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Outline

• QMC Background
• Structure of QMCPACK
• Challenges for current & future applications on 

current & future architectures
• Running a large enough material system efficiently
• Development challenges
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QMCPACK: A production code for science
• Over 400K source lines (C++, templates,…)
• A similar size to major electronic structure packages
• New website http://qmcpack.org
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Background
• QMC is – in principle – a systematically improvable 

electronic structure method applicable to molecules 
through to solid state systems.

• Energies are (usually) variational. 
– A lower energy indicates a better result
– Most electronic structure methods are not variational

(DFT, many quantum chemical methods)

• QMC can already be applied to current systems of 
interest where existing methods fail &/or are not 
predictive.

• Note: In this talk I focus on fixed-node diffusion 
QMC. Auxiliary Field QMC and full-CI QMC are also 
attractive but have different strengths/weaknesses.
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Obtaining accurate & trustworthy 
results
1. Simulate a large enough number of atoms 

(electrons) that the physics/chemistry is well-
represented

– Whole molecule or active site, open boundaries
– Model region around defect in a material, supercell and 

periodic boundaries. Twist boundary conditions for 
metals.

2. Put the atoms in the correct location
3. Use a sufficiently accurate trial wavefunction

– A good nodal surface minimizes Fermion sign error

If all these points are followed, QMC obtains essentially exact results!
In practice there is a long way to go
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Obtaining accurate & trustworthy 
results
1. Simulate a large enough number of atoms that the 

physics/chemistry is well-represented
– Whole molecule or active site, open boundaries
– Model region around defect in a material, supercell and 

periodic boundaries. Twist boundary conditions for metals

2. Put the atoms in the correct location
3. Use a sufficiently accurate trial wavefunction

– A good nodal surface minimizes Fermion sign error

4. Solve the correct Hamiltonian!
– Use good enough pseudopotentials, if used
– Eventually need to include relativistic effects

As we look at more challenging systems with increasingly stringent 
error demands, all of these areas will require more attention:

Specific science applications will favor specific architectures

Specific architectures will favor certain science applications and 
improvements in algorithms.

e.g. Balance of processor power/memory size/memory bandwidth
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QMC background

Seek the solutions

Ground-state energy
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QMC background

Seek the solutions

Ground-state energy

Variational QMC using Metropolis Sampling

a trial wavefunction

Need to quickly evaluate (i) ratios of the wavefunction squared, (ii) the local energy
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QMC methods

Variational Monte Carlo
• Write down a parameterized 

form for
• Sample distribution 

with Metropolis Monte Carlo
- Propose move
- Accept/reject 
• Average over the distribution
• Minimize                 with respect 

to the parameters of
(very tricky  in practice)

Diffusion Monte Carlo
• Start with VMC optimized 
• Start with Walkers (population) 

Typically generated by VMC
• Sample distribution

- Drift/diffuse to move electrons
- Make M copies of each walker 

Very similar computational 
operations in both algorithms
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DMC: computational view

• Light but essential communications

• Computationally Intensive : Ratio, Local Energy, & 

Quantum Force (gradient)

Population (walkers)

Collect & load balance

Branch with the weight
X

“Quantum Force”

RandomMake a  move

Accept/reject a  move
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MPI+X Model for QMC

W W 
W 

W W 
W 

W W 

W W 

Big ensemble data: 
 B-spline table 

MPI Task 

W W 
W 

MPI Group

Each group

X on SMP
OpenMP, CUDA,
Threads …. 



14 Paul Kent, OLCF User Meeting, 23 July 2014

CPU vs GPU

W W 
W 

W W 
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Big ensemble data: 
 B-spline table 

MPI Task 
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W 

W W
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W W

W W

W W

MPI Task

W W

W W

W W

W W

W W

MPI Task

Reorder loops to vectorize
over many walkers. All tasks 
on GPU (~no transfers).

Walkers moved one at 
a time on each thread
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Trial wavefunctions

Basis sets: molecular orbitals, 
plane-wave, grid-based orbitals …

Correlation (Jastrow)

Single-particle 
orbitals

Anti-symmetric function
(Pauli principle)
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Single-Particle Orbitals
general function of (x,y,z)

• Evaluate N/2 orbitals at once, 
N~300-3000

3D cubic B-spline most efficient for 
large scale systems

• Strictly local basis set

• Only 64 non-zero elements at

• Fixed cost per-orbital indep. of 
system size (volume)

• Memory bandwidth bound

• Uses a lot of memory (GiB) - big 
problem for “large” systems

• More approximate, less memory 
costly basis sets available 
(tradeoffs, no clear win) 

1D 2D
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Speeding wavefunction evaluation
• Avoid recalculation of wavefunction components

– Buffer orbitals, Jastrow, on a per electron basis
– An easy memory vs cost tradeoff

• Store inverse cofactors of determinants, exploit rank-
1 update tricks, particularly for multideterminants
[major memory, CPU saving]

• We now efficiently evaluate simultaneous row & few 
column updates. Essential for molecular calculations.
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Kernel optimization
– There are many kernels to optimize, most not available in libraries
– We can not take advantage of e.g. quantum chemistry libraries 

since they usually evaluate integrals, while we need values, 
gradients, and laplacian

– Substantial human efforts required to optimize: e.g.,  > 100 CUDA 
kernels were written by super developer for < 20% of the features 
of CPU code

– The most important kernels are heavily optimized (10?)
– Hand-tuned (!) spline evaluation routines for Intel/AMD SSEn, IBM 

QPX, CUDA 
– Sadly, it is still possible to beat the compiler by substantial amounts
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Simple readable example from multi_bspline_eval_sse2_d_impl.h

// Main computation loop
for (int i=0; i<4; i++)

for (int j=0; j<4; j++)
for (int k=0; k<4; k++)
{

__m128d abc, d_abc[3], d2_abc[3];
abc = _mm_mul_pd (_mm_mul_pd(a[i], b[j]), c[k]);
d_abc[0]    = _mm_mul_pd (_mm_mul_pd(da[i],  b[j]),  c[k]);
d_abc[1]    = _mm_mul_pd (_mm_mul_pd( a[i], db[j]),  c[k]);
d_abc[2]    = _mm_mul_pd (_mm_mul_pd( a[i],  b[j]), dc[k]);
d2_abc[0]   = _mm_mul_pd (_mm_mul_pd(d2a[i],   b[j]),   c[k]);
d2_abc[1]   = _mm_mul_pd (_mm_mul_pd(  a[i], d2b[j]),   c[k]);
d2_abc[2]   = _mm_mul_pd (_mm_mul_pd(  a[i],   b[j]), d2c[k]);
__m128d* restrict coefs = (__m128d*)(spline->coefs +

(ix+i)*xs + (iy+j)*ys + (iz+k)*zs);
for (int n=0; n<Nh; n++)
{

mvals[n]      = _mm_add_pd (mvals[n], 
_mm_mul_pd (   abc , coefs[n]));

mgrads[3*n+0] = _mm_add_pd (mgrads[3*n+0],
_mm_mul_pd ( d_abc[0], coefs[n]));

mgrads[3*n+1] = _mm_add_pd (mgrads[3*n+1],
_mm_mul_pd ( d_abc[1], coefs[n]));

mgrads[3*n+2] = _mm_add_pd (mgrads[3*n+2], 
_mm_mul_pd ( d_abc[2], coefs[n]));

mlapl[3*n+0]  = ….
}

}
+Single precision, complex versions
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Vampir trace of a 256-el system

A MC step of 256 walkers per GPU, 64 GPUs (MPI tasks)

All_reduce : collect energies and prepare a load balance
p2p to swap walkers (load balance)

Drift/Diffuse Energy
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Performance
• Achieved a sustained >1 PF performance on the Blue Waters at 

NCSA (Cray XE6), around 15% of peak
– Test system: 432 hydrogen atoms under pressure.
– GPU code ~4x CPU on a per node basis on titan. 
– Efficiency not impressive compared to “GEMM-codes”
– Parallel efficiency (scaling) is good to 1.5M cores on Sequoia BG

• Why not so “efficient”?
– Random memory access
– We have removed dense linear algebra (BLAS) by lower (peak) 

performing but overall faster algorithms
– Potentially could do 5-10% better with concerted effort optimizing 

for specific platforms, but a 2x performance increase would only 
reduce error bar by sqrt(2). [ Heresy! ]

– Method and algorithm development is more important and the 
payoff could be much greater!
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A lesson & a question

• Performance: Need automatic code generation and 
optimization of key kernels on different platforms
– Was barely acceptable for a human to generate this code 

on even one platform
– It is likely the current code can be improved
– How to go about this? 
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Single-Particle Orbitals
general function of (x,y,z)

• Evaluate N/2 orbitals at once

• Need smooth gradient & 
laplacian

• Used 3D cubic B-splines

• New high accuracy 
pseudopotentials require very 
fine grids

Various solutions being 
(re)developed based on physics

• Hybrid representation

• Mixed grid

Calculations for ZnO and Ca2CuO3 were stopped when we ran out of 
memory/node, not when we ran out of computer time!

Fine Grid Hybrid basis
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Improving time to solution
• We are looking to divide the work of updating one 

walker over several threads to reduce time to 
solution, sacrificing some computational efficiency.

• Cost of moving a walker increases with system size
• Currently only one thread works on any one walker, 

both CPU & GPU.
• For large systems, we have sufficient electrons to 

exploit another vector direction (transition?)
• OpenMP tasks? Intel TBB? GPU? Need a long term 

stable solution for identifying and processing 
suitably sized chunks of work
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Sustainable development
• We need a way to develop sustainably without 

relying on “super developers”
• We likely have 3 platforms to develop for

– CPU (OpenMP)
– GPU (CUDA)
– Phi (?)

• Need to avoid the rewrite problem – not sustainable 
or affordable 

• Our algorithm is not rich in, e.g. #directivable loops 
• Suggestions?
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Summary

• Using MPI+X we have developed a high-performing 
QMC code for SMP and GPU systems

• Memory limitations are a challenge for calculations 
on large systems

• A transition to a sustainable development model is 
imperative
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QMC Training, 14-18th July 2014


