Technical report

Patrick Ettenhuber

Code Development: Challenges in
developing the chemistry codes of tomorrow e

Patrick Ettenhuber

Aarhus University

July 21, 2014



. Technical repor
Overview o

Patrick Ettenhuber

Overview

Overview

Introduction

Compiler choice

DEC parallelism
Coarse-grained parallelism
Fine-grained parallelism
Medium-grained parallelism

Outlook

Acknowledgements



. . Technical repor
Motivation o

Patrick Ettenhuber
» Conventional CCSD(T) calculations scale as N’

Introduction

» Memory requirements scale as N*

» Heavy parallelism on modern super computers
(Apra et al.l, 20 Water molecules)

LE. Apra et al. “Liquid Water: Obtaining the right answer for the
right reasons”. In: SC09, submission for Gordon Bell prize (2009).



MOtIVatlon Technical report

Patrick Ettenhuber
» Conventional CCSD(T) calculations scale as N’

2
2h =% 256h Introduction
» Memory requirements scale as N*

460GB =% 7TB

» Heavy parallelism on modern super computers
(Apra et al.l, 20 Water molecules)

» ...does not solve the fundamental problem

LE. Apra et al. “Liquid Water: Obtaining the right answer for the
right reasons”. In: SC09, submission for Gordon Bell prize (2009).



MOtIVatlon Technical report

Patrick Ettenhuber
» Conventional CCSD(T) calculations scale as N’

2
2h =% 256h Introduction
» Memory requirements scale as N*

460GB =% 7TB

» Heavy parallelism on modern super computers
(Apra et al.l, 20 Water molecules)

> ...does not solve the fundamental problem — DEC
» fragmentize problem
» independent fragment calculations
= Distribution of memory and work

LE. Apra et al. “Liquid Water: Obtaining the right answer for the
right reasons”. In: SC09, submission for Gordon Bell prize (2009).



Motivation Il

» DEC constitutes a linear-scaling and massively parallel
framework
Advantage and Problem: Rigorous error control

Technical report

Patrick Ettenhuber

Introduction



Technical report

Motivation Il

Patrick Ettenhuber

Introduction

» DEC constitutes a linear-scaling and massively parallel
framework
Advantage and Problem: Rigorous error control

» Fragment size a priori unknown

» Size grows with requested precision

» Computational complexity scales as traditional methods
with N/

fra
= Parallelization of fragment calculations necessary



Motivation: CCSD(T)

6
Nfrag

5
Nfrag

7
Nfrag

Technical report

Patrick Ettenhuber

Overview
Introduction
Compiler choice

DEC parallelism
Coarse-grained parallelism
Fine-grained parallelism

Medium-grained parallelism
Outlook

Acknowledgements



Com pl |er Cholce Technical report

Patrick Ettenhuber

> Test of Intel vs. Cray
» Cray preferred because it is OpenACC enabled

Compiler choice



Com pl |er Cholce Technical report

Patrick Ettenhuber

> Test of Intel vs. Cray
» Cray preferred because it is OpenACC enabled
> For the investigated systems, speedup of 5-8x Compiler choice

Cray vs Intel executable in CCSD(T)

Intel executable

1000

Cray executable

Time [s]

100

#Nodes



DEC calculation overview fechnical repert

Patrick Ettenhuber
Local HF orbitals

Atomic fragment optimization

l

Pair fragments
(energy screening)

Collection of results for
energy and density




DEC calculation overview fechnical repert

Patrick Ettenhuber
Local HF orbitals

Atomic fragment optimization

l

Pair fragments
(energy screening)

Bl aEINE

Collection of results for
energy and density




DEC calculation overview fechnical repert

Patrick Ettenhuber

Cowats |

Atomic fragment optimization

!

Pair fragments
(energy screening)

Bl aEINE

Collection of results for
energy and density




DEC calculation overview

Cowats |

Atomic fragment optimization

[E IE i

Pair fragments
(energy screening)

Bl aEINE

!

Collection of results for
energy and density

Technical report

Patrick Ettenhuber

. DEC parallelism
n calculations

ca. 10%

const x n

ca. 90%



DEC calculation overview

Pair fragments
(energy screening)

Bl aEINE

!

Collecti I or
ener densrt

Technical report

Patrick Ettenhuber

. DEC parallelism
n calculations

ca. 10%

const x n

ca. 90%



Coarse—gralned para”ellsm Technical report

Patrick Ettenhuber

[Alomic fragment optimization

» DEC has 3 levels of parallelism

> Coarse granularity is given by DEC-splitting |

Coarse-grained parallelism

Fine-gr d parallelis
F1 dium-grained parallelism

F1 F2
F3 32) 32)

N FA
FB FB 5 @32)
FC (16)

N /== ® || ® 6)
N\ N\

ELE S

@)

aumy




Coarse-grained parallelism: Scaling

DEC coarse grained parallelism: scaling

1.0

°
©

0.6

Relative time

°
i

‘ e—e MP2 Energy and gradient‘

0'300 300 400 500 600 700 800 900 10001100

#Nodes

Technical report

Patrick Ettenhuber

Coarse-grained parallelism
Fine-grained parallelis

-grained parallelism



Coarse-grained parallelism: Scaling

DEC coarse grained parallelism: scaling

1.0

°
©

0.6

Relative time

°
i

1.0

‘ e—e MP2 Energy and gradient‘

.52

31

0'300 300 400 500 600 700 800 900 10001100

#Nodes

Technical report

Patrick Ettenhuber

Coarse-grained parallelism
Fine-grained parallelis

-grained parallelism



Technical report

Patrick Ettenhuber

Medium-grained parallelism

[Alomic fragment optimization

» Heavy work Nf7rag

» Heavy memory requirements N{‘rag

Coarse-grained parallelism

Malster Slave 1 Slave2 Slave 3

[ Initialization |

MPI_BCAST

MPI_PUT
| loop | MPI_GET
MPI_ACCUMULATE

| Batched integral

MPI_Allreduce

| Striped matrix multiplications | nhg%’gg;:
| I I !.__MPLREDUCE

| Low order contractions and finalization |




Medium-grained parallelism fechnicatreper

Patrick Ettenhuber

[Alomic fragment optimization

» Heavy work Nf7rag

» Heavy memory requirements N

frag
Coarse-grained parallelism
Malster Slave1 Slave2 Slave 3
[ Initialization |
MPI_BCAST
MPI_PUT
| Batched integral loop | MPI_GET
MPI_ACCUMULATE
MPI_Allreduce
| Striped matrix multiplications | n“g}gg;:
I I I !.__MPLREDUCE
| Low order contractions and finalization |
fine-grained
(OpenMP/OpenACC)




Flne—gralned Para”ellsm Technical report

Patrick Ettenhuber

» High memory requirements per fragment
= use all memory per node (1ppn)
» test OMP with aprun -cc 0,2,4,...,1,3,...

Fine-grained parallelism

1
Picture from
https://www.olcf.ornl.gov/wp-content/uploads/2012/11/opteron_6274_cpu.png



Technical report

Fine-grained Parallelism

Patrick Ettenhuber

» High memory requirements per fragment
= use all memory per node (1ppn)
» test OMP with aprun -cc 0,2,4,...,1,3,...

Coarse-grained parallelism
Fine-grained parallelism
Medium-grained parallelism

AMD Opteron™ 6274 (Interlagos) CPU

NUMA Node 0

B s

13 Cache

NUMA Node 1

13 Cache

1.
Picture from
https://www.olcf.ornl.gov/wp-content/uploads/2012/11/opteron 6274 _cpu.png



Technical report

Fine-grained Parallelism
Patrick Ettenhuber

Figure : Timing of the algorithm with respect to the threads

OMP speedup for CCSD iteration

16

ined parallelism

e—e System 1
o—e System 2

Fine-grained parallelism

grained parallel

Speedup
B

4 8 16
#Threads

aprun -n $MPIPROC -N 1 -d 8 -j 1



Fine-grained parallelism: OpenMP and OpenACC = ™™™

Patrick Ettenhuber

» OpenMP is used explicitly for the calculation of integrals

» OpenMP is otherwise provided by threaded libraries Fine grained parallesm



Fine-grained parallelism: OpenMP and OpenACC = ™"

Patrick Ettenhuber

» OpenMP is used explicitly for the calculation of integrals
» OpenMP is otherwise provided by threaded libraries Fine grained parallesm
» OpenACC is used in the (T) correction

» OpenACC implementation of the integral calculation is
in progress

» OpenACC implementations for MP2 and CCSD residual
are considered



Fine-grained parallelism: OpenMP and OpenACC = ™"

Patrick Ettenhuber

» OpenMP is used explicitly for the calculation of integrals
» OpenMP is otherwise provided by threaded libraries Fine grained parallesm
» OpenACC is used in the (T) correction

» OpenACC implementation of the integral calculation is
in progress

» OpenACC implementations for MP2 and CCSD residual
are considered

Use of directives for portability, ease of implementation and
code maintenance



Fine-grained parallelism: Accelerators in (T) fechnical report

Patrick Ettenhuber

CPU+GPU vs CPU timings for (T) I

1000

Time [s]

100

e—eo System 1 CPU
= System 1 CPU+GPU

1 2 4 8 16 32 64
#Nodes



Fine-grained parallelism: Accelerators in (T) = fechnical report

Patrick Ettenhuber

. . [ nTs |
CPU+GPU vs CPU timings for (T) I
m
1000,
E Fine-grained parallelism
(]
€
£ 100
o—e System 1 CPU
~— System 1 CPU+GPU
105 2 4 8 16 32 64
#Nodes

unstructured data regions
10 unique async handles
asynchronous wait directives to avoid race conditions

vV vVv.VvYyyYy

calls to dgemm_acc_openacc_async of the
cray-libsci_acc library



Medium-grained parallelism fechnicatreper

Patrick Ettenhuber

Diverse parallelism. Specific for the level of theory. Difficult
to implement, but traditional parallelization techniques can
be used

Medium-grained parallelism

» Non-linear equation solver
» Residual routines

> perturbative corrections



Medium-grained parallelism fechnicatreper

Patrick Ettenhuber

Diverse parallelism. Specific for the level of theory. Difficult
to implement, but traditional parallelization techniques can
be used

Medium-grained parallelism

> Non-linear equation solver (tasks/memory: N, /Ng,.)
> Residual routines (tasks/memory: N§../Ng.,)

» perturbative corrections  (tasks/memory: Nfrag/Nfrag)



Technical report

Medium-grained parallelism

Patrick Ettenhuber

Diverse parallelism. Specific for the level of theory. Difficult
to implement, but traditional parallelization techniques can
be used

Medium-grained parallelism
> Non-linear equation solver (tasks/memory: N, /Ng,.)
> Residual routines (tasks/memory: frag/ Niag)
» perturbative corrections  (tasks/memory: Nfrag/Nfrag)

= distribution of tasks (Nf,,) and memory (Ng,,) using
one-sided MPI routines in a tiled tensor framework.



Medium-grained parallelism: CCSD fechmeal repert

H Patrick Ettenhuber

» Use of the conjugate-residual technique with
Medium-grained parallelism
preconditioning




Medium-grained parallelism: CCSD fechmeal repert

Patrick Ettenhuber

» Use of the conjugate-residual technique with
preconditioning

Medium-grained parallelism

» Requires to save iterative subspace information for fast
and stable convergence — employ CROP solver, only
use last 4 iterations



Medium-grained parallelism: CCSD fechmeal repert

Patrick Ettenhuber

» Use of the conjugate-residual technique with
preconditioning

Medium-grained parallelism

» Requires to save iterative subspace information for fast
and stable convergence — employ CROP solver, only
use last 4 iterations

» Distribute tensors in PDM



Technical report

Medium-grained parallelism: CCSD

Patrick Ettenhuber

» Use of the conjugate-residual technique with
preconditioning

Medium-grained parallelism

» Requires to save iterative subspace information for fast
and stable convergence — employ CROP solver, only
use last 4 iterations

» Distribute tensors in PDM
» Only vector-vector operations, easy to perform in PDM



Medium-grained parallelism: Obtaining the
residual r,

» Construction of r, scales as Nf?ag

Technical report

Patrick Ettenhuber

Coarse-grained parallelism
Fine-grained parallelis

Medium-grained parallelism



Technical report

Medium-grained parallelism: Obtaining the
residual r,

Patrick Ettenhuber

» Construction of r, scales as Nf?ag

» Avoid big intermediates by batching and remote
updates (MPI_ACCUMULATE)

Medium-grained parallelism



Technical report

Medium-grained parallelism: Obtaining the
residual r,

Patrick Ettenhuber

» Construction of r, scales as Nf?ag Medium graind paraliim

» Avoid big intermediates by batching and remote
updates (MPI_ACCUMULATE)

» Avoid storing — recalculate



Technical report

Medium-grained parallelism: Obtaining the
residual r,

Patrick Ettenhuber

Medium-grained parallelism

Construction of r, scales as Nf?ag

v

v

Avoid big intermediates by batching and remote
updates (MPI_ACCUMULATE)

Avoid storing — recalculate

v

v

Exploit symmetry



Technical report

Medium-grained parallelism: Obtaining the
residual r,

Patrick Ettenhuber

Construction of r, scales as Nf?ag Medium graind paraliim

v

v

Avoid big intermediates by batching and remote
updates (MPI_ACCUMULATE)

Avoid storing — recalculate

v

v

Exploit symmetry

v

Several CCSD schemes with different focus on N,



Medium-grained parallelism: Solving the CCSD
problem

» Time in solver is negligible

» Use best scheme for current fragment

» Use DEC parallelism to ensure most efficient
distribution of fragment

Speedup for CCSD

64
v System 1
32| v—v System 2
Qle v
3 v
9 g
QJ v
Q.
0
4
2 g
v
1
1 2 4 8 16 32 64

#Nodes

Technical report

Patrick Ettenhuber

Medium-grained parallelism



Technical report

Medium-grained parallelism: Perturbative
methods

Patrick Ettenhuber

» Corresponding to solving an equation in one step o

Medium-grained parallelism



Technical report

Medium-grained parallelism: Perturbative
methods

Patrick Ettenhuber

» Corresponding to solving an equation in one step

Medium-grained parallelism

» Two methods are currently implemented: MP2, (T)



Technical report

Medium-grained parallelism: Perturbative
methods

Patrick Ettenhuber

» Corresponding to solving an equation in one step

Medium-grained parallelism

» Two methods are currently implemented: MP2, (T)

» Characterized by calculation of integrals and
matrix-matrix multiplications



Technical report

Medium-grained parallelism: Perturbative
methods

Patrick Ettenhuber

v

Corresponding to solving an equation in one step

Medium-grained parallelism

v

Two methods are currently implemented: MP2, (T)

v

Characterized by calculation of integrals and
matrix-matrix multiplications

Scaling MP2: Nf5rag and (T): Nf7rag

v



Technical report

Medium-grained parallelism: Perturbative
methods

Patrick Ettenhuber

» Corresponding to solving an equation in one step

» Two methods are currently implemented: MP2, (T) e e
» Characterized by calculation of integrals and
matrix-matrix multiplications
» Scaling MP2: Nf‘r’rag and (T): Nf7rag
» "Easy” and efficient to port to GPUs
— 5-9x speedup for (T)



Technical report

Medium-grained parallelism: Perturbative
methods

Patrick Ettenhuber

» Corresponding to solving an equation in one step
» Two methods are currently implemented: MP2, (T) e e
» Characterized by calculation of integrals and
matrix-matrix multiplications
» Scaling MP2: Nf‘r’rag and (T): Nf7rag
» "Easy” and efficient to port to GPUs
— 5-9x speedup for (T)

» Simple parallelization over many nodes by batching



Medium-grained parallelism: Solving the (T)

problem

MPI scaling (T)

64F

32F

16;

Speedup
er]

o—e System 1

4

8
#Nodes

16

32

64

Technical report

Patrick Ettenhuber

Medium-grained parallelism



Technical report

Medium-grained parallelism: Trouble with MPI
one-sided

Patrick Ettenhuber

» One sided MPI calls are handy, communication can be
hidden and save memory

Medium-grained parallelism



Technical report

Medium-grained parallelism: Trouble with MPI
one-sided

Patrick Ettenhuber

» One sided MPI calls are handy, communication can be
hidden and save memory

BUT:
» Used asynchronously terrible, especially
MPI_ACCUMULATE — partial serialization

Medium-grained parallelism



Technical report

Medium-grained parallelism: Trouble with MPI
one-sided

Patrick Ettenhuber

» One sided MPI calls are handy, communication can be
hidden and save memory
BUT:
» Used asynchronously terrible, especially
MPI_ACCUMULATE — partial serialization
CPU+GPU vs CPU timings for Integrals

Medium-grained parallelism

o—e System 1
1000
0
o 100
£
= '—\/\J.
10
1!
1 2 4 8 16 32 64



Technical report

Medium-grained parallelism: Trouble with MPI
one-sided

Patrick Ettenhuber

SOLUTION:

» Asynchronous progress engine (communication threads
in MP') Medium-grained parallelism

» Efficient use with CLE5.2 and MPI3 possible

aprun -e =1
-e =multiple
-e =1

-n $MPIPROC -N 1 -4 8
-cc 0,2,4,...,1,3,... -r 1



Outlook: Specifications of a new machine

» Memory, more per node and per core

Technical report

Patrick Ettenhuber

Outlook



.t . . echnical repor
Outlook: Specifications of a new machine femeticpen

Patrick Ettenhuber

» Memory, more per node and per core

» More memory on the accelerators

Outlook



Outlook: Specifications of a new machine fecmicel report

Patrick Ettenhuber

» Memory, more per node and per core
» More memory on the accelerators

» Either OpenACC or OpenMP-4 compatible use of
accelerators

Outlook



Technical report

Outlook: Specifications of a new machine

Patrick Ettenhuber

» Memory, more per node and per core
» More memory on the accelerators

» Either OpenACC or OpenMP-4 compatible use of
accelerators

Outlook

» General purpose codes should work, i.e. all standards
should be supported



Technical report

Outlook: Specifications of a new machine

Patrick Ettenhuber

» Memory, more per node and per core
» More memory on the accelerators

» Either OpenACC or OpenMP-4 compatible use of
accelerators

Outlook

» General purpose codes should work, i.e. all standards
should be supported

» More support for asynchronicity (MPI/GPU)



Outlook: Specifications of a new machine fecmicel report

Patrick Ettenhuber

» Memory, more per node and per core
» More memory on the accelerators

» Either OpenACC or OpenMP-4 compatible use of
accelerators

Outlook

» General purpose codes should work, i.e. all standards
should be supported

» More support for asynchronicity (MPI/GPU)

» Large molecular systems are in the focus of science
— more nodes or more runtime



Technical report

Acknowledgements

Patrick Ettenhuber

Work supported by:
» US Department of Energy

v

Oak Ridge Leadership Computing Facility

Acknowledgements

v

European Research Council

v

Danish Council for Independent Research — Natural
Sciences

v

Aarhus University



	Overview
	Introduction
	Compiler choice
	DEC parallelism
	Coarse-grained parallelism
	Fine-grained parallelism
	Medium-grained parallelism

	Outlook
	Acknowledgements

