
ORNL is managed by UT-Battelle
for the US Department of Energy

Enabling
Technologies for
XGC1 Simulation

E. D’Azevedo (e6d@ornl.gov)
Oak Ridge National Laboratory

OLCF Users Meeting, July
22-24, 2014

2 Presentation_name

EPSI Team
•  SciDAC-3 Center for Edge Physics Simulation
•  Physics Team:

–  PPPL (C. S. Chang, S-H. Ku, J. Lang, R. Hager, S. Ethier)
–  University of Colorado (S. Parker)
–  Lehigh University (A. Kritz)
– MIT (M. Greenwald, L. Sugiyama)
–  UC San Diego (G. Tynan)

•  Collaboration with SciDAC Institutes:
–  SUPER (P. Worley, E. D’Azevedo),
–  FASTMath (M. Shephard, M. Adams),
–  SDAV (S. Klasky, M. Parashar),
– QUEST (R. Moser)

3 Presentation_name

Outline

• Background on the computational characteristics of

XGC1
• Computational challenges in using leadership

computing resources
• Future challenges

–  Software and performance portability
–  Balancing computation load

4 Presentation_name

Particle-in-cell Method

• Particles are used to represent high dimensional
distribution function

• Charged particle interact via a potential computed on
a background grid

• PIC steps:
–  Deposit charges on grid
–  Solve elliptic equation to obtain electro-magnetic potential
–  Push particle to follow trajectories using forces computed

from background potential
–  Account for collision and boundary effects on velocity grid

f (x, v, t)

5 Presentation_name

XGC1

•  “Full-f” kinetic simulation to model
edge plasma

• Complicated edge geometry and
separatrix demands unstructured
triangular grid

• Considers ion, electron, and neutral
particles

• Nonlinear Fokker-Planck-Landau
collision operator

• Multi-scale physics and transport,
option to couple to simplified model
(XGCa) in whole tokamak volume

6 Presentation_name

XGC1 – domain decomposition
• Torus divided by computational planes
• Multiple MPI tasks may share a toroidal section
•  Identical unstructured triangular mesh in each plane,

mesh vertices obtained by following magnetic field
lines. Upgraded mesh generator provided by
FASTMath greatly reduced the time to generate large
meshes (from hours to minutes)

• Mesh used for charge deposition and FEM
discretization in Poisson solver

• Sparse linear system solved by PETSc, work
increases with grid resolution (independent 2D solves
with finite difference across planes)

7 Presentation_name

XGC1 – charge deposition

• Need to avoid race condition or memory “collision”
in updating grid data when using multiple threads

• Locks may be expensive
• Replicate grid data when using small number of

threads, costly in memory use
• GPU device has thousands of threads, use atomic

operations on replicated arrays

8 Presentation_name

XGC1
• Option to periodically sort particles by geometric

hashing/bining to improve locality and data
reuse. However, sorting and data rearrangement
is also expensive.

• Parallel I/O, checkpoint and restart facilitated by
ADIOS

•  Option of plane major ordering to
map MPI tasks to compute
nodes. Current work with
SUPER to consider
communication pattern and
network topology in assigning
MPI tasks to compute nodes

Matrix of communication volume

9 Presentation_name

XGC1 – particle push
•  Follow independent trajectories of particles (initial value

ODE)
•  About 10,000 particles per cell -> tens of billions of

particles
•  Push kernel accounts for significant (~ 80%) of time, work

scales by number of particles
•  Pass off work of pushing ion particles to neighbor domain.
•  Electrons have lighter mass than ions – thus has higher

velocity – traverse more domains
• Replicate field information on all processors, then push

electron particles without frequent communication (on
GPU)

10 Presentation_name

XGC1 – particle push (2)

11 Presentation_name

XGC1 – particle push (3)

• Electron push performed on both GPU and CPU.
Ratio determined by input (~70% work to GPU) on
Titan, to balance work load between CPU and GPU

• Electron particles may traverse ~1/2 of device in
one ion time step (electron subcycling)

• Replicating field data is expensive in communication
cost and in device memory

• Option to replicate potential and recompute electric
field (gradient of potential) as needed. Trade-off
memory vs computation

•  Ideally, organize data on host but device can access
host data in unified manner

12 Presentation_name

Software and performance portability

• Variety of hybrid architectures:
–  Effective use of multi-core CPU (64 threads on Mira)

using nested OpenMP
–  Thread-safe library and solver (pspline, PETSc)
–  Partition work on both GPU and CPUs

• But:
–  need PGI CUDA Fortran
–  Port separate version of PETSc and pspline
–  Software challenge in maintaining two versions of similar

codes (for CPU and GPU)

13 Presentation_name

PGI CUDA Fortran

• Write CUDA code in Fortran, add attributes(device),
attributes(global)

• Allow deeply nested subroutines (in same module)
• One way to port Fortran code to GPU
• Access to atomic intrinsic functions
• Support for structures, array notation, limited I/O
• Explicit memory management on device
• Duplication of code and data

14 Presentation_name

Example of kernel code

attributes(global) for device
kernel

Map thread
number to
array index

http://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-fortran/

15 Presentation_name

Example of calling kernel code

Storage on
device

Data transfer by
assignment

16 Presentation_name

Effective use of GPU and CPU

17 Presentation_name

Porting XGC1 to leadership computing
resources

•  Mira: BG/Q, 16 cores, total
64 hardware threads

•  Blue Waters: two 16-core
AMD per node (total 32
cores)

•  Titan: Kepler GPU + 16-
core AMD

•  Piz Daint: Kepler GPU + 8-
core Intel Sandy Bridge (16
cores with hyper-threading)

•  Edison: 12-core Intel Ivy
Bridge (24 cores with
hyper-threading)

18 Presentation_name

Nonlinear Collision Operator
•  Initial implementation of new collision

operator nearly doubled total compute
time

•  In each grid cell, recover distribution on
2D velocity phase grid, solve nonlinear
system by Picard iteration, calls to elliptic
functions to construct matrix, sparse linear
solves in each Picard iteration

•  Need thread-safe spline and PETSc
solver

•  Nested OpenMP parallelization across
grid cells

•  Collision solver accelerated by 5X, XGC1
by 1.7X

•  Challenge in balancing work related to
particle work and grid work

Main
loop
time

Collision
routine time

Multi
threaded
collision

200 s 32 s

Single
threaded
collision

340 s 171 s

19 Presentation_name

Imbalance in work load

• Partitioning to balance
particles

• A few MPI tasks are
assigned many grid cells
(over 500 cells), but average
is around 42

• Work in collision operator
related to number of cells

• Most cells convergence
within 5 iterations, but some
take up to the maximum 20
iterations

Task with
nearly 2000
cells

Some cells
need 20
iterations

20 Presentation_name

Simulation of ITER

•  ITER is larger than
current experiments

• Need advanced
simulation to predict
performance of ITER

21 Presentation_name

ITER Challenges
• Higher resolution ITER Grid:

–  3mm grid for D3D 112,655 elements
–  4mm grid for ITER will need over 10X more elements
– More work in collision operator
– More total particles (keeping 10,000 particles per cell)
–  Higher cost in communication and memory to replicate

electro-magnetic field on all processors

• Higher fidelity in physics:
–  Sub mm grid (in edge region) for electron scale

turbulence, can lead to 100X more computation
–  3D nonlinear EM solver
–  Longer time simulation 10ms -> 10s using multi-scale

time integration

22 Presentation_name

Multi-scale coupling

• Goal to significantly increase simulation time from
10’s milli-seconds to 10’s seconds

• Data exchange between high resolution XGC1,
faster simplified models XGCa

• DataSpaces (SDAV) to use on-node memory for
coupling and RAM in dedicated nodes for data
analysis

23 Presentation_name

Uncertainty Quantification
• Uncertainty Quantification (UQ) at extreme scale is

too expensive
• Collaboration with QUEST to reduce number of UQ

parameters. Consider the few parameters used in
experiments

•  “ab initio” code has fewer free parameters, e.g.
compute diffusion coefficients directly

•  Study at reduced scale then project to full scale

24 Presentation_name

Software Challenges
•  Hybrid architecture:

– Massively parallel: vectorization and high number of
threads (64 threads on Mira)

–  Accelerators: Nvidia Kepler GPU on Titan, future Intel MIC
(self-hosted Knights Landing) on NERSC-8 Cori

–  Complicated hierarchy of memory (host memory, device
memory, shared cache)

•  Different programming models:
–  PGI CUDA Fortran (what works currently)
– OpenACC (not supported by Intel)
–  Intel offload directives
– OpenMP target directive for accelerators

•  Solver Libraries

25 Presentation_name

Summary of Challenges

• Software portability and performance portability in
using hybrid MPI + OpenMP + directive as
programming model

• Simplified memory management between host and
accelerator device

• Balancing computation load
• On-memory data management at extreme scale
• UQ at extreme scale
• Thread-safe parallel libraries for extreme scale
• More computation power -> room for more physics

26 Presentation_name

Acknowledgements

• The work was partially performed at ORNL, which is
managed by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725; at LBNL under DE-
AC02-05CH11231, and at PPPL under DE-
AC02-09CH11466

• Awards of computer time was provided by the
Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program.

• This work was supported by a grant from the Swiss
National Supercomputing Centre (CSCS) under
project ID g40

27 Presentation_name

THANK YOU

28 Presentation_name

Nvidia GPU

• Massively parallel: blocks of threads (1024 threads
per block), grid of blocks (64K by 64K)

• Peak 1.3 Tflops/sec for Kepler K20X
• 32 threads per wrap in SIMD, avoid code divergence
• High memory bandwidth (250GB/s) but high latency

(100s of cycles): need lots of threads to hide
memory latency

• Limited amount of device memory, 6GB on device,
32GB on compute node

• Slow data transfers between CPU host & GPU
device (effectively ~5GB/s)

29 Presentation_name

OpenACC
• Compiler directives to perform data transfer and

computation, supported in PGI, Cray, CAPS (but not
Intel) compilers but version 1.0 was too restrictive

• New capabilities in Version 2.0:
–  device subroutine
–  calling nested device subroutines
–  Flexibility in data allocation and transfer

• Need “deep copy” or “smart copy” data structure
• Exercise in porting collision operator to GPU using

OpenACC but compiler tools still need improvement
• Can mix OpenACC with CUDA Fortan using PGI

compiler

30 Presentation_name

Examples of directives

