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Wind energy production > 285 GW/year and grow

• Cold regions favorable 
• Lower human population 
• Good wind conditions 
• >50 GW opportunity in next decade ~$2million/MW inst

• Technical need 
• Anti-icing surfaces 
• 3-10% energy losses due to icing 
• Shut-downs 
• Active heating expensive 

Opportunities in Cold-Climate Win

VVTT Technical Research Centre of Finland 
http://www.vtt.fi/news/2013/280520
13_wind_energy.jsp?lang=en 



MD to probe freezing on surfaces 
 
Diverse demands 

• Large simulations > 1 million molecule drople

• Long simulations > 1 microsecond 

• Many simulations > 1000’s independent drop
 

Need for leadership-class resource 

• 40M CPU-h on Jaguar at ORNL (2011) 

• 40M CPU/GPU-h on Titan at ORNL (2013) 
hybrid 



Year Software/Language # of Molecules Hardware 

1995 Pascal Few Desktop M

2000 C, Fortran90 Hundreds IBM SP, SG

2010 NAMD, LAMMPS 1000’s Linux HPC

Present GPU-enabled LAMMPS Millions Titan 

Billion-fold acceleration in 20 year

1995 2000 2013 



Progress in HPC = Progress in MD 

• Faster processors 

• More processors 

• Larger memory 

• Faster interconnects 

• Algorithms/Optimization 



>1000x overall speedup since 201
   keeping system size and # of nodes f

 
1. New water model – 40-50x 

2. Dynamic load balancing – 2-3x 

3. GPU acceleration – 5x 

4. Parallel Replica Method – up to 1

“Who can I add to the team?



Overview of LAMMPS 

• Popular open-source molecular dynami
code developed by Sandia Nat’l Lab 

• Pre-populated with many popular pair-w
and many-body potentials 

• One of 6 CAAR (early acceptance) 
applications on Titan 



1) New water model – 40-50x 

• mW water introduced in 2009; Nature paper 
• One 3-body particle  one water molecule 
• Properties comparable/better than existing m
• Much faster than point-charge models 

SPC/E  on Jaguar (2011) mW on Titan (2013) 



mW-surface interaction potential 
 

Interaction potential developed at GE Global Resear



2) Dynamic load balancing – 2-3x 

Sandia developed in 2012; we did some beta-t

Adjusts size of processor sub-domains to equa
number of particles 

Up to 2-3x speedup for our production droplet

Needs some user-specified processor mapping

No load balancing Default load balancing User-specified m

Our production droplets run on 64 node



3) GPU acceleration – 5x 

3-body potent

Neighbor-list

Time integration 

Thermostat/barostat 

Bond/angle 
calculations 

Statistics 

Host Accelerato



Generic 3-body potential 

Good candidate for GPU 
1. Occupies majority of 

computational time 
2. Can be decomposed 

into independent 
kernels/work-items 

(0,0,0) 
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Stillinger-Weber 
MEAM 
Tersoff 
REBO/AIREBO 
Bond-order… 



Stillinger-Weber 3-body potential 

2-body operations 

3-body operations 
(  < )  .AND. (  < ) =
update forces on i only 

3-body operations 
(  < )  .AND. (  < ) =
neighbor-of-neighbor int

3 kernels 
no data 

dependencies 
Atom   



Neighbor List on GPU 

• 3-body force-decomposition approach invol
neighbor-of-neighbor operations 

• Requires additional overhead 
• increase in border size shared by two processes 
• neighbor list for ghost atoms “straddling” across 

• GPU not necessarily faster than CPU but less
spent in host-accelerator data transfer 



4) Parallel Replica Method – up to 

Launch N identical replicates simultaneou
varying only the random seed (N ~ large) 



Quasi-time-parallelization 

• PR method accelerates observation of
rare, exponentially distributed events  

• Titan can accommodate up to N= 200 

• Can stop entire run after first drop free

t first droplet freezes ~ N x t avg droplet freezes

Fun fact if N = 200 
 t last droplet freezes ~ 6 x t avg dro



Also - Post-processing and Viz  

Big Data – Total 50TB 
• 1 million molecules per snapshot 
• Dozens of snapshots per file 
• 10,000’s files 
 
Big Compute – NOT simple search/sort 
• Execute three-body calculation again 
• Subtle pattern-matching of intra-molecular po
• Post-processing is a EOS/Rhea job! 
 
Big Visualization – need dedicated viz resou



Examples 

Perturbation Nucleation Grai

Thanks to Lens, Rhea, EOS and M. Mathes

Matheson, ORNL Matheson, ORNL Yam
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Battelle, LLC. This research was also conducted in part under the auspices of the GE Global Research 
High Performance Computing program. 



Backup 



Atom-by-atom modeling of materials 
• N-body problem 
• Discrete, numerical integration 

Biology, chemistry requires good water mo
• Dozens of potentials available 
• Most use pair-wise interactions 
• Most non-polarizable/rigid 

Overview of MD 

MD always on the forefront of HPC 



Relevant GPU acceleration activity

Pair-wise potentials 
• LAMMPS already GPU-enabled 

Three-body potentials 
• Impressive acceleration… but for crystal solid

Present work  
• >5x acceleration demonstrated using LAMM
• Works for liquids, glass, vapor 



Redundant Computation Approach

Atom-decomposition 
• 1 atom  1 computational kernel only 
• fewest operations (and effective parallelization) but 

– shared memory access a bottleneck 

Force-decomposition 
• 1 atom  3 computational kernels required 
• redundant computations but 

– reduced shared memory issues 
– many work-items = more effective use of cores 

 

  



Load 1 million molecules on Host/C

+ 

+ 

+ 
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1 million mole
• 64 nodes 
• Processor sub

correspond to 
partitioning of

• 8 MPI ta
• 1 core/p



Per node ~ 15,000 molecules 
Accelerato

NVIDIA Tesla K20
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AMD Opteron 6274 CPU 
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Work Group  

Work item = fundamental unit of activity 
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