SC/EC

High-Frequency, Physics-Based Simulations for Earthquake System Science

Thomas H. Jordan [1],

Y. Cui [2], K. Olsen [3], R. Taborda [4], J. Bielak [5], P. Small [1],
E. Poyraz [2], J. Zhou [2], P. Chen [6], E.-J. Lee [1], S. Callaghan [1],
R. Graves [7], P. J. Maechling [1], D. Gill [1], K. Milner [1], F. Silva [1], S. Day [3], K. Withers [3], W. Savran [3], Z. Shi [3], M. Norman [8], H. Finkel [9], G.
Juve [10], K. Vahi [10], E. Deelman [10], H. Karaoglu [5], Y. Isbiliroglu [11], D.
Restrepo [12], L. Ramirez-Guzman [13]

[1] Southern California Earthquake Center, [2] San Diego Supercomputer Center, [3] San Diego State Univ., [4] Univ. Memphis, [5] Carnegie Mellon Univ., [6] Univ. Wyoming, [7] U.S. Geological Survey, [8] Oak Ridge Leadership Computing Facility, [9] Argonne Leadership Computing Facility, [10] Information Science Institute, [11] Paul C. Rizzo Associates, Inc., [12] Universidad Eafit, [13] National Univ. Mexico

OLCF Symposium, 22 July 2014

SC/EC

 $P(S_k)$ $P(Y_n | S_k)$ $P(Y_n)$

SC/EC

SC/EC

Importance of Reducing Aleatory Variability

ShakeOut Scenario M7.8 Earthquake on Southern San Andreas Fault

Coupling of Directivity and Basin Effects

TeraShake simulations of M7.7 earthquake on Southernmost San Andreas

Uniform California Earthquake Rupture Forecast (UCERF3) 2014 National Seismic Hazard Maps

TACC Stampede

) Uniform California Earthquake Rupture Forecast (UCERF3) **NCSA Blue Waters**

CyberShake 14.2 seismic hazard model for LA region KFR = Kinematic Fault Rupture AWP = Anelastic Wave Propagation NSR = Nonlinear Site Response DFR = Dynamic Fault Rupture

F3DT = Full-3D Tomography

TACC Stampede

 Uniform California Earthquake Rupture Forecast (UCERF3) NCSA Blue Waters

hazard model for LA region

3 Dynamic rupture model of fractal roughness on SAF

KFR = Kinematic Fault Rupture

- AWP = Anelastic Wave Propagation
- NSR = Nonlinear Site Response
- DFR = Dynamic Fault Rupture

F3DT = Full-3D Tomography

TACC Stampede

 Uniform California Earthquake Rupture Forecast (UCERF3) NCSA Blue Waters

hazard model for LA region

OLCF Titan

3 Dynamic rupture model of fractal roughness on SAF

- KFR = Kinematic Fault Rupture
- AWP = Anelastic Wave Propagation
- NSR = Nonlinear Site Response
- DFR = Dynamic Fault Rupture

F3DT = Full-3D Tomography

 Uniform California Earthquake Rupture Forecast (UCERF3)

NCSA Blue Waters

2 CyberShake 14.2 seismic hazard model for LA region

OLCF Titan

(3) Dynamic rupture model of fractal roughness on SAF

ALCF Mira

KFR ±

3D1

- 3.75 - 3.50

- 3.25 - 3.00

2.75

(4)

Kinematic Fault

Rupture

AWP = Anelastic Wave Propagation

NSR > Nonlinear Site

DFR = Dynamic Fault

= Full=3D

Full-3D tom bona plot capable

CVM-S4.26 of S. California

Rupture

Response

SC/EC

CVM-S4.26

Full-3D tomography model of Southern California crustal structure

SC/EC

Examples of CyberShake Rupture Models

SC/EC

CyberShake Hazard Model

- 3D crustal model:
 - CVM-S4.26
- Sites:
 - 283 sites in the greater Los Angeles region
- Ruptures:
 - All UCERF2 ruptures within 200 km of site (~14,900)
- Rupture variations:
 - ~415,000 per site using Graves-Pitarka pseudo-dynamic rupture model
- Seismograms:
 - ~235 million per model

Comparison of 1D and 3D CyberShake Models for the Los Angeles Region

SC/EC

CyberShake Hazard Map, 3sec SA, 2% in 50 yrs

- 1. lower near-fault intensities due to 3D scattering
- 2. much higher intensities in near-fault basins
- 3. higher intensities in the Los Angeles basins
- 4. lower intensities in hard-rock areas

CyberShake Platform: Physics-Based PSHA

SC/EC

SC/EC

AWP-ODC Titan Runs

rough fault, *f*-dependent Q, near-surface heterogeneity

Visualization Of Deterministic High-Frequency Ground Motions From Simulations Of Dynamic Rupture Along Rough Faults With And Without Medium Heterogeneity Using Petascale Heterogeneous Supercomputers

AWP-ODC Titan Runs

rough fault, *f*-dependent Q, near-surface heterogeneity

Image Credit: Kim Olsen, Yifeng Cui, Amit Chourasia

Southern California

Earthquake Center

AWP-ODC Titan Runs

rough fault, *f*-dependent *Q*, near-surface heterogeneity

Southern California

Earthquake Center

01/17/94 Northridge Earthquake (M6.7)

rough fault, f-dependent Q, near-surface heterogeneity

SC/EC

Inference Spiral of System Science

 Earthquake system science requires an iterative, computationally intense process of model formulation and verification, simulation-based predictions, validation against observations, and data assimilation to improve the model

• As models become more complex and new data bring in more information, we require ever increasing computational resources

SC/EC

Basin Structures

 Z_{2500} : iso-velocity surfaces at $V_{\rm S} = 2.5$ km/s

03/28/14 La Habra Earthquake (M5.1)

03/28/14 La Habra Earthquake (M5.1)

03/28/14 La Habra Earthquake (M5.1)

SCEC Community Fault Model (CFM) Locations from: Hauksson et al., 2014 Focal mechanisms from http://pasadena.wr.usgs.gov/recentegs/QuakeAddons/

Plesch, Shaw, Hauksson, 4/1/14

Workflow for High-F Validation Experiments

SC/EC

03/18/14 La Habra Earthquake (M5.1)

SC/EC

03/18/14 La Habra Earthquake (M5.1)

Southern California Earthquake Center

03/18/14 La Habra Earthquake (M5.1)

100 m depth Vs (m/s)

Goodness-of-fit score

Goodness-of-fit score

SC/EC

Conclusions

- Full-scale 3D simulations of large earthquakes have been run on *Titan* at seismic frequencies up to *f* = 8 Hz
 - AWP-ODC-GPU code has achieved sustained speeds of 2.3 Pflop/s
- Simulation codes have been developed to model new physical aspects of high-frequency wave excitation and propagation:
 - Source effects: rough-fault ruptures and near-source plasticity
 - *Propagation effects*: frequency-dependent attenuation
 - Site effects: near-surface heterogeneities and nonlinearities
- Simulations have been validated against data and GMPEs at f > 1 Hz
 - CVM-S4.26 accurately predicts low-frequency waveforms
 - Near-source and near-surface plasticity reduces strong-motion amplitudes
 - Frequency-dependent attenuation of the form $Q \sim f^{\gamma}$, where $\gamma = 0.6-0.8$, fits the amplitude decay with distance for f > 1 Hz
 - Rough-fault ruptures and near-surface heterogeneities increase wavefield complexity, consistent with the observed spatial decorrelation of strong motions
- We are now extending the CyberShake hazard model to higher frequencies
 - First 1-Hz CyberShake simulations have been computed on *Titan*

Variance Analysis of CyberShake Residuals Using Averaging-Based Factorization

Importance of Reducing Aleatory Variability

NGA(2014)-CyberShake Hazard Curve Comparisons

Site SBSM (San Bernardino)

Statewide CyberShake Hazard Model

Computational requirements for 1400 sites across California

SCEC CS14.2 study on Blue Waters (Feb 2014), 0.5 Hz deterministic, 2 components

- Turnaround: 342 hours
- XE6/XK7 nodes: 1620 (49,280 cores)
- Jobs submitted: 31,463
- Number of tasks: 470 M
- Storage: 57 TB
- Allocation hours: 16 M (CPUs + GPUs)

2014 CS study on Titan, 1.0 Hz deterministic,3 components

- Turnaround: 2 days
- XK7 nodes: 13,500
- Sustained PFLOP/s: 2.07
- Jobs submitted: 34,263
- Number of tasks: 575 M
- Storage: 2 PB
- Allocation hours: 20 M (GPUs) + 220 M (CPUs)

The statewide CyberShake hazard model will comprise 1.8 billion seismograms

NOAA, U.S. Navy, NGA, GEBCO © 2012 Google Image © 2012 TerraMetrics © 2012 INEGI 2015 CS study on Titan, 1.5 Hz deterministic + 10 Hz stochastic, 3 components

- Turnaround: 16 days
- XK7 nodes: 17,400
- Sustained PFLOP: 2.67
- Jobs submitted: 51,000
- Number of tasks: 1.73 B
- Storage: 8 PB
- Allocation hours: 160 M (GPUs) + free CPUs

SCEC Computational Requirements

Expressed as outer/inner scale ratio at fixed time-to-solution

Table 1. The outer/inner scale ratio (in blue) of SCEC computational requirements for HPC runs

Platform	Current	Intermediate	Intermediate Target			
	4-Hz Chino Hills	4-Hz ShakeOut	8-Hz ShakeOut			
High-F	100K steps	200K steps	400K steps	< 24 hrs		
	1.2 ×10 ¹⁸	3.0 ×10 ¹⁹	4.8 ×10 ²⁰			
CyberShake	0.5-Hz	1-Hz	2-Hz			
	20K steps, 2,300 runs. 5.61 ×10 ¹⁶	40K steps, 4,200 runs. 1.65 ×10 ¹⁸	80K steps, 4,200 runs. 2.64 ×10 ¹⁹	< 2 weeks		
	20 m along-fault	2.5 m along-fault	1.0 m along-fault	< 24 hrs		
DynaShake	30K steps, 20 runs 1.1 ×10 ¹⁶	100K steps, 100 runs 2.0 ×10 ¹⁹	350K steps, 50 runs 5.0 ×10 ²⁰			
F3DT	0.2-Hz, SoCal data	1-Hz, AllCal data	2-Hz, AllCal data			
	6K steps,17K runs 1.7 ×10 ¹⁶	57K steps, 35K runs 5.2 ×10¹⁹	113K steps, 35K runs 8.1×10 ²⁰	< 9 days		

SCEC needs extreme-scale computing...

SC/EC

Conclusions

- Much of the aleatory variability in the forecasting of earthquake ground motions is due to 3D variations in crustal structure
 - Observed variability can be modeled by simulating seismic wave propagation through realistic 3D structures
- Large ensembles of simulations are needed for physics-based PSHA
 - Now feasible using seismic reciprocity, highly optimized anelastic wave propagation codes, and automated workflow management systems
- Frequency range of earthquake simulations has been extended above 1 Hz on *Titan*
 - Models now include rough-fault ruptures, near-source plasticity, frequencydependent attenuation, near-surface heterogeneities, and near-surface nonlinearities
 - Models are being validated against available earthquake data and GMPEs
- More accurate earthquake simulations have the potential for reducing the residual variance of the ground motion predictions by ~2x
 - Will lower exceedance probabilities by >10x at high hazard levels
 - Practical ramifications for risk-reduction strategies are substantial

Southern California Earthquake Center

Thank you!

SC/EC

SCEC INCITE Goals & Accomplishments

- 1. Develop and optimize GPU-based high performance wave propagation codes
 - Used Titan to improve AWP-GPU code I/O capabilities to support large-scale earthquake simulations (Y. Cui, K. Olsen)
 - Used Titan to improve scalability of Hercules-GPU code improvements (P. Small, R. Taborda)
- 2. Improve CVMs used in 3D wave propagation
 - Used Mira to develop CVM-S4.26 using full 3D tomography (P. Chen, E. Lee)
- 3. Create input velocity models for use in wave propagation simulations
 - Used Titan to create Hercules eTree velocity model based on BBP 1D model using UCVM (D. Gill, R. Taborda, P. Small)
- 4. Validate wave propagation models and codes by comparison to observations
 - Used Titan to simulated La Habra 1Hz (Hercules) using a point source, and a Broadband Platform generated extended source, using CVM-S4 and CVM-S4.26 (R. Taborda, P. Small, J. Bielak)
- 5. Investigate impact of 3D models in broadband simulations
 - Used Titan to simulated Chino Hills 1Hz using a broadband platform using a point source, an extended source, with BBP 1D model and with CVM-S4.26 model and integrated low frequency seismograms into BBP validation tests. (R. Taborda, P. Small, F. Silva, D. Gill)
- 6. Investigate high frequency simulations in simple velocity models
 - Used Kraken to simulate rough fault dynamic rupture (S. Shi, K. Olsen, S. Day)
 - Used Titan to simulated 10Hz wave propagation with 1D model with and without small scale heterogeneities (Y. Cui, K. Olsen)
- 7. Investigate ground motion attenuation at high frequencies
 - Used Titan to run Chino Hills simulation up to 5Hz with alternative velocity models and attenuation models (K. Olsen, K. Withers)
- 8. Calculate 1Hz probabilistic seismic hazard curves using Titan
 - Used Titan to Integrate CVM-S4.26, UCVM, and AWP-GPU codes to perform our first 1Hz CyberShake PSHA hazard calculations. (S. Callaghan, Y. Cui, R. Graves, K. Olsen, D. Gill, E. Poyraz)

SC/EC

SCEC Computational Plan 2015-2016

	Research and	Science Lead	Milestone Description	Code	# of Sim	SU/Sim	Titan Sus	Titan	Mira Sus	Mira Data
	Activity Area					(mill.)	(mill.)	Data (TB)	(Mill.)	(ТВ)
G1	Tomography Velocity Models	Chen	0.2 Hz regional inversions for southern and northern California velocity models	AWP-ODC	20	2.40			48.00	129.00
G2	Material Heterogeneities Wave Propagation	Olsen	2 Hz regional simulations for CVM with small-scale stochastic material perturbations	AWP-ODC GPU	- 8	1.60	12.80	120.00		
G3	Structural representation and wave propagation	Bielak, Taborda	4 Hz scenario and validation simulations. Use of different velocity models and attenuation (Q) models, including frequency dependent Q and near surface nonlinear behavior.	Hercules- GPU	10	0.75	7.50	6.00		
G4	CyberShake PSHA	Jordan	1.0Hz CyberShake Hazard map at 1.0Hz 500m/s Min Vs, output 3 components using 10 billion elements, 40k timesteps	AWP-ODC GPU	300	0.33	99.00	10.00		
Year 1 Totals							119.30	136.00	48.00	129.00
G5	Tomography Velocity Models	Chen	0.5 Hz regional inversions for southern and northern California velocity models	AWP-ODC	5	19.00			95.00	441.00
G6	Attenuation and Source Wave Propagation	Olsen, Day	10 Hz simulations integrating rupture dynamic results and wave propagation simulator	AWP-ODC GPU	. 5	3.80	19.00	190.00		
G7	Structural representation and wave propagation	Taborda, Bielak	8 Hz scenario and validation simulations. Integration of frequency dependent Q, topography, and nonlinear wave propagation	Hercules- GPU	5	10.00	20.00	5.00		
G8	CyberShake PSHA	Jordan	1.5 Hz CyberShake Hazard map with 250 m/s Min Vs, output 3 components using 83.3 billion elements, 80K timesteps	AWP-ODC GPU	200	0.66	132.00	15.00		
Year 2							171.00	210.00	95.00	441.00
Two year							290.3	346.0	143.0	570.0

SC/EC

Persistence of σ_{T} in Empirical GMPE Studies

Prediction Problems of Earthquake System Science

Prediction Problems of Earthquake System Science

