
- - \mathbf{c} spin states in cuprates
 - c defects in semiconducting oxides

¹Kolorenc et al. PRB **82** 115108 (2010)
²Kolorenc et al. PRL **101** 185502 (2008)
³Needs et al. IJMPB **17** 5425 (2003)
⁴Mitas et al. RMG **71** 137 (2010)

R Motivation

Real Quantum Monte Carlo

Retch of QMC methodology: what is QMC?

- Overview of capabilities and problem domain
- R Frontiers in QMC Materials Science

 - R Materials: Transition metal oxides
 - Reasurement: Quantities beyond the total energy
 - 😪 Analysis: Big data

Sketch of QMC Methodology QMC directly attacks the many body Schrödinger equation $H\Psi_n = E_n \Psi_n, \quad H = \sum_{i=1}^{n} -\frac{1}{2} \nabla_i^2 + \sum_{i=1}^{n} v_{r_i}^{eI} + \sum_{i=1}^{n} v_{r_i-r_j}^{ee}$ Constrained projection onto ground state $Projection \rightarrow branching random walk$ $E(\Psi_T) \rightarrow$ $|\Psi_T|^2$ Energy (E) t $E(e^{-tH}\Psi_T)$ $\Psi_T \Psi_0$ Imaginary time (t)

 $\begin{array}{l} \textcircled{R} \text{ Essential approximations: Fixed nodes, pseudopotentials} \\ \Psi_T = 0 \\ e^{-tH} \Psi_T = 0 \end{array} \quad v^{eI} \approx \sum_{\ell} |Y_{\ell m}\rangle v_{\ell}^{PP} \langle Y_{\ell m}| \end{array}$

Scope of QMC Calculations

General physics

Can be applied to solids, molecules, van der Waals & strongly correlated materials on equal footing

Real High accuracy

Reprovide predictive accuracy on important systems

Reprovide data to parameterize models for larger systems

🛯 High human time

Controllable approx. take time to minimize for quality

Real High computational cost

 \bigcirc Small systems (100's of atoms), scales like O(N³)

Expanding Domain of Application

- Real High cost moderated by near perfect scaling
- QMC typically performed on light elements
- Advances in computing power have expanded QMC's domain to include challenging materials
- With Titan, QMC can now be applied to transition metal oxides, such as the cuprates

Hard-core bosons, CDC 6600 (1974)

Dense Hydrogen, Origin (2000)

Bulk water, XT5 (2009)

Outline

R Motivation

R Quantum Monte Carlo

R Sketch of QMC methodology: what is QMC?

Reproduction of the second sec

- Materials: Transition metal oxides

Frontier: High-Throughput

- QMC calc.'s have many stages, time consuming
- Created a user system that combines expert knowledge with automation: the Project Suite
- Real Enables high-throughput, complex workflows
- Reduces errors, increases productivity
- Provides natural documentation of exact work performed: greater reproducibility
- Three researchers w/o prior QMC expertise used the Project Suite to produce quality work quickly

Kateryna Foyevtsova

Juan Santana-Palacio

Chandrima Mitra

QMC Glue Collaboration

- QMC Training Program (ANL, summer 2014) used the Project Suite
- QMC Glue is in line with the Materials Genome Initiative

How Accurate is QMC?

Row Bulk modulus for ionic, covalent, metallic, & vdW solids

Material	DMC	Statistical error	LDA	PBE	AM05	HSEsol	vdW-DF2	vdW-optB86b	Experiment
Al	83.35	0.58	81.40	76.50	83.90	85.60	60.10	77.00	82.00
Ar	3.80	0.10	7.10	0.74		0.41	4.90	3.62	3.38
Be	119.28	2.42	136.26	136.30	128.50	130.60	126.50	119.70	121.65
BN	399.34	1.92	394.00	373.00	378.00	413.30	343.80	374.70	410.20
BP	172.85	2.08	171.00	161.70	165.00	178.90	146.32	163.30	168.00
С	450.86	3.54	456.00	433.10	442.00	480.40	395.00	431.00	454.70
Kr	3.90	0.10	6.78	0.63		0.50	4.72	3.71	3.66
LiCl	35.53	0.48	40.40	31.80	30.30	36.30	32.30	34.30	38.70
Li	12.64	0.26	13.70	13.90	13.00	13.30	14.70	13.40	13.90
LiF	74.40	1.47	66.70	67.70	65.80	77.20	68.90	70.20	76.30
SiC	239.61	0.48	224.00	211.50	217.00	237.30	191.00	215.00	229.10
Si	105.95	0.44	93.60	88.30	90.20	101.30	79.60	91.20	100.80
Xe	3.60	0.10	6.17	0.53		0.77	4.22	3.65	3.87
ME	-0.15	0.54	- 1.83	- 10.16	- 8.17	5.89	- 23.71	- 10.56	
MAE	4.53	0.54	5.95	13.09	9.92	6.49	24.84	10.56	
MRE (%)	- 1.10	0.40	- 0.96	- 6.15	-6.22	1.94	-12.31	- 6.30	
MARE (%)	3.94	0.40	4.65	8.55	7.81	4.04	14.26	6.30	
ME (all)	- 0.09	0.42	- 0.70	- 8.54		3.82	- 18.01	- 8.11	
MAE (all)	3.55	0.42	5.28	10.76		5.70	19.34	8.16	
MRE (all) (%)	0.08	0.48	18.86	-23.73		- 18.09	-3.08	- 4.63	
MARE (all) (%)	5.03	0.48	23.18	25.58		22.69	17.35	5.94	

Shulenburger & Mattsson PRB 88 245117 (2013)

Accurate Pseudopotentials

Small (Ne) core PP's[∗] tested for TM's. Expensive, but accurate.

Krogel, Santana, Foyevtsova, Reboredo (in progress)

*Special thanks to H. Dixit for approach to PP generation.

Accurate Pseudopotentials

Small (Ne) core PP's[∗] tested for TM's. Expensive, but accurate.

Krogel, Santana, Foyevtsova, Reboredo (in progress)

*Special thanks to H. Dixit for approach to PP generation.

Frontier: Transition Metal Oxides

valence space must contain many electrons for high-accuracy

Revealed Materials studied

- \bigcirc Ca₂CuO₃: 1-dimensional cuprate, spin states
- \bigcirc Ca₂CuO₂Cl₂: 2-dimensional cuprate, charge excitations
- R ZnO: semiconductor, O vacancy ionization levels

Representative Cuprates

- Important target for accurate calculations are the host materials of high- T_c superconductivity: the cuprates
- Spin d.o.f. may cause attraction between charge carriers
- Red an accurate description of:
 - R Spin excitation spectra
 - R Hole quasiparticle energies

Representative Cuprates

contativa avatama:

Regional Two representative systems:

 \bigcirc Ca₂CuO₃: effectively 1-dimensional, does not superconduct

 \bigcirc Ca₂CuO₂Cl₂: effectively 2-dimensional, superconducting

1D Cuprate: $(Sr/Ca)_2CuO_3$

- Simple structure modeled well by 1D spin chain system
- Rearest neighbor Heisenberg Hamiltonian

$$H = \sum_{\langle ij \rangle} J\vec{S}_i \vec{S}_j$$

 \bigcirc Single parameter: superexchange coupling constant J

1D Cuprate: $(Sr/Ca)_2CuO_3$

Can obtain J from a variety of experimental probes: χ (T), ARPES, INS, NMR (Sr₂CuO₃)

Inelastic Neutron Scattering (INS)

S. Eggert PRB 53 5116 (1996)

A. C. Walters et al. Nat. Phys. 5 867 (2009)

1D Cuprate: $(Sr/Ca)_2CuO_3$

Can obtain J from a variety of experimental probes: $\chi(T)$, ARPES, INS, NMR (Sr₂CuO₃)

Magnetic Susceptibility $\chi(T)$

0.00008 0.000075 0.00007 0.000065 0.000065 0.000065 0.000065 100 200 300 400 500 600 700 800 Temperature (K)

S. Eggert PRB 53 5116 (1996)

Inelastic Neutron Scattering (INS)

Spallation Neutron Source

2D Cuprate: Ca₂CuO₂Cl₂

- \bigcirc CCOC (Ca₂CuO₂Cl₂) superconducts w/ hole doping
- Study hole addition/electron removal in AFM ground state
- RPES experiments directly probe electron removal energies

2D Cuprate: Ca₂CuO₂Cl₂

- Minimize AFM energy in QMC w.r.t. U from LDA+U
 [™]
- Obtain hole-doped CCOC energies at high symm. k-points

Defects in ZnO

- Development of applications has been hindered by undesirable n-type conductivity
- Precise identity of shallow donor is unknown, many candidates: O vacancy, Zn interstitial, H impurity, ...
- Regin w/ QMC study of O vacancy

Santana, **Krogel**, Kim, Kent, Reboredo (submitted to PRL)

Defect Identification: Ionization Levels

 \bowtie Ionization level: μ_e where defect changes charge state

Real Addition Is strongly aided by theory

$${\cal E}(q'/q) = - {E_f(q') - E_f(q) \over q' - q} \ {\cal E}(q'/q)$$
: Ionization level, q to q' $E_f(q)$: Defect formation energy

Defect Identification: Ionization Levels

Defect Identification: Ionization Levels

 \bowtie Ionization level: μ_e where defect changes charge state

Real Addition Is strongly aided by theory

$${\cal E}(q'/q) = - {E_f(q') - E_f(q) \over q' - q} \ {\cal E}(q'/q)$$
: Ionization level, q to q' $E_f(q)$: Defect formation energy

QMC Formation Energies

Reference of the second second

 $E_f[V_O^q] = E[V_O^q] - E[ZnO] + \mu_O + q\mu_e + E_{corr}[V_O^q]$

supercell total energies (QMC)

chemical potentials (QMC)

strain/polarization finite size correction (DFT/Exp.)

 \curvearrowright QMC band gap & chemical potential (μ_e)

¹Reynolds et al. PRB **60** 2340 (1999)

QMC Ionization Levels

 ∞

 \mathfrak{R}

¹Quemener et al. APL **100** 112108 (2012) ²Kim et al. JPCB **114** 7874 (2010) ³Chicot et al. arXiv 1401.6851 (2014) ⁴Vlasenko et al. PRB **71** 125210 (2005) ⁵Quemener et al. APL **99** 112112 (2011)

Computing Resources: Titan at OLCF

Millions of hours

Collaborators for TMO Systems

 \mathfrak{R}

Kateryna Foyevtsova

Elbio Dagotto

Jeongnim Kim Paul Kent

Fernando Reboredo

Juan Santana-Palacio

Reboredo

Summary

- There is a need for predictive electronic structure theory of transition metal oxide systems
 - With world-class computing resources (Titan), QMC can meet this need
- - \bigcirc Superexchange coupling constant, J, for Ca₂CuO₃
 - \bigcirc Charged excitations (holes) in Ca₂CuO₂Cl₂
 - O vacancy in ZnO: band gap, form. energy, ion. levels

Fixed Phase Diffusion Monte Carlo

A many body method with controllable approximations

Many body Hamiltonian

$$H = \sum_{i} -\frac{1}{2}\nabla_{i}^{2} + \sum_{i} v_{r_{i}}^{eI} + \sum_{i < j} v_{r_{i} - r_{j}}^{ee}$$

$$\Psi_T = e^{-J} D^{\uparrow} D^{\downarrow} = |\Psi_T| e^{i\phi_T}$$

Reprojection via diffusion integral w/ fixed phase constraint

$$\Psi_{FP} = \lim_{t \to \infty} \int dR' \langle R|e^{-tH}|R' \rangle \Psi_T(R') = |\Psi_{FP}|e^{i\phi_T}$$

$$E_{FP} = \frac{\langle \Psi_{FP} | H | \Psi_T \rangle}{\langle \Psi_{FP} | \Psi_T \rangle} \ge E_0$$

if $\phi_T = \phi_0$, then $\Psi_{FP} = \Psi_0 \& E_{FP} = E_0$

Computational Details

PW code Quantum Espresso
 LDA+U Slater determinant

K-points

Pseudopotentials
Ne-core Cu & Ca
He-core O

Pseudopotential Validation

- Recurate description of Cu semicore states is crucial

