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Importance of Reducing Aleatory Variability
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ShakeOut Scenario
M7.8 Earthquake on Southern San Andreas Fault

SCEC ShakeOut Simulation

by R. Graves
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Coupling of Directivity and Basin Effects

SE to NW
rupture

NW to SE
rupture

TeraShake simulations of M7.7 earthquake on Southernmost San Andreas
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SCEC Computational Pathways

Empirical Intensity
GMPE Measures

A main goal of SCEC HPC
research is to replace the
del empirical GMPEs with
physics-based ground
motion models
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@ Uniform California Earthquake
Rupture Forecast (UCERF3)

2014 National Seismic Hazard Maps
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Motions

Intensity
Measures
Earthquake Rupture Forecast
TACC Stampede NCSA Blue Waters
UCERF3 = I ——— KFR = Kinematic Fault
. SA-3s, 2% PoE in 50 years Ruptu re

AWP = Anelastic Wave
Propagation

NSR = Nonlinear Site
Response

@ Uniform California Earthquake @ CyberShake 14.2 seismic
Rupture Forecast (UCERF3) hazard model for LA region
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@ Uniform California Earthquake @ CyberShake 14.2 seismic @ Dynamic rupture model of
Rupture Forecast (UCERF3) hazard model for LA region fractal roughness on SAF
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@ Uniform California Earthquake @ CyberShake 14.2 seismic @ Dynamic rupture model of @ Full-3D tombgnapigicapdriel
Rupture Forecast (UCERF3) hazard model for LA region fractal roughness on SAF CVM-S4.26 of S. California
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CVM-54.26
Full-3D tomography model of Southern California crustal structure

CVM-S$4 starting model

26t iterate of a full-3D tomographic (F3DT)
inversion procedure using ~ 550,000 differential
waveform measurements at f < 0.2 Hz

38,000 earthquake seismograms
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’ Examples of CyberShake Rupture Models
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CyberShake Hazard Model
e 3D crustal model:
— CVM-S4.26
o Sites.:
— 283 sites in the greater Los Angeles region

 Ruptures:
— All UCERF2 ruptures within 200 km of site (~14,900)

 Rupture variations:
— ~415,000 per site using Graves-Pitarka pseudo-dynamic rupture model

» Seismograms: &,
— ~235 million per model LA region
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Comparison of 1D and 3D CyberShake Models
for the Los Angeles Region
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CyberShake Platform: Physics-Based PSHA

2. Hazard curves

3. Hazard
disaggregation
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Visualization Of Deterministic High-Frequency

Ground Motions From Simulations Of Dynamic

Rupture Along Rough Faults With And Without
Medium Heterogeneity Using Petascale

Heterogeneous Supercomputers
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rough fault, ~dependent Q, near-surface heterogeneity
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Spectral Acceleration (

Southern California

. Earthquake Center
01/17/94 Northridge Earthquake (M6.7)
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Inference Spiral of System Science

« Earthquake system science requires an iterative, computationally intense process of
model formulation and verification, simulation-based predictions, validation against
observations, and data assimilation to improve the model

- reductionistic
- analysis

™
e
\
Data Assimi@

model
formulation

batter theory

Verification

more computation ore computation

Validation

constructionistic e
synthesis -

 As models become more complex and new data bring in more information, we
require ever increasing computational resources
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Basin Structures
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03/28/14 La Habra Earthquake (M5.1)

Station SDD
Observed in black
Synthetic in red

CS11: CVM-54 CS14.2: CVM-54.26 CS13.4: CVM-H11.9
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03/28/14 La Habra Earthquake (M5.1)
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03/28/14 La Habra Earthquake (M5.1)
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March 2014 La Habra sequence
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Workflow for High-F Validation Experiments

Southern California
Earthquake Center

Validation experiments involved 3 SCEC software
platforms (BBP, UCVM, High-F) running on multiple
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/ 03/18/14 La Habra Earthquake (M5.1)
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/ 03/18/14 La Habra Earthquake (M5.1)

Velocity (cm/s) Fourier Spectra (cm) Response Spectra (cm) Station CIL.PDE (NS)
y " 0.4 0.8
0.05 03 0.6
CVM-54.26
Extended 0 0.2 04 P %
Fault
0.1 0.2
-0.05
7. 75 //‘\’(-—‘—W
0 0
0.8 1
0.1
0.6
CVM-S4 0.05 i
Extended 0 0.4 0.5 Synthetics
Fault
6.16 -0
0 0
08 3
0.6
CVM-S4.26 2
Point 04
Source 1
0.2
4.02
0 0
1 4
3
CVM-S4
Point 05 2
Source
1
3.55 , , , 0 0= :
40 60 80 0 05 1 10° 10 10
Time (s) Frequency (Hz) Period (s)



S

CVM-S4

CVM-S4.26

/)

JEC
03/18/14 La Habra Earthquake (M5.1)
Velocity Point Source Extended Source

Model GOF GOF

T E—

200 250 300 400 500 750 1000 2000 3000 4000

100 m depth Vs (m/s) Goodness-of-fit score Goodness-of-fit score



/ outhern California
S C/E’ C . ‘S;E'a:tl;tquaielcj;nter
Conclusions

* Full-scale 3D simulations of large earthquakes have been run on Titan at
seismic frequencies up to f= 8 Hz

— AWP-ODC-GPU code has achieved sustained speeds of 2.3 Pflop/s

« Simulation codes have been developed to model new physical aspects of
high-frequency wave excitation and propagation:

— Source effects: rough-fault ruptures and near-source plasticity
— Propagation effects: frequency-dependent attenuation
— Site effects: near-surface heterogeneities and nonlinearities

« Simulations have been validated against data and GMPEs at /> 1 Hz
— CVM-$84.26 accurately predicts low-frequency waveforms
— Near-source and near-surface plasticity reduces strong-motion amplitudes

— Frequency-dependent attenuation of the form Q ~ 7, where y = 0.6-0.8, fits the
amplitude decay with distance for f>1 Hz

— Rough-fault ruptures and near-surface heterogeneities increase wavefield
complexity, consistent with the observed spatial decorrelation of strong motions

 We are now extending the CyberShake hazard model to higher frequencies
— First 1-Hz CyberShake simulations have been computed on Titan
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Importance of Reducing Aleatory Variability
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NGA(2014)-CyberShake Hazard Curve Comparisons

3s Response Spectral Acceleration at LADT
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SCEC CS14.2 study on Blue &
Waters (Feb 2014), 0.5 Hz -

— Turnaround: 342 hours
— XEG6/XK7 nodes: 1620

deterministic, 2 components i 5414 Cs study on Titan

» 1.0 Hz
deterministic,3 components

(49,280 cores)
— Jobs submitted: 31,463
— Number of tasks: 470 M
— Storage: 57 TB

— Allocation hours: 16 M
(CPUs + GPUs)

Lol T,

The statewide CyberShake
hazard model will comprise 1.8
billion seismograms

— Turnaround: 2 days

— XK7 nodes: 13,500

— Sustained PFLOP/s: 2.07
— Jobs submitted: 34,263

&
|
a _‘.

2015 CS study on Titan,
1.5 Hz deterministic + 10 Hz
stochastic, 3 components

— Number of tasks: 575 M
— Storage: 2 PB

— Allocation hours: 20 M
(GPUs) + 220 M (CPUs)

WSUh SRS ENE- L S ¥

NOAA, K U.S. Navy, NGA, GEBCO
©»2012 Google

Image © 2012 TerraMetrics

© 2012 INEGI

Turnaround: 16 days
XK7 nodes: 17,400
Sustained PFLOP: 2.67
Jobs submitted: 51,000
Number of tasks: 1.73 B
Storage: 8 PB

Allocation hours: 160 M
(GPUs) + free CPUs
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SCEC Computational Requirements

Southern California
Earthquake Center

Expressed as outer/inner scale ratio at fixed time-to-solution

Table 1. The outer/inner scale ratio (in blue) of SCEC computational requirements for HPC runs

Platform Current Intermediate Target Solution Span
4-Hz Chino Hills 4-Hz ShakeOut 8-Hz ShakeQut
High-F 100K steps 200K steps 400K steps <24 hrs
1.2 x10"° 3.0 x10" 4.8 x10%
0.5-Hz 1-Hz 2-Hz
CyberShake 20K steps, 2,300 runs. 40K steps, 4,200 runs. 80K steps, 4,200 runs. < 2 weeks
5.61 x10"° 1.65 x10" 2.64 x10"
20 m along-fault 2.5 m along-fault 1.0 m along-fault
DynaShake 30K steps, 20 runs 100K steps, 100 runs 350K steps, 50 runs <24 hrs
1.1 x10"° 2.0 x10" 5.0 x10%
0.2-Hz, SoCal data 1-Hz, AliCal data 2-Hz, AllCal data
F3DT 6K steps,17Kruns 57K steps, 35K runs 113K steps, 35K runs <9 days

1.7 x10'® 5.2 x10" 8.1x10%
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SCEC needs extreme-scale computing...
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Conclusions

 Much of the aleatory variability in the forecasting of earthquake ground
motions is due to 3D variations in crustal structure

— Observed variability can be modeled by simulating seismic wave propagation
through realistic 3D structures

 Large ensembles of simulations are needed for physics-based PSHA

— Now feasible using seismic reciprocity, highly optimized anelastic wave
propagation codes, and automated workflow management systems

* Frequency range of earthquake simulations has been extended above 1 Hz
on Titan

— Models now include rough-fault ruptures, near-source plasticity, frequency-
dependent attenuation, near-surface heterogeneities, and near-surface
nonlinearities

— Models are being validated against available earthquake data and GMPEs

 More accurate earthquake simulations have the potential for reducing the
residual variance of the ground motion predictions by ~2x

— Will lower exceedance probabilities by >10x at high hazard levels
— Practical ramifications for risk-reduction strategies are substantial
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SCEC INCITE Goals & Accomplishments

1. Develop and optimize GPU-based high performance wave propagation codes
e Used Titan to improve AWP-GPU code I/O capabilities to support large-scale earthquake
simulations (Y. Cui, K. Olsen)
e Used Titan to improve scalability of Hercules-GPU code improvements (P. Small, R. Taborda)
2. Improve CVMs used in 3D wave propagation
 Used Mira to develop CVM-S4.26 using full 3D tomography (P. Chen, E. Lee)
3. Create input velocity models for use in wave propagation simulations
» Used Titan to create Hercules eTree velocity model based on BBP 1D model using UCVM (D. Gill,
R. Taborda, P. Small)
4. Validate wave propagation models and codes by comparison to observations
e Used Titan to simulated La Habra 1Hz (Hercules) using a point source, and a Broadband Platform
generated extended source, using CVM-S4 and CVM-S4.26 (R. Taborda, P. Small, J. Bielak)
5. Investigate impact of 3D models in broadband simulations
» Used Titan to simulated Chino Hills 1Hz using a broadband platform using a point source, an
extended source, with BBP 1D model and with CVM-S4.26 model and integrated low frequency
seismograms into BBP validation tests. (R. Taborda, P. Small, F. Silva, D. Gill)
6. Investigate high frequency simulations in simple velocity models
» Used Kraken to simulate rough fault dynamic rupture (S. Shi, K. Olsen, S. Day)
e Used Titan to simulated 10Hz wave propagation with 1D model with and without small scale
heterogeneities (Y. Cui, K. Olsen)
7. Investigate ground motion attenuation at high frequencies
e Used Titan to run Chino Hills simulation up to 5Hz with alternative velocity models and attenuation
models (K. Olsen, K. Withers)
8. Calculate 1Hz probabilistic seismic hazard curves using Titan
e Used Titan to Integrate CVM-S4.26, UCVM, and AWP-GPU codes to perform our first 1Hz
CyberShake PSHA hazard calculations. (S. Callaghan, Y. Cui, R. Graves, K. Olsen, D. Gill, E.
Poyraz)
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SCEC Computational Plan 2015-2016
Research and Science Lead Milestone Description Code # of Sim |SU/Sim |[Titan Sus |Titan Mira Sus|Mira Data
Activity Area (mill.) (mill.) Data (TB) |(Mill.) (TB)
G1 Tomography Velocity |Chen 0.2 Hz regional inversions for southern AWP-ODC 20 2.40 48.00 129.00
Models and northern California velocity models
G2 Material Olsen 2 Hz regional simulations for CVM with  |AWP-ODC 8 1.60 12.80 120.00
Heterogeneities small-scale stochastic material GPU
Wave Propagation perturbations
G3 Structural Bielak, Taborda 4 Hz scenario and validation simulations. |Hercules- 10 0.75 7.50 6.00
representation and Use of different velocity models and GPU
wave propagation attenuation (Q) models, including
frequency dependent Q and near surface
nonlinear behavior.
G4 CyberShake PSHA Jordan 1.0Hz CyberShake Hazard map at 1.0Hz |AWP-ODC 300 0.33 99.00 10.00
500m/s Min Vs, output 3 components GPU
using 10 billion elements, 40k timesteps
Year1 119.30| 136.00 48.00 129.00
Totals
G5 Tomography Chen 0.5 Hz regional inversions for southern AWP-ODC 5 19.00 95.00| 441.00
Velocity Models and northern California velocity models
G6 Attenuation and Olsen, Day 10 Hz simulations integrating rupture AWP-ODC 5 3.80 19.00f 190.00
Source dynamic results and wave propagation GPU
Wave Propagation simulator
G7 Structural Taborda, Bielak 8 Hz scenario and validation simulations. |Hercules- 5 10.00 20.00 5.00
representation and Integration of frequency dependent Q, GPU
wave propagation topography, and nonlinear wave
propagation
G8 CyberShake PSHA Jordan 1.5 Hz CyberShake Hazard map with 250 [AWP-ODC 200 0.66 132.00 15.00
m/s Min Vs, output 3 components using [GPU
83.3 billion elements, 80K timesteps
Year 2 171.00 210.00 95.00 441.00
Two year 290.3 346.0 143.0 570.0
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Persistence of 1 in Empirical GMPE Studies
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Prediction Problems of Earthquake System Science
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Prediction Problems of Earthquake System Science

Low probability —> High probability
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