Code Development: Challenges in developing the chemistry codes of tomorrow

Patrick Ettenhuber

Aarhus University

July 21, 2014

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Outlook

Overview

Overview

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Acknowledgements

Technical report

Patrick Ettenhuber

Overview

Introductior

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Outlook

Motivation

- Conventional CCSD(T) calculations scale as N⁷
- Memory requirements scale as N^4
- Heavy parallelism on modern super computers (Apra et al.¹, 20 Water molecules)

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

ledium-grained parallelism

Outlook

Acknowledgements

¹E. Apra et al. "Liquid Water: Obtaining the right answer for the right reasons". In: *SC09, submission for Gordon Bell prize* (2009).

Motivation

Conventional CCSD(T) calculations scale as N⁷

$$2h \xrightarrow{\times 2} 256h$$

• Memory requirements scale as N^4

460GB
$$\xrightarrow{\times 2}$$
 7TB

- Heavy parallelism on modern super computers (Apra et al.¹, 20 Water molecules)
- ... does not solve the fundamental problem

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism

ine-grained parallelism Aedium-grained parallelism

Outlook

Acknowledgements

¹E. Apra et al. "Liquid Water: Obtaining the right answer for the right reasons". In: *SC09, submission for Gordon Bell prize* (2009).

Motivation

Conventional CCSD(T) calculations scale as N⁷

$$2h \xrightarrow{\times 2} 256h$$

• Memory requirements scale as N^4

460GB
$$\xrightarrow{\times 2}$$
 7TB

- Heavy parallelism on modern super computers (Apra et al.¹, 20 Water molecules)
- \blacktriangleright . . . does not solve the fundamental problem \rightarrow DEC
 - fragmentize problem
 - independent fragment calculations
 - \Rightarrow Distribution of memory and work

¹E. Apra et al. "Liquid Water: Obtaining the right answer for the right reasons". In: *SC09, submission for Gordon Bell prize* (2009).

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

ioarse-grained parallelism ine-grained parallelism Aedium-grained parallelism

Outlook

 DEC constitutes a linear-scaling and massively parallel framework
 Advantage and Problem: Rigorous error control

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism

ine-grained parallelism ledium-grained parallelism

Outlook

Motivation II

- DEC constitutes a linear-scaling and massively parallel framework
 Advantage and Problem: Rigorous error control
- Fragment size a priori unknown
- Size grows with requested precision
- Computational complexity scales as traditional methods with N⁷_{frag}
 - \Rightarrow Parallelization of fragment calculations necessary

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism

ine-grained parallelism ledium-grained parallelism

Outlook

Motivation: CCSD(T)

 $N_{\rm frag}^6$

 $N_{\rm frag}^5$

 $N_{\rm frag}^7$

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Outlook

Compiler choice

- Test of Intel vs. Cray
- Cray preferred because it is OpenACC enabled

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Outlook

Compiler choice

- Test of Intel vs. Cray
- Cray preferred because it is OpenACC enabled
- ► For the investigated systems, speedup of 5-8x

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

coarse-grained parallelism 'ine-grained parallelism Aedium-grained parallelism

Outlook

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism Fine-grained parallelism Aedium-grained parallelism

Outlook

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

oarse-grained parallelism ine-grained parallelism ledium-grained parallelism

Outlook

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

coarse-grained parallelism 'ine-grained parallelism Aedium-grained parallelism

Outlook

n calculations ca. 10%

ca. 90%

Technical report

Patrick Ettenhuber

DEC parallelism

Coarse-grained parallelism

- DEC has 3 levels of parallelism
- Coarse granularity is given by DEC-splitting

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Coarse-grained parallelism: Scaling

Technical report

Patrick Ettenhuber

Overview

Introductior

Compiler choice

DEC parallelism

Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Coarse-grained parallelism: Scaling

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

- Heavy work $N_{\rm frag}^7$
- Heavy memory requirements N_{frag}^4

Technical report

Patrick Ettenhuber

Overview

PK QK

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism

ine-grained parallelism Aedium-grained parallelism

Outlook

- Heavy work N⁷_{frag}
- Heavy memory requirements $N_{\rm frag}^4$

Technical report

Patrick Ettenhuber

Overview

PR 08

Introduction

Compiler choice

DEC parallelism

Coarse-grained parallelism

ne-grained parallelism ledium-grained parallelism

Outlook

Fine-grained Parallelism

- ► High memory requirements per fragment ⇒ use all memory per node (1ppn)
- ▶ test OMP with aprun -cc 0,2,4,...,1,3,...

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism

Fine-grained parallelism Medium-grained parallelism

Outlook

Acknowledgements

Picture from
https://www.olcf.ornl.gov/wp-content/uploads/2012/11/opteron_6274_cpu.png

Fine-grained Parallelism

- ► High memory requirements per fragment ⇒ use all memory per node (1ppn)
- ▶ test OMP with aprun -cc 0,2,4,...,1,3,...

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism

Fine-grained parallelism Medium-grained parallelism

Outlook

Acknowledgements

¹Picture from

https://www.olcf.ornl.gov/wp-content/uploads/2012/11/opteron_6274_cpu.png

Fine-grained Parallelism

Figure : Timing of the algorithm with respect to the threads

aprun -n \$MPIPROC -N 1 -d 8 -j 1

Technical report

Patrick Ettenhuber

Overview

ntroduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

ledium-grained parallelism

Outlook

Fine-grained parallelism: OpenMP and OpenACC

- OpenMP is used explicitly for the calculation of integrals
- OpenMP is otherwise provided by threaded libraries

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Outlook

Fine-grained parallelism: OpenMP and OpenACC

- OpenMP is used explicitly for the calculation of integrals
- OpenMP is otherwise provided by threaded libraries
- OpenACC is used in the (T) correction
- OpenACC implementation of the integral calculation is in progress
- OpenACC implementations for MP2 and CCSD residual are considered

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Fine-grained parallelism: OpenMP and OpenACC

- OpenMP is used explicitly for the calculation of integrals
- OpenMP is otherwise provided by threaded libraries
- OpenACC is used in the (T) correction
- OpenACC implementation of the integral calculation is in progress
- OpenACC implementations for MP2 and CCSD residual are considered

Use of directives for portability, ease of implementation and code maintenance

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Fine-grained parallelism: Accelerators in (T)

Technical report Patrick Ettenhuber Overview Introduction Compiler choice DEC parallelism Coarse-grained parallelism Medum-grained parallelism Outlook

CCSD

(T)

Fine-grained parallelism: Accelerators in (T)

- unstructured data regions
- 10 unique async handles
- asynchronous wait directives to avoid race conditions
- calls to dgemm_acc_openacc_async of the cray-libsci_acc library

Diverse parallelism. Specific for the level of theory. Difficult to implement, but *traditional* parallelization techniques can be used

- Non-linear equation solver
- Residual routines
- perturbative corrections

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Diverse parallelism. Specific for the level of theory. Difficult to implement, but *traditional* parallelization techniques can be used

- Non-linear equation solver (tas)
- Residual routines
- perturbative corrections

(tasks/memory:
$$N_{\rm frag}^4/N_{\rm frag}^4$$

(tasks/memory: $N_{\rm frag}^6/N_{\rm frag}^4$
(tasks/memory: $N_{\rm frag}^7/N_{\rm frag}^4$

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Diverse parallelism. Specific for the level of theory. Difficult to implement, but *traditional* parallelization techniques can be used

- ▶ Non-linear equation solver (tasks/memory: $N_{\text{frag}}^4/N_{\text{frag}}^4$)
- Residual routines (tasks/memory: $N_{\text{frag}}^6/N_{\text{frag}}^4$)
- perturbative corrections (tasks/memory: $N_{\text{frag}}^7/N_{\text{frag}}^4$)

 \Rightarrow distribution of tasks ($N_{\rm frag}^7$) and memory ($N_{\rm frag}^4$) using one-sided MPI routines in a tiled tensor framework.

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

 Use of the conjugate-residual technique with preconditioning

- Use of the conjugate-residual technique with preconditioning
- ▶ Requires to save iterative subspace information for fast and stable convergence → employ CROP solver, only use last 4 iterations

CCSD

INTs

Medium-grained parallelism

Outlook

- Use of the conjugate-residual technique with preconditioning
- ▶ Requires to save iterative subspace information for fast and stable convergence → employ CROP solver, only use last 4 iterations
- Distribute tensors in PDM

Outlook

- Use of the conjugate-residual technique with preconditioning
- ▶ Requires to save iterative subspace information for fast and stable convergence → employ CROP solver, only use last 4 iterations
- Distribute tensors in PDM
- Only vector-vector operations, easy to perform in PDM

Medium-grained parallelism: Obtaining the residual r_n

• Construction of r_n scales as N_{frag}^6

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

JULIOOK
- Construction of r_n scales as N⁶_{frag}
- Avoid big intermediates by batching and remote updates (MPI_ACCUMULATE)

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Medium-grained parallelism

Outlook

- Construction of r_n scales as N⁶_{frag}
- Avoid big intermediates by batching and remote updates (MPI_ACCUMULATE)
- Avoid storing \rightarrow recalculate

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

reurum-grameu paranens

Outlook

- Construction of r_n scales as N_{frag}^6
- Avoid big intermediates by batching and remote updates (MPI_ACCUMULATE)
- Avoid storing \rightarrow recalculate
- Exploit symmetry

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Medium-grained parallelism

Outlook

- Construction of r_n scales as N_{frag}^6
- Avoid big intermediates by batching and remote updates (MPI_ACCUMULATE)
- Avoid storing \rightarrow recalculate
- Exploit symmetry
- Several CCSD schemes with different focus on N_{frag}

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Medium-grained parallelism: Solving the CCSD problem

- ► Time in solver is negligible
- Use best scheme for current fragment
- Use DEC parallelism to ensure most efficient distribution of fragment

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Medium-grained parallelism

Outlook

Corresponding to solving an equation in one step

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Medium-grained parallelism

Outlook

- Corresponding to solving an equation in one step
- Two methods are currently implemented: MP2, (T)

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Medium-grained parallelism

Outlook

- Corresponding to solving an equation in one step
- Two methods are currently implemented: MP2, (T)
- Characterized by calculation of integrals and matrix-matrix multiplications

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Jutlook

- Corresponding to solving an equation in one step
- Two methods are currently implemented: MP2, (T)
- Characterized by calculation of integrals and matrix-matrix multiplications
- ► Scaling MP2: N⁵_{frag} and (T): N⁷_{frag}

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Dutlook

- Corresponding to solving an equation in one step
- Two methods are currently implemented: MP2, (T)
- Characterized by calculation of integrals and matrix-matrix multiplications
- ► Scaling MP2: N⁵_{frag} and (T): N⁷_{frag}
- ► "Easy" and efficient to port to GPUs → 5-9x speedup for (T)

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

- Corresponding to solving an equation in one step
- Two methods are currently implemented: MP2, (T)
- Characterized by calculation of integrals and matrix-matrix multiplications
- ► Scaling MP2: N⁵_{frag} and (T): N⁷_{frag}
- ► "Easy" and efficient to port to GPUs → 5-9x speedup for (T)
- Simple parallelization over many nodes by batching

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Medium-grained parallelism: Solving the (T) problem

Technical report

Patrick Ettenhuber

Overview

(T)

ntroduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Medium-grained parallelism

Outlook

 One sided MPI calls are handy, communication can be hidden and save memory

Technical report

Patrick Ettenhuber

Overview

ntroduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

 One sided MPI calls are handy, communication can be hidden and save memory

BUT:

► Used asynchronously terrible, especially MPI_ACCUMULATE → partial serialization

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

 One sided MPI calls are handy, communication can be hidden and save memory

BUT:

► Used asynchronously terrible, especially MPI_ACCUMULATE → partial serialization

CPU+GPU vs CPU timings for Integrals

Technical report

Patrick Ettenhuber

Overview

ntroduction

Compiler choice

DEC parallelism Coarse-grained parallelism

Medium-grained parallelism

Outlook

CCSD

INTs

SOLUTION:

- Asynchronous progress engine (communication threads in MPI)
- Efficient use with CLE5.2 and MPI3 possible

```
aprun -e MPICH_NEMESIS_ASYNC_PROGRESS=1
-e MPICH_MAX_THREAD_SAFETY=multiple
-e MPICH_RMA_OVER_DMAPP=1
-n $MPIPROC -N 1 -d 8
-cc 0,2,4,...,1,3,... -r 1
```

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

• Memory, more per node and per core

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism

Outlook

- Memory, more per node and per core
- More memory on the accelerators

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

- Memory, more per node and per core
- More memory on the accelerators
- Either OpenACC or OpenMP-4 compatible use of accelerators

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

- Memory, more per node and per core
- More memory on the accelerators
- Either OpenACC or OpenMP-4 compatible use of accelerators
- General purpose codes should work, i.e. all standards should be supported

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

- Memory, more per node and per core
- More memory on the accelerators
- Either OpenACC or OpenMP-4 compatible use of accelerators
- General purpose codes should work, i.e. all standards should be supported
- More support for asynchronicity (MPI/GPU)

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

- Memory, more per node and per core
- More memory on the accelerators
- Either OpenACC or OpenMP-4 compatible use of accelerators
- General purpose codes should work, i.e. all standards should be supported
- More support for asynchronicity (MPI/GPU)
- ► Large molecular systems are in the focus of science → more nodes or more runtime

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook

Acknowledgements

Work supported by:

- US Department of Energy
- Oak Ridge Leadership Computing Facility
- European Research Council
- Danish Council for Independent Research Natural Sciences
- Aarhus University

Technical report

Patrick Ettenhuber

Overview

Introduction

Compiler choice

DEC parallelism Coarse-grained parallelism Fine-grained parallelism Medium-grained parallelism

Outlook