
ORNL is managed by UT-Battelle
for the US Department of Energy

Algorithmic and
computational
challenges for QMC

Paul Kent
Center for Nanophase Materials Sciences
Computer Science & Mathematics Division

2 Paul Kent, OLCF User Meeting, 23 July 2014

Outline

• QMC Background
• Structure of QMCPACK
• Challenges for current & future applications on

current & future architectures
• Running a large enough material system efficiently
• Development challenges

3 Paul Kent, OLCF User Meeting, 23 July 2014

Acknowledgements
QMCPACK developers
• Jeongnim Kim (Intel)

• Kenneth P. Esler (Stoneridge)

• Miguel Morales (LLNL)

• Anouar Benali (ANL)

• Luke Shulenburger (SNL)

• Jaron Krogel (ORNL)

• Nichols Romero (ANL)

• Raymond Clay (UI)

• ADIOS team (ORNL)

• Many more…

Development currently supported by
• QMC Glue (DOE-BES Predictive

Theory and Modeling Program)

Science applications supported by
• DOE-BES and User Facilities
• NSF
• …

Computing resources provided by
• INCITE allocations at Oak Ridge and

Argonne Leadership Computing
Facilities

• SNL, LLNL

4 Paul Kent, OLCF User Meeting, 23 July 2014

QMCPACK: A production code for science
• Over 400K source lines (C++, templates,…)
• A similar size to major electronic structure packages
• New website http://qmcpack.org

5 Paul Kent, OLCF User Meeting, 23 July 2014

Background
• QMC is – in principle – a systematically improvable

electronic structure method applicable to molecules
through to solid state systems.

• Energies are (usually) variational.
– A lower energy indicates a better result
– Most electronic structure methods are not variational

(DFT, many quantum chemical methods)

• QMC can already be applied to current systems of
interest where existing methods fail &/or are not
predictive.

• Note: In this talk I focus on fixed-node diffusion
QMC. Auxiliary Field QMC and full-CI QMC are also
attractive but have different strengths/weaknesses.

6 Paul Kent, OLCF User Meeting, 23 July 2014

Obtaining accurate & trustworthy
results
1. Simulate a large enough number of atoms

(electrons) that the physics/chemistry is well-
represented

– Whole molecule or active site, open boundaries
– Model region around defect in a material, supercell and

periodic boundaries. Twist boundary conditions for
metals.

2. Put the atoms in the correct location
3. Use a sufficiently accurate trial wavefunction

– A good nodal surface minimizes Fermion sign error

If all these points are followed, QMC obtains essentially exact results!
In practice there is a long way to go

7 Paul Kent, OLCF User Meeting, 23 July 2014

Obtaining accurate & trustworthy
results
1. Simulate a large enough number of atoms that the

physics/chemistry is well-represented
– Whole molecule or active site, open boundaries
– Model region around defect in a material, supercell and

periodic boundaries. Twist boundary conditions for metals

2. Put the atoms in the correct location
3. Use a sufficiently accurate trial wavefunction

– A good nodal surface minimizes Fermion sign error

4. Solve the correct Hamiltonian!
– Use good enough pseudopotentials, if used
– Eventually need to include relativistic effects

8 Paul Kent, OLCF User Meeting, 23 July 2014

Obtaining accurate & trustworthy
results
1. Simulate a large enough number of atoms that the

physics/chemistry is well-represented
– Whole molecule or active site, open boundaries
– Model region around defect in a material, supercell and

periodic boundaries. Twist boundary conditions for metals

2. Put the atoms in the correct location
3. Use a sufficiently accurate trial wavefunction

– A good nodal surface minimizes Fermion sign error

4. Solve the correct Hamiltonian!
– Use good enough pseudopotentials, if used
– Eventually need to include relativistic effects

As we look at more challenging systems with increasingly stringent
error demands, all of these areas will require more attention:

Specific science applications will favor specific architectures

Specific architectures will favor certain science applications and
improvements in algorithms.

e.g. Balance of processor power/memory size/memory bandwidth

9 Paul Kent, OLCF User Meeting, 23 July 2014

QMC background

Seek the solutions

Ground-state energy

10 Paul Kent, OLCF User Meeting, 23 July 2014

QMC background

Seek the solutions

Ground-state energy

Variational QMC using Metropolis Sampling

a trial wavefunction

Need to quickly evaluate (i) ratios of the wavefunction squared, (ii) the local energy

11 Paul Kent, OLCF User Meeting, 23 July 2014

QMC methods

Variational Monte Carlo
• Write down a parameterized

form for
• Sample distribution

with Metropolis Monte Carlo
- Propose move
- Accept/reject
• Average over the distribution
• Minimize with respect

to the parameters of
(very tricky in practice)

Diffusion Monte Carlo
• Start with VMC optimized
• Start with Walkers (population)

Typically generated by VMC
• Sample distribution

- Drift/diffuse to move electrons
- Make M copies of each walker

Very similar computational
operations in both algorithms

12 Paul Kent, OLCF User Meeting, 23 July 2014

DMC: computational view

• Light but essential communications

• Computationally Intensive : Ratio, Local Energy, &

Quantum Force (gradient)

Population (walkers)

Collect & load balance

Branch with the weight
X

“Quantum Force”

RandomMake a move

Accept/reject a move

13 Paul Kent, OLCF User Meeting, 23 July 2014

MPI+X Model for QMC

W W
W

W W
W

W W

W W

Big ensemble data:
 B-spline table

MPI Task

W W
W

MPI Group

Each group

X on SMP
OpenMP, CUDA,
Threads ….

14 Paul Kent, OLCF User Meeting, 23 July 2014

CPU vs GPU

W W
W

W W
W

W W

W W

Big ensemble data:
 B-spline table

MPI Task

W W
W

W W

W W

W W

W W

W W

MPI Task

W W

W W

W W

W W

W W

MPI Task

Reorder loops to vectorize
over many walkers. All tasks
on GPU (~no transfers).

Walkers moved one at
a time on each thread

15 Paul Kent, OLCF User Meeting, 23 July 2014

Trial wavefunctions

Basis sets: molecular orbitals,
plane-wave, grid-based orbitals …

Correlation (Jastrow)

Single-particle
orbitals

Anti-symmetric function
(Pauli principle)

16 Paul Kent, OLCF User Meeting, 23 July 2014

Single-Particle Orbitals
general function of (x,y,z)

• Evaluate N/2 orbitals at once,
N~300-3000

3D cubic B-spline most efficient for
large scale systems

• Strictly local basis set

• Only 64 non-zero elements at

• Fixed cost per-orbital indep. of
system size (volume)

• Memory bandwidth bound

• Uses a lot of memory (GiB) - big
problem for “large” systems

• More approximate, less memory
costly basis sets available
(tradeoffs, no clear win)

1D 2D

17 Paul Kent, OLCF User Meeting, 23 July 2014

Speeding wavefunction evaluation
• Avoid recalculation of wavefunction components

– Buffer orbitals, Jastrow, on a per electron basis
– An easy memory vs cost tradeoff

• Store inverse cofactors of determinants, exploit rank-
1 update tricks, particularly for multideterminants
[major memory, CPU saving]

• We now efficiently evaluate simultaneous row & few
column updates. Essential for molecular calculations.

18 Paul Kent, OLCF User Meeting, 23 July 2014

Kernel optimization
– There are many kernels to optimize, most not available in libraries
– We can not take advantage of e.g. quantum chemistry libraries

since they usually evaluate integrals, while we need values,
gradients, and laplacian

– Substantial human efforts required to optimize: e.g., > 100 CUDA
kernels were written by super developer for < 20% of the features
of CPU code

– The most important kernels are heavily optimized (10?)
– Hand-tuned (!) spline evaluation routines for Intel/AMD SSEn, IBM

QPX, CUDA
– Sadly, it is still possible to beat the compiler by substantial amounts

19 Paul Kent, OLCF User Meeting, 23 July 2014

Simple readable example from multi_bspline_eval_sse2_d_impl.h

// Main computation loop
for (int i=0; i<4; i++)

for (int j=0; j<4; j++)
for (int k=0; k<4; k++)
{

__m128d abc, d_abc[3], d2_abc[3];
abc = _mm_mul_pd (_mm_mul_pd(a[i], b[j]), c[k]);
d_abc[0] = _mm_mul_pd (_mm_mul_pd(da[i], b[j]), c[k]);
d_abc[1] = _mm_mul_pd (_mm_mul_pd(a[i], db[j]), c[k]);
d_abc[2] = _mm_mul_pd (_mm_mul_pd(a[i], b[j]), dc[k]);
d2_abc[0] = _mm_mul_pd (_mm_mul_pd(d2a[i], b[j]), c[k]);
d2_abc[1] = _mm_mul_pd (_mm_mul_pd(a[i], d2b[j]), c[k]);
d2_abc[2] = _mm_mul_pd (_mm_mul_pd(a[i], b[j]), d2c[k]);
__m128d* restrict coefs = (__m128d*)(spline->coefs +

(ix+i)*xs + (iy+j)*ys + (iz+k)*zs);
for (int n=0; n<Nh; n++)
{

mvals[n] = _mm_add_pd (mvals[n],
_mm_mul_pd (abc , coefs[n]));

mgrads[3*n+0] = _mm_add_pd (mgrads[3*n+0],
_mm_mul_pd (d_abc[0], coefs[n]));

mgrads[3*n+1] = _mm_add_pd (mgrads[3*n+1],
_mm_mul_pd (d_abc[1], coefs[n]));

mgrads[3*n+2] = _mm_add_pd (mgrads[3*n+2],
_mm_mul_pd (d_abc[2], coefs[n]));

mlapl[3*n+0] = ….
}

}
+Single precision, complex versions

20 Paul Kent, OLCF User Meeting, 23 July 2014

Vampir trace of a 256-el system

A MC step of 256 walkers per GPU, 64 GPUs (MPI tasks)

All_reduce : collect energies and prepare a load balance
p2p to swap walkers (load balance)

Drift/Diffuse Energy

21 Paul Kent, OLCF User Meeting, 23 July 2014

Performance
• Achieved a sustained >1 PF performance on the Blue Waters at

NCSA (Cray XE6), around 15% of peak
– Test system: 432 hydrogen atoms under pressure.
– GPU code ~4x CPU on a per node basis on titan.
– Efficiency not impressive compared to “GEMM-codes”
– Parallel efficiency (scaling) is good to 1.5M cores on Sequoia BG

• Why not so “efficient”?
– Random memory access
– We have removed dense linear algebra (BLAS) by lower (peak)

performing but overall faster algorithms
– Potentially could do 5-10% better with concerted effort optimizing

for specific platforms, but a 2x performance increase would only
reduce error bar by sqrt(2). [Heresy!]

– Method and algorithm development is more important and the
payoff could be much greater!

22 Paul Kent, OLCF User Meeting, 23 July 2014

A lesson & a question

• Performance: Need automatic code generation and
optimization of key kernels on different platforms
– Was barely acceptable for a human to generate this code

on even one platform
– It is likely the current code can be improved
– How to go about this?

23 Paul Kent, OLCF User Meeting, 23 July 2014

Outline

• QMC Background
• Structure of QMCPACK
• Challenges for current & future applications on

current & future architectures
• Running a large enough material system efficiently
• Development challenges

24 Paul Kent, OLCF User Meeting, 23 July 2014

Single-Particle Orbitals
general function of (x,y,z)

• Evaluate N/2 orbitals at once

• Need smooth gradient &
laplacian

• Used 3D cubic B-splines

• New high accuracy
pseudopotentials require very
fine grids

Various solutions being
(re)developed based on physics

• Hybrid representation

• Mixed grid

Calculations for ZnO and Ca2CuO3 were stopped when we ran out of
memory/node, not when we ran out of computer time!

Fine Grid Hybrid basis

25 Paul Kent, OLCF User Meeting, 23 July 2014

Improving time to solution
• We are looking to divide the work of updating one

walker over several threads to reduce time to
solution, sacrificing some computational efficiency.

• Cost of moving a walker increases with system size
• Currently only one thread works on any one walker,

both CPU & GPU.
• For large systems, we have sufficient electrons to

exploit another vector direction (transition?)
• OpenMP tasks? Intel TBB? GPU? Need a long term

stable solution for identifying and processing
suitably sized chunks of work

26 Paul Kent, OLCF User Meeting, 23 July 2014

Sustainable development
• We need a way to develop sustainably without

relying on “super developers”
• We likely have 3 platforms to develop for

– CPU (OpenMP)
– GPU (CUDA)
– Phi (?)

• Need to avoid the rewrite problem – not sustainable
or affordable

• Our algorithm is not rich in, e.g. #directivable loops
• Suggestions?

27 Paul Kent, OLCF User Meeting, 23 July 2014

Summary

• Using MPI+X we have developed a high-performing
QMC code for SMP and GPU systems

• Memory limitations are a challenge for calculations
on large systems

• A transition to a sustainable development model is
imperative

28 Paul Kent, OLCF User Meeting, 23 July 2014

QMC Training, 14-18th July 2014

