

2

OLCF 2024 Roadmap
We have increased our systems capability at our center since 2004 by
a factor of 10,000X

We are currently at 27PF, however the Exascale reports have pointed
out that systems will be required at the level of 1 EF and beyond in
order to reach critical DOE science goals

Our facilities plan therefore is to deploy a system of up to 4 EF
capability by 2024

Our next step is the OLCF-4 “CORAL” system at 100-200PF to be
deployed in the 2017-2018 timeframe

3

DOE Agency Priority Goal: “Identify programmatic drivers and technical
requirements in coordination with other Departmental mission areas to
inform future development of high performance computing capabilities and
in anticipation of capable exascale systems .” (DOE Strategic Plan 2014-
2018)

Application Requirements

To help us understand
the compute capabilities
needed for future
systems from the
standpoint of
applications, we
periodically go through
an applications
requirements process

https://www.olcf.ornl.gov/media-
center/center-reports

4

• We take input from multiple sources:
– DOE science mandates
– OLCF Leadership Computing usage statistics for the recent past to understand how

users are using our systems
– A requirements survey to elicit project requirements from OLCF-supported projects
– Discussions with computer hardware and software vendors on capabilities of next-

generation offerings

• We seek to understand items/specifications needed in order for
science teams to meet their science objectives, for example:

system hardware requirements science model requirements

system software requirements algorithm requirements

compilers, libraries, tools application codes

data storage, access, analysis development processes

workflow management

The Requirements Process

5

1. OLCF System Usage
System logs tell us the
demand to run large jobs
continues to be high and
growing
The “leadership metric”:
what fraction of our core-
hours are used in jobs
requiring >20% of the full
system
The average for Titan has
been 62% YTD
Up from 43% for
JaguarPF over its lifetime

0

10

20

30

40

50

60

70

80

90

100

20
13

-0
1

20
13

-0
2

20
13

-0
3

20
13

-0
4

20
13

-0
5

20
13

-0
6

20
13

-0
7

20
13

-0
8

20
13

-0
9

20
13

-1
0

20
13

-1
1

20
13

-1
2

20
14

-0
1

20
14

-0
2

20
14

-0
3

20
14

-0
4

20
14

-0
5

20
14

-0
6

20
14

-0
7

Titan Leadership Usage

6

Titan GPU Usage

Many projects are
making effective use of
accelerated
heterogeneous nodes
on Titan
We are improving our
tools for tracking GPU
usage
Usage is substantial and
growing Slide courtesy Jim Rogers / GTC 2014

Red: CPU usage Green: CPU+GPU usage

7

Average Job Size - JaguarPF

Users need to be able
to run jobs of all sizes
Cumulative graph
shows the distribution
of how core-hours are
used with respect to job
size

8

Average Job Duration - JaguarPF

Users have learned how to
limit their job sizes, using
e.g. checkpoint/restart
when necessary
Cumulative graph showing
the distribution of how
core-hours are used with
respect to job duration
88% of core-hours spent
on jobs < 12 hours
Half of core-hours spent on
jobs of < 6 hours

9

Algorithmic Motifs

Application
Structured

Grids
Unstructured

Grids FFT
Dense
Linear

Algebra

Sparse
Linear

Algebra
Particles Monte

Carlo

NWCHEM X X
S3D X X X X
XGC X X
CCSM X X X
CASINO X
VPIC X X X
VASP X X
MFDn X
LSMS X X
GenASiS X X
MADNESS X X X
GTC X X X X
OMEN X X
Denovo X X X X X
CP2K X X X
CHIMERA X X X X
DCA++ X X
LAMMPS X X X
DNS X X X X
PFLOTRAN X X X X X
CAM X X X X X
QMCPACK X X
TOTALS: 12 4 6 11 12 11 8

Top-used codes span the whole range of algorithmic motifs

10

2. 2013 Requirements Survey

• Sent out survey in spring 2013 to OLCF project teams
• Received responses from 21 code teams representing 18

projects across 15 science domains
• This was a large sample of the 31 INCITE projects

representing 60% of resources allocated on OLCF systems.
• Science teams reaffirmed that they will not be able to meet

their science goals at all or as fast without deployment of a
system with significantly more capability than 30PF.

11

Hardware Feature Requirements

• Users were asked to rank the relative importance of
hardware features for the next system

• In the past “more flops” has been the most important
• Now users are starting to feel the need for more memory

bandwidth as well
Hardware feature Ranking Hardware feature Ranking

Memory bandwidth 4.4 Wan network bandwidth 3.7

Flops 4.0 Memory latency 3.5

Interconnect bandwidth 3.9 Local storage capacity 3.5

Archival storage capacity 3.8 Memory capacity 3.2

Interconnect latency 3.7 Mean time to interrupt 3.0

Disk bandwidth 3.7 Disk latency 2.9

12

Additional Parallelism in Applications

• Most users feel that they still have significant additional
parallelism that can be extracted from their applications for
future systems

• They are using a wide range of tools to access this
parallelism, e.g., MPI, OpenMP, CUDA, OpenACC, libraries,
OpenCL and Pthreads

Additional available parallelism in application codes, by number
of respondents

13

Difficulty Exploiting Advanced Hardware

Assessment of difficulty in exploiting advanced hardware,
by number of respondents

• Users are for the most part extraordinarily willing to exploit
advanced hardware—to “do whatever it takes”

• However, they expressed concerns about lack of performance
portability because of differing hardware and programming
APIs and immaturity of some programming models

14

Adoption of Levels of Parallelism

• Most users surveyed indicated they had already adopted some
form of node-level threading, either for CPU or accelerator

0

5

10

15

20

MPI CPU threading Accelerators
Current code levels of parallelism, by number of

respondents.

15

3. Application Readiness

• We went though an application
readiness process for Titan (CAAR,
Center for Accelerated Applications
Readiness)

• We expect to have another readiness
process for the OLCF-4 CORAL
system

• We believe the lessons learned from
the CAAR effort will help us
understand requirements for CAAR-2

CORAL

16

Center for Accelerated Application Readiness (CAAR)

WL-LSMS
Illuminating the role of
material disorder,
statistics, and fluctuations
in nanoscale materials
and systems.

S3D
Understanding turbulent
combustion through direct
numerical simulation with
complex chemistry.
.

NRDF
Radiation transport –
important in astrophysics,
laser fusion, combustion,
atmospheric dynamics,
and medical imaging –
computed on AMR grids.

CAM-SE
Answering questions
about specific climate
change adaptation and
mitigation scenarios;
realistically represent
features like
precipitation patterns /
statistics and tropical
storms.

Denovo
Discrete ordinates
radiation transport
calculations that can
be used in a variety
of nuclear energy
and technology
applications.

LAMMPS
A molecular description
of membrane fusion,
one of the most
common ways for
molecules to enter or
exit living cells.

Slides courtesy Bronson Messer

17

App Science
Area Algorithm(s) Grid type Programming

Language(s)
Compiler(s)
supported

Approx.
LOC

Communicati
on Libraries

Math
Libraries

CAM-SE climate

spectral finite
elements, dense
& sparse linear

algebra, particles

structured F90 PGI, Lahey,
IBM 500K MPI Trilinos

LAMMPS Biology /
materials

molecular
dynamics, FFT,

particles
N/A C++ GNU, PGI,

IBM, Intel 140K MPI FFTW

S3D combustion

Navier-Stokes,
finite diff, dense &

sparse linear
algebra, particles

structured F77, F90 PGI 10K MPI None

Denovo nuclear
energy

wavefront sweep,
GMRES structured C++, Fortran,

Python
GNU, PGI,
Cray, Intel 46K MPI

Trilinos,
LAPACK,
SuperLU,

Metis

WL-
LSMS nanoscience

density functional
theory, Monte

Carlo
N/A F77, F90, C,

C++ PGI, GNU 70K MPI

LAPACK
(ZGEMM,
ZGTRF,
ZGTRS)

NRDF radiation
transport

Non-equilibrium
radiation diffusion

equation

structured
AMR C++, C, F77 PGI, GNU,

Intel 500K MPI, SAMRAI

BLAS,
PETSc,
Hypre,

SAMRSolvers

Application characteristics inventory

18

Code Changes for Titan
Application API Code Modifications

WL-LSMS CUDA,
library

• Rewrote code (LSMS_3) to allow more flexible node
parallelism

• Used BLAS3 functions from library and custom code

CAM-SE CUDA
Fortran

• Used new chemistry package with more parallelism
• Fused element loops
• Flattened data structures

S3D OpenACC • Permuted loops across code to expose coarse-grain
parallelism

LAMMPS CUDA,
OpenCL

• Ported short-range force and other calculations to
GPU

• Replaced FFTs with MSM for long-range forces

Denovo CUDA • Implemented new algorithm to expose a new axis of
parallelism

• Restructured sweep kernel for data locality and more
threading

19

Some Lessons Learned

• Projects were successful obtaining substantial code
performance improvements using the GPUs

• 70-80% of developer time was spent in code restructuring,
regardless of the parallel API used. Because of this, we feel
confident that the porting effort will make it much easier to port
these codes to OLCF-4.

• Codes need as much lead time as possible to prepare for a
substantially different computing system

20

Some Lessons Learned

• Some codes are more easy to port than others, depending on
various factors:
– Code execution profile—flat or hot spots
– The code size (LOC)
– Structure of the algorithms—e.g., available parallelism, high

computational intensity

• Since this was a new effort and tools were not mature, the port
required 1-3 person-years per code. We expect now for this to
be much shorter.

21

Performance Portability

• The diversity of new kinds of system and programming API is
making performance portability a growing concern (NVIDIA,
Intel, AMD, …)

• The industry is consolidating into a fairly uniform configuration of
hierarchical parallelism in the form of
vector/multithreading/core/socket/node/system

• Because of this uniformity, the 70-80% of porting effort spent on
code restructuring can be leveraged across these architectures

• However, the lack of consolidation of programming APIs for this
hardware makes code porting and maintenance needlessly
difficult

22

API Standardization: Past Experience
Repeated pattern of hardware/API disruption, consolidation, standardization

MPI
PVM

NX
Zipcode

Express

p4

???
CUDA

AMP
OpenACC

OpenCL

CILK
Intel

directives

1990s
shared
memory

1990s
distributed
memory

2010s
manycore

OpenMP
Pthreads …

Autotasking

Microtasking
Compass

Pthreads
Windows
threads

OpenMP 4

23

Programming for Portability

• How codes are dealing with portability at present:
– Interface to accelerated library with multiplatform support (LSMS)

– Thin code layer with platform-specific interface (LAMMPS, Denovo)

– Directives that can be changed for different platforms (S3D)

– C++ generic programming for composing platform-specific operations
(Trilinos)

• What we can do
– Urge vendors to agree upon performance portable standards and make

these well-supported in software

– In the meantime attempt to design codes defensively to prepare for
future changes, e.g., isolate data layout issues from business logic of
code

24

We acknowledge the assistance of Bronson Messer, Mike Brown,
Matt Norman, Markus Eisenbach, Ramanan Sankaran, Fernanda Foertter,

Valentine Anantharaj, Jack Wells, Buddy Bland, Ashley Barker and Jim
Rogers.

The research and activities described in this presentation were
performed using the resources of the Oak Ridge Leadership

Computing Facility at Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of

Energy under Contract No. DE-AC0500OR22725.

Questions?
Wayne Joubert
joubert@ornl.gov

25

Supplementary slides

26
Slide courtesy Buddy Bland

Performance results:

27

Coming changes
• New developments announced by vendors

– Burst buffers – different checkpoint strategies, out-of-core algorithms
– 3-D stacked memory – changes balance of flop rate / memory speed;

different caching structure
– Self-hosting accelerators – changes how latency-optimized vs.

bandwidth-optimized code is combined
• More speculative

– Application-level resiliency
– Application-level power usage adaptivity
– Extreme core counts per chip, e.g., Adapteva 64,000 cores by 2018
– Intel CPU + FPGA on-die (???)
– Altera FPGA programmable with OpenCL (???)

