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Opportunities in Cold-Climate Win

Wind energy production > 285 GW/year and grot

* Cold regions favorable
* Lower human population
* Good wind conditions
« >50 GW opportunity in next decade ~$2million/MW inst

* Technical need
* Anti-icing surfaces

* 3-10% energy losses due to icing
« Shut-downs
* Active heating expensive

imagination at work VTT Technical Research Centre of Finland
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MD to probe freezing on surfaces

Diverse demands
* Large simulations > 1 million molecule drople
* Long simulations > 1 microsecond

* Many simulations > 1000’s independent drog

Need for leadership-class resource
e 40M CPU-h on Jaguar at ORNL (2011)
e 40M CPU/GPU-h on Titan at ORNL (2013)

hybrid
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Billion-fold acceleration in 20 year

Software/Language | # of Molecules

1995 Pascal Desktop M
2000 C, Fortran90 Hundreds IBM SP, SG
2010 NAMD, LAMMPS 1000’s Linux HPC
Present GPU-enabled LAMMPS Millions Titan

1995

2013




Progress in HPC = Progress in MD

Faster processors
More processors
Larger memory
Faster interconnects

Algorithms/Optimization



>1000x% overall speedup since 201

keeping system size and # of nodes 1

1. New water model - 40-50x
2. Dynamic load balancing - 2-3x

3. GPU acceleration - 5x
4. Parallel Replica Method - up to

R “Who can | add to the team?




Overview of LAMMPS

* Popular open-source molecular dynami
code developed by Sandia Nat’l Lab

* Pre-populated with many popular pair-\
and many-body potentials

» One of 6 CAAR (early acceptance)
applications on Titan
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1) New water model - 40-50x

 mW water introduced in 2009; Nature paper
* One 3-body particle =» one water molecule

* Properties comparable/better than existing r
* Much faster than point-charge models

SPC/E on Jaguar(2011) mW on Titan (2013)

imagination at work



mW-surface interaction potential

Interaction potential developed at GE Global Resear
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2) Dynamic load balancing - 2-3x

Sandia developed in 2012; we did some beta-t

Adjusts size of processor sub-domains to equir
number of particles

Up to 2-3x speedup for our production droplet

Needs some user-specified processor mappin

No load balancing Default load balancing User-specified m
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Our production droplets run on 64 node



3) GPU acceleration - 5x

Host Acceleratc
Time integration 3-body potent
Thermostat/barostat Neighbor-list
Bond/angle
calculations
Statistics
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Generic 3-body potential

U—{Z-Z- z .(p(pirpjrpk) rij <7T¢Tik
— L J#i k>j
0

otherwise

Good candidate for GPU

1. Occupies majority of
computational time

2. Can be decomposed
into independent
kernels/work-items

Stillinger-Weber
MEAM

Tersoff 1,= NE
REBO/AIREBO (0.0.0) —
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Stillinger-Weber 3-body potential

U= Z Z ¢, (135) + Z Z Z ¢s (7ijs ik 0

L j<i i j#El k>

2-body operations

3 kernels 3-body operations
Atom i no data > (Tij < Ta) AND. (rik < T'a) :
dependencies update forces on i only

3-body operations
(rij < Ta) AND. (rik < ra) :
neighbor-of-neighbor in
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Neighbor List on GPU

* 3-body force-decomposition approach invol
neighbor-of-neighbor operations

* Requires additional overhead
* increase in border size shared by two processes
* neighbor list for ghost atoms “straddling” across

* GPU not necessarily faster than CPU but les:
spent in host-accelerator data transfer
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4) Parallel Replica Method - up to

Launch N identical replicates simultaneot
varying only the random seed (N ~ large)



Quasi-time-parallelization

N xt

t first droplet freezes ™ avg droplet freezes

* PR method accelerates observation of
rare, exponentially distributed events

* Titan can accommodate up to N= 200

* Can stop entire run after first drop fre:

Fun fact if N = 200

mogneteneter k t last droplet freezes ™ 6xt avg dro



Also - Post-processing and Viz

Big Data - Total 50TB

* 1 million molecules per snapshot
* Dozens of snapshots per file

« 10,000's files

Big Compute - NOT simple search/sort

» Execute three-body calculation again

* Subtle pattern-matching of intra-molecular p«
* Post-processing is a EOS/Rhea job!

Big Visualization - need dedicated viz resol
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Examples

Nucleation Gra

Perturbation

Ya

Matheson, ORNL

Matheson, ORNL

EOS and M. Mathe

Rhea

Thanks to Lens
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Backup



Overview of MD

Atom-by-atom modeling of materials
* N-body problem
* Discrete, numerical integration

Biology, chemistry requires good water mc
* Dozens of potentials available
* Most use pair-wise interactions
« Most non-polarizable/rigid

MD always on the forefront of HPC
imagination at work



Relevant GPU acceleration activity

Pair-wise potentials
 LAMMPS already GPU-enabled

Three-body potentials
* Impressive acceleration... but for crystal soli

Present work

» >5x acceleration demonstrated using LAMM
» Works for liquids, glass, vapor
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Redundant Computation Approac

Atom-decomposition

e 1atom - 1 computational kernel only

o fewest operations (and effective parallelization) but
- shared memory access a bottleneck

Force-decomposition

e 1atom - 3 computational kernels required

e redundant computations but
- reduced shared memory issues
- many work-items = more effective use of cores
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Load 1 million molecules on Host/
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Per node ~ 15,000 molecules
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